CN101546347A - Parameter determination method of rectangular waveguide lowpass - Google Patents

Parameter determination method of rectangular waveguide lowpass Download PDF

Info

Publication number
CN101546347A
CN101546347A CN200810150928A CN200810150928A CN101546347A CN 101546347 A CN101546347 A CN 101546347A CN 200810150928 A CN200810150928 A CN 200810150928A CN 200810150928 A CN200810150928 A CN 200810150928A CN 101546347 A CN101546347 A CN 101546347A
Authority
CN
China
Prior art keywords
diaphragm
rectangular waveguide
overbar
pass filter
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200810150928A
Other languages
Chinese (zh)
Other versions
CN101546347B (en
Inventor
黄进
周晓辉
宛刚
陈丽娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN2008101509282A priority Critical patent/CN101546347B/en
Publication of CN101546347A publication Critical patent/CN101546347A/en
Application granted granted Critical
Publication of CN101546347B publication Critical patent/CN101546347B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本发明公开了一种矩形波导低通滤波器的参数确定方法,它属于电器元件技术领域。主要解决矩形波导低通滤波器设计精度问题。其过程是:首先,根据矩形波导低通滤波器的电性能指标选择矩形波导型号,初步确定矩形波导电长度和电容膜片的结构参数;其次,利用施瓦茨-克里斯托弗反变换,通过改进的混合遗传算法求解矩形波导电容膜片的S′矩阵;再次,利用遗传算法优化,使得该S′矩阵与通过广义阻抗变换系数K得到的S矩阵近似相等,最终确定膜片结构参数;最后,利用电容膜片的S′矩阵修正两膜片间的波导长度,最终确定矩形波导的腔长。本发明具有确定参数准确,无需反复调试的优点,可用于对高精度矩形波导低通滤波器的设计。

Figure 200810150928

The invention discloses a method for determining parameters of a rectangular waveguide low-pass filter, which belongs to the technical field of electrical components. It mainly solves the design accuracy problem of rectangular waveguide low-pass filter. The process is as follows: firstly, the rectangular waveguide model is selected according to the electrical performance index of the rectangular waveguide low-pass filter, and the length of the rectangular waveguide and the structural parameters of the capacitor diaphragm are preliminarily determined; The hybrid genetic algorithm is used to solve the S' matrix of the rectangular waveguide capacitive diaphragm; again, the genetic algorithm is used to optimize, so that the S' matrix is approximately equal to the S matrix obtained by the generalized impedance transformation coefficient K, and finally the structural parameters of the diaphragm are determined; finally, the use of The S' matrix of the capacitive diaphragm corrects the waveguide length between the two diaphragms, and finally determines the cavity length of the rectangular waveguide. The invention has the advantages of accurate parameter determination and no need for repeated debugging, and can be used for the design of high-precision rectangular waveguide low-pass filters.

Figure 200810150928

Description

矩形波导低通滤波器的参数确定方法 Parameter Determination Method of Rectangular Waveguide Low-pass Filter

技术领域 technical field

本发明属于电器元件技术领域,特别是矩形波导低通滤波器的参数确定方法,用于指导高性能矩形波导低通滤波器的设计。The invention belongs to the technical field of electrical components, in particular to a method for determining parameters of a rectangular waveguide low-pass filter, which is used to guide the design of a high-performance rectangular waveguide low-pass filter.

背景技术 Background technique

矩形波导低通滤波器设计,首先由滤波器电性能指标得到低通原型电路,再进行电路变换得到广义阻抗变换器K,最后用波导微波结构实现电路的阻抗变换器和支路元件,其中包括耦合电容膜片设计和传输段波导设计。对于采用电容膜片实现耦合的矩形波导低通滤波器来说,根据广义阻抗变换系数K设计电容膜片参数是非常关键的一步。In the design of rectangular waveguide low-pass filter, the low-pass prototype circuit is first obtained from the electrical performance index of the filter, and then the generalized impedance converter K is obtained by circuit transformation, and finally the impedance converter and branch components of the circuit are realized by waveguide microwave structure, including Coupling capacitor diaphragm design and transmission section waveguide design. For a rectangular waveguide low-pass filter that uses a capacitive diaphragm to achieve coupling, it is a very critical step to design the parameters of the capacitive diaphragm according to the generalized impedance transformation coefficient K.

图1矩形波导低通滤波器的结构示意图,其中电容膜片实现并联电容,波导段实现串联电感。Figure 1 is a schematic diagram of the structure of a rectangular waveguide low-pass filter, in which the capacitive diaphragm implements a parallel capacitance, and the waveguide section implements a series inductance.

图2所示为矩形波导中电容膜片结构及其等效电路。矩形波导中传输的TE10模电磁波,在不连续性膜片处要激励起高次模,这些高次模在波导中是截止的,离膜片不远的地方就会很快地被衰减掉。由于TE10模电场只有y分量,没有x分量,而不连续性又只在y方向上,x方向是连续的,故电力线在膜片两边以边缘电场形式分布着。这样一来,在膜片附近存储了净电能,同时膜片极薄,且无损耗,因此,该不连续性膜片可以等效为一个集总电容元件,用容纳jB表示。Figure 2 shows the capacitive diaphragm structure and its equivalent circuit in a rectangular waveguide. The TE 10 -mode electromagnetic wave transmitted in the rectangular waveguide excites higher-order modes at the discontinuous diaphragm. These higher-order modes are cut off in the waveguide and will be quickly attenuated not far from the diaphragm. . Because the TE 10 -mode electric field has only y component, no x component, and the discontinuity is only in the y direction, and the x direction is continuous, so the electric force lines are distributed in the form of fringe electric fields on both sides of the diaphragm. In this way, the net electric energy is stored near the diaphragm, and the diaphragm is extremely thin and has no loss. Therefore, the discontinuous diaphragm can be equivalent to a lumped capacitance element, represented by the accommodation jB.

对于已有的滤波器,在工程中常用测量反射系数的方法确定相应的电纳值。在波导终端接匹配负载,则由电纳jB所引起的反射系数是For the existing filter, the method of measuring the reflection coefficient is commonly used in engineering to determine the corresponding susceptance value. Connect the matched load at the end of the waveguide, then the reflection coefficient caused by the susceptance jB is

ΓΓ == YY 00 -- (( YY 00 -- jBjB )) YY 00 ++ (( YY 00 ++ jBjB )) == -- jBjB 22 YY 00 ++ jBjB == -- jj BB ‾‾ 22 ++ jj BB ‾‾

式中 B ‾ = B Y 0 是归一电纳。求解上式可得 j B ‾ = - 2 Γ 1 + Γ . In the formula B ‾ = B Y 0 It is the normalized susceptance. Solve the above formula to get j B ‾ = - 2 Γ 1 + Γ .

王欣稳、李萍在《微波技术与天线》第二章第七节中对此进行了详细叙述。然而,此方法的不能给出电纳与膜片尺寸的关系,不能直接应用于滤波器的设计。Wang Xinwen and Li Ping described this in detail in Chapter 2, Section 7 of Microwave Technology and Antennas. However, this method cannot give the relationship between susceptance and diaphragm size, and cannot be directly applied to filter design.

目前在波导滤波器设计时,主要有以下几种计算容性膜片的电纳方法:At present, when designing waveguide filters, there are mainly the following methods for calculating the susceptance of capacitive diaphragms:

1准静态场法1 Quasi-static field method

准静场法是解决波导不连续性的一种常用的方法。静电场的特征是工作波长λ→∞,对于波导而言,工作波长虽然不会无限大。但是,对于波导中的消失波而言,有λ→λc,且消失波的阶数越高,截止波长λc越小,既有λ》λc,因此,对于λc而言,就好像工作波长变长了,这样消失波的场就可以近似用静电场来表示。保角变换是直接从解静场问题入手获得准静场解的一种方法,可利用多种函数来进行变换。张钧在《导波的不连续性问题》一书第四章第二节中对此进行了详细分析。对于图1(a)的含有对称电容膜片的平行板波导,经过函数 w = u + jv = arcsin [ csc ( πd 2 b ) sin π b ( y + jz ) ] 变换,变成单纯的平行板波导,求出等效电容C,再利用B=ωC,从而可求出等效网络的并联电纳B,其归一化电纳值为The quasi-static field method is a commonly used method to solve the waveguide discontinuity. The characteristic of the electrostatic field is that the working wavelength λ→∞, for the waveguide, although the working wavelength is not infinite. However, for the evanescent wave in the waveguide, there is λ→λ c , and the higher the order of the evanescent wave, the smaller the cut-off wavelength λ c , and there is λ》λ c , so, for λ c , it is like The working wavelength becomes longer, so the field of evanescent wave can be approximated by electrostatic field. Conformal transformation is a method to obtain quasi-static field solution directly from the static field problem, and a variety of functions can be used for transformation. Zhang Jun analyzed this in detail in Section 2 of Chapter 4 of the book "Discontinuity of Guided Waves". For the parallel-plate waveguide with a symmetrical capacitive diaphragm in Fig. 1(a), after the function w = u + jv = arcsin [ csc ( πd 2 b ) sin π b ( the y + jz ) ] Transform into a simple parallel plate waveguide, find the equivalent capacitance C, and then use B=ωC to find the parallel susceptance B of the equivalent network, and its normalized susceptance value is

BB ‾‾ == BB YY 00 == 44 bb λλ gg lnln csccsc (( πdπd 22 bb ))

式中λg是波导波长,b是波导高度,d是两膜片间的间距。Where λ g is the wavelength of the waveguide, b is the height of the waveguide, and d is the distance between the two diaphragms.

2变分法2 Variations

变分法是处理泛函极值的一种方法,最终寻求的是极值函数,使得泛函取得极大或极小值。其关键定理是欧拉—拉格朗日方程,它对应于泛函的临界点。在实际工程问题中,如果一个实际待求问题可表示成 J [ y ] = ∫ x 0 x 1 F ( x , y , y ′ ) dx , ( y = y ( x ) ) 的泛函形式,那么要求的真实值就是泛函的极值,我们又称为稳定值。在解波导不连续性的问题时,常将等效网络的参量表示成为不连续处的未知切向电场或电流的积分式,而实际电场或电流就是使这个积分式取极值,并满足不连续处的边界条件,等效网络的参量可以通过变分法来确定。Sangster A.J等发表于《Progress In Electromagnetics Research IEE》1965年第112卷的“Variational method for the analysis of waveguide coupling”。采用变分法对波导耦合进行了分析,对于对称性容性膜片归一化电纳的一次近似值为:Variational method is a method to deal with the extremum value of the functional, and what is finally sought is the extremum function, so that the functional can obtain a maximum or minimum value. Its key theorem is the Euler-Lagrange equation, which corresponds to the critical point of the functional. In practical engineering problems, if an actual problem to be asked can be expressed as J [ the y ] = ∫ x 0 x 1 f ( x , the y , the y ′ ) dx , ( the y = the y ( x ) ) The functional form of , then the required real value is the extremum value of the functional, which is also called the stable value. When solving the problem of waveguide discontinuity, the parameters of the equivalent network are often expressed as the integral formula of the unknown tangential electric field or current at the discontinuity, and the actual electric field or current is to make the integral formula take the extreme value and satisfy the The boundary conditions at the continuum, the parameters of the equivalent network can be determined by the variational method. Sangster AJ et al. published "Variational method for the analysis of waveguide coupling" in "Progress In Electromagnetics Research IEE", Volume 112, 1965. The waveguide coupling is analyzed by the variational method, and the first approximation for the normalized susceptance of the symmetric capacitive diaphragm is:

BB ‾‾ == BB YY 00 == 44 bb λλ gg lnln csccsc (( πdπd 22 bb ))

3模式匹配法3 pattern matching method

模式匹配法考虑不连续处的高次模,将有厚度的膜片部分当作一个小波导处理,含对称性容性膜片的波导可看作两个波导双面阶梯与一段长度为t的小波导的级连,其中t为膜片的厚度。在分析时将所研究区域内的场视做无穷多个模式的叠加,利用在两区的分界面上电场和磁场连续的边界条件,应用模式函数的正交性可求出界面上的散射矩阵。模式匹配主要是分析具有规则几何结构的微波器件。R.Safavi-Naini和R.H.Macphie.等发表于《IEEE Transactions on M TT》1982年第82卷第11期的“Scattering atrectangular-to-rectangular waveguide junctions”中应用模式匹配分析波导不连续性。The mode matching method considers the high-order mode at the discontinuity, and treats the thick diaphragm part as a small waveguide, and the waveguide with a symmetrical capacitive diaphragm can be regarded as two waveguide double-sided steps and a section of length t A cascade of small waveguides, where t is the thickness of the diaphragm. In the analysis, the field in the research area is regarded as the superposition of infinite modes, and the scattering matrix on the interface can be obtained by using the boundary condition of the electric field and magnetic field continuous on the interface between the two areas and applying the orthogonality of the mode function . Mode matching is mainly used to analyze microwave devices with regular geometries. R.Safavi-Naini and R.H.Macphie. published in "IEEE Transactions on MTT", Volume 82, Issue 11, 1982, "Scattering atmospheric-to-rectangular waveguide junctions" using pattern matching to analyze waveguide discontinuity.

现行方法存在以下不足:The current method has the following deficiencies:

1)准静场法中的保角变换采用函数变换求解等效电纳B,并没有将膜片的厚度和加工倾角等因素考虑在内,如果将厚度和倾角因素加入,很难直接通过变换函数实现含有对称电容膜片的矩形波导向单纯的平行板波导变换。1) The conformal transformation in the quasi-static method uses function transformation to solve the equivalent susceptance B, and does not take into account factors such as the thickness of the diaphragm and the inclination angle of processing. If the thickness and inclination factors are added, it is difficult to directly transform The function implements the transformation from a rectangular waveguide with a symmetrical capacitive diaphragm to a simple parallel-plate waveguide.

2)变分法没有将膜片厚度和加工倾角等因素考虑在内。2) Variational method does not take factors such as diaphragm thickness and processing inclination angle into consideration.

3)模式匹配主要是分析具有规则几何结构的微波器件,对于出现倾角等不规则变形情况目前没有进行准确分析。3) Mode matching is mainly to analyze microwave devices with regular geometric structures, and there is no accurate analysis for irregular deformations such as inclination angles.

发明内容 Contents of the invention

本发明的目的是避免上述已有方法的不足,提供一种矩形波导低通滤波器的参数确定方法,以提高矩形波导低通滤波器的设计精度。The object of the present invention is to avoid the disadvantages of the above existing methods, and provide a method for determining the parameters of the rectangular waveguide low-pass filter, so as to improve the design accuracy of the rectangular waveguide low-pass filter.

为实现上述目的,本发明的矩形波导低通滤波器的参数确定方法,包括如下步骤:参数预确定步骤:根据矩形波导低通滤波器的频率要求选择矩形波导型号;根据矩形波导低通滤波器的相对带宽BW,确定两电容膜片间矩形波导电长度θ0;根据矩形波导低通滤波器电性能指标和电路变换得到只含有电容元件的低通原型电路,进而得到广义阻抗变换系数K,确定并联电容的容抗X,通过查取矩形波导电容加载的等效电纳图,初步确定矩形波导内电容膜片的窗口宽度d、膜片厚度m和加工倾角α;In order to achieve the above object, the parameter determination method of the rectangular waveguide low-pass filter of the present invention comprises the following steps: parameter pre-determining step: select the rectangular waveguide model according to the frequency requirement of the rectangular waveguide low-pass filter; Determine the length θ 0 of the rectangular waveguide between the two capacitor diaphragms; according to the electrical performance index and circuit transformation of the rectangular waveguide low-pass filter, a low-pass prototype circuit containing only capacitive elements is obtained, and then the generalized impedance transformation coefficient K is obtained, Determine the capacitive reactance X of the parallel capacitor, and preliminarily determine the window width d, diaphragm thickness m, and processing inclination α of the capacitive diaphragm in the rectangular waveguide by checking the equivalent susceptance diagram loaded by the rectangular waveguide capacitance;

膜片参数优化步骤:根据广义阻抗变换系数K,确定矩形波导单节电容膜片的S矩阵;对由初步确定矩形波导内电容膜片的窗口宽度d、膜片厚度m和加工倾角α及波导高度b所形成的膜片截面多角形进行施瓦茨—克里斯托弗反变换,并求解电容膜片的归一化等效电纳B;根据等效电纳B确定电容膜片的S′矩阵: S 11 ′ = - j B ‾ 2 + j B ‾ , S 12 ′ = 2 2 + j B ‾ ; 利用遗传算法优化使得S′矩阵近似等于S矩阵,最终确定单节电容膜片的窗口宽度d′、膜片厚度m′和加工倾角α′;Diaphragm parameter optimization steps: According to the generalized impedance transformation coefficient K, determine the S matrix of the rectangular waveguide single-section capacitive diaphragm; for the initial determination of the window width d, diaphragm thickness m and processing inclination angle α of the rectangular waveguide capacitive diaphragm and waveguide The diaphragm cross-section polygon formed by the height b is subjected to Schwartz-Christopher inverse transformation, and the normalized equivalent susceptance B of the capacitive diaphragm is solved; the S′ matrix of the capacitive diaphragm is determined according to the equivalent susceptance B: S 11 ′ = - j B ‾ 2 + j B ‾ , S 12 ′ = 2 2 + j B ‾ ; The genetic algorithm is used to optimize so that the S' matrix is approximately equal to the S matrix, and finally determine the window width d', diaphragm thickness m' and processing inclination α' of the single capacitor diaphragm;

重复所述的膜片参数优化步骤,确定矩形波导低通滤波器的其余电容膜片参数;Repeat the diaphragm parameter optimization step to determine the remaining capacitor diaphragm parameters of the rectangular waveguide low-pass filter;

修正波导腔长步骤:通过电容膜片的S′矩阵,得到修正后的两膜片间的波导长度为:The step of correcting the length of the waveguide cavity: through the S′ matrix of the capacitive diaphragm, the corrected waveguide length between the two diaphragms is:

LL ii == λλ gg 22 ππ (( θθ 00 -- 11 22 (( arctanarctan (( 22 Xx ‾‾ ii -- 11 ,, ii )) ++ arctanarctan (( 22 Xx ‾‾ ii ,, ii ++ 1212 )) )) )) ,, ii ≥&Greater Equal; 22 ,,

λg为波导波长,θ0为初始确定两电容膜片间矩形波导电长度,λ g is the wavelength of the waveguide, θ 0 is the length of the rectangular waveguide between the two capacitive diaphragms initially determined,

X为电容膜片等效电路的归一化并联电抗即 j X ‾ = 2 S 12 ′ ( 1 - S 11 ′ ) 2 - S 12 ′ 2 ; X is the normalized shunt reactance of the equivalent circuit of the capacitive diaphragm, namely j x ‾ = 2 S 12 ′ ( 1 - S 11 ′ ) 2 - S 12 ′ 2 ;

重复所述修正波导腔长步骤,确定矩形波导低通滤波器其余两电容膜片间的波导长度,完成整个矩形波导低通滤波器的设计。Repeat the step of modifying the length of the waveguide cavity to determine the length of the waveguide between the remaining two capacitive diaphragms of the rectangular waveguide low-pass filter, and complete the design of the entire rectangular waveguide low-pass filter.

本发明与已有技术相比较,具有以下优点:Compared with the prior art, the present invention has the following advantages:

1)本发明考虑膜片加工过程中的尺寸公差和加工倾角,利用多边形近似将实际的膜片轮廓线近似为多边形,既保留了重要信息,又提高分析速度。1) The present invention considers the dimensional tolerance and machining inclination in the process of diaphragm processing, and uses polygonal approximation to approximate the actual diaphragm contour as a polygon, which not only retains important information, but also improves the analysis speed.

2)在解决多边形保角变换时,采用改进的遗传算法,既保证结果最优,又提高了计算速度。2) When solving the conformal transformation of polygons, the improved genetic algorithm is used, which not only ensures the optimal result, but also improves the calculation speed.

3)本发明考虑矩形波导容性膜片因加工出现的厚度和倾角因素,通过矩形波导电容膜片进行施瓦茨—克里斯托弗反变换求解等效电纳和S′矩阵,并利用遗传算法优化,使得该S′矩阵与通过广义阻抗变换系数K得到的S矩阵近似相等,能够准确确定其结构参数。3) The present invention considers the thickness and inclination factors of the rectangular waveguide capacitive diaphragm due to processing, and performs Schwartz-Christopher inverse transformation to solve the equivalent susceptance and S' matrix through the rectangular waveguide capacitive diaphragm, and optimizes it by genetic algorithm. The S' matrix is approximately equal to the S matrix obtained through the generalized impedance transformation coefficient K, and its structural parameters can be accurately determined.

4)利用本发明能够准确分析加工过程中出现的膜片公差对电性能的影响。4) The present invention can accurately analyze the influence of the diaphragm tolerance occurring in the processing process on the electrical performance.

仿真试验证明,用本发明的方法可以提高矩形波导低通滤波器容性膜片参数设计的精度和提高整个滤波器的性能。The simulation test proves that the method of the invention can improve the accuracy of parameter design of the capacitive diaphragm of the rectangular waveguide low-pass filter and improve the performance of the whole filter.

附图说明 Description of drawings

图1是已有矩形波导低通滤波器的结构示意图;Fig. 1 is the structural representation of existing rectangular waveguide low-pass filter;

图2是已有波导容性膜片结构及等效电路示意图;Fig. 2 is a schematic diagram of the existing waveguide capacitive diaphragm structure and equivalent circuit;

图3是已有矩形波导低通滤波器的等效电路图;Fig. 3 is the equivalent circuit diagram of existing rectangular waveguide low-pass filter;

图4是本发明进行施瓦茨-克里斯托弗反变换过程示意图;Fig. 4 is a schematic diagram of the process of Schwartz-Christopher inverse transformation in the present invention;

图5是本发明的设计步骤流程图;Fig. 5 is a flow chart of design steps of the present invention;

图6是本发明对施瓦茨-克里斯托弗反变换进行优化求解步骤流程图;Fig. 6 is a flowchart of steps for optimizing and solving the inverse Schwartz-Christopher transformation in the present invention;

图7是本发明对单节电容膜片的计算结果与单节电容膜片仿真结果对比图;Fig. 7 is the comparison figure of the present invention to the calculation result of the single-section capacitor diaphragm and the simulation result of the single-section capacitor diaphragm;

图8是利用本发明方法设计的2GHz矩形波导低通滤波器的HFSS仿真特性图。Fig. 8 is a HFSS simulation characteristic diagram of a 2GHz rectangular waveguide low-pass filter designed by the method of the present invention.

具体实施方式: Detailed ways:

参照图5,本发明的具体步骤如下:With reference to Fig. 5, concrete steps of the present invention are as follows:

步骤1,输入矩形波导低通滤波器的电性能指标。Step 1, input the electrical performance index of the rectangular waveguide low-pass filter.

矩形波导低通滤波器的主要电性能指标包括:截止频率ω、通带内最大衰减、阻带内最小衰减和相对带宽BW,将这些电性能指标输入到计算机的计算程序当中。The main electrical performance indicators of the rectangular waveguide low-pass filter include: cut-off frequency ω, maximum attenuation in the passband, minimum attenuation in the stopband and relative bandwidth BW, and these electrical performance indicators are input into the calculation program of the computer.

步骤2,矩形波导低通滤波器结构参数预确定。Step 2, the structural parameters of the rectangular waveguide low-pass filter are pre-determined.

第2.1步,根据矩形波导低通滤波器的频率要求选择矩形波导型号;Step 2.1, select the rectangular waveguide model according to the frequency requirements of the rectangular waveguide low-pass filter;

第2.2步,根据矩形波导低通滤波器电性能指标由计算程序设计低通原型电路,得到原型电路参数:g0……gn+1,n为电路阶数;In step 2.2, according to the electrical performance index of the rectangular waveguide low-pass filter, the low-pass prototype circuit is designed by the calculation program, and the prototype circuit parameters are obtained: g 0 ... g n+1 , n is the circuit order;

第2.3步,将低通原型电路变换为只含有电容元件的低通原型电路,通过公式 K 01 = Z 0 1 ω g 0 g 1 , K i , i + 1 = Z 0 ω 1 g i g i + 1 , K n , n + 1 = Z 0 1 ω g n g n + 1 , 计算得到广义阻抗变换系数K,Z0为波导特性阻抗;根据矩形波导低通滤波器的相对带宽BW,通过公式 BW = 4 θ 0 π , 计算得到两电容膜片间矩形波导电长度θ0,如图3所示;Step 2.3, transform the low-pass prototype circuit into a low-pass prototype circuit containing only capacitive elements, through the formula K 01 = Z 0 1 ω g 0 g 1 , K i , i + 1 = Z 0 ω 1 g i g i + 1 , K no , no + 1 = Z 0 1 ω g no g no + 1 , The generalized impedance transformation coefficient K is calculated, and Z 0 is the waveguide characteristic impedance; according to the relative bandwidth BW of the rectangular waveguide low-pass filter, the formula BW = 4 θ 0 π , Calculate the length θ 0 of the rectangular waveguide between the two capacitor diaphragms, as shown in Figure 3;

第2.4步,根据广义阻抗变换系数K,通过公式 X ‾ = K ‾ 1 - K ‾ 2 , K为归一化K,确定归一化并联电容的容抗X,通过查取矩形波导电容加载的等效电纳图,初步确定矩形波导内电容膜片的窗口宽度d、膜片厚度m和加工倾角α。Step 2.4, according to the generalized impedance transformation coefficient K, through the formula x ‾ = K ‾ 1 - K ‾ 2 , K is the normalized K, and the capacitive reactance X of the normalized parallel capacitor is determined. By checking the equivalent susceptance diagram loaded by the rectangular waveguide capacitance, the window width d, diaphragm thickness m and Processing inclination α.

步骤3,根据广义阻抗变换系数K,确定单节电容膜片的A矩阵和S矩阵。Step 3, according to the generalized impedance transformation coefficient K, determine the A matrix and S matrix of the single capacitor diaphragm.

根据二端口微波网络特性,确定单节电容膜片的A矩阵和S矩阵分别为:According to the characteristics of the two-port microwave network, the A matrix and the S matrix of the single capacitor diaphragm are determined as:

AA == 00 jj KK ‾‾ jj // KK ‾‾ 00 ,, SS == KK ‾‾ 22 -- 11 11 ++ KK ‾‾ 22 jj -- 22 KK ‾‾ 11 ++ KK ‾‾ 22 jj -- 22 KK ‾‾ 11 ++ KK ‾‾ 22 KK ‾‾ 22 -- 11 11 ++ KK ‾‾ 22 ,,

式中 K ‾ = K Z 0 , S 11 = K ‾ 2 - 1 1 + K ‾ 2 , S 12 = j - 2 K ‾ 1 + K ‾ 2 , j为虚部。In the formula K ‾ = K Z 0 , S 11 = K ‾ 2 - 1 1 + K ‾ 2 , S 12 = j - 2 K ‾ 1 + K ‾ 2 , j is the imaginary part.

步骤4,对电容膜片截面多角形进行施瓦茨—克里斯托弗反变换。Step 4: Carry out inverse Schwartz-Christopher transformation on the polygonal shape of the capacitor diaphragm section.

参照图4,对由初步确定矩形波导电容膜片的窗口宽度d、膜片厚度m和加工倾角α及波导高度b所形成的膜片截面多角形按如下步骤进行施瓦茨—克里斯托弗反变换:Referring to Fig. 4, the inverse Schwartz-Christopher transformation is performed on the diaphragm section polygon formed by initially determining the window width d, diaphragm thickness m, processing inclination angle α, and waveguide height b of the rectangular waveguide capacitive diaphragm as follows:

第4.1步,采用施瓦茨-克里斯托弗反变换将复平面z内的多角形变换到复平面上半平面,将多角形边界变换为实轴,即将图4(a)中的多角形平面ABCDZ0Z2Z3Z4变换到图4(b)中的上半复平面A′B′C′D′T0T2T3T4In step 4.1, the inverse Schwartz-Christopher transformation is used to transform the polygon in the complex plane z to the upper half plane of the complex plane, and transform the boundary of the polygon to the real axis, that is, the polygon plane ABCDZ 0 in Fig. 4(a) Z 2 Z 3 Z 4 is transformed into the upper half-complex plane A′B′C′D′T 0 T 2 T 3 T 4 in Fig. 4(b).

由多角形的对称性以及保角变换的性质可得,T点在t平面内的坐标关于y轴对称。当T平面上邻边边长的比率太大或太小,可能引起被积函数的强峰现象而使被积函数部分不可积,正确的插入一些虚顶点就可以较好的解决此问题,同时可以提高精度,加速数值积分及迭代收敛的速度,如在图4(a)中加入虚顶点Z1,Z5。根据多角形保角变换法则,选取T0=0,T1=1,Tn-1=∞,得到变换公式为:From the symmetry of polygons and the properties of conformal transformation, the coordinates of point T in the t-plane are symmetrical about the y-axis. When the ratio of the lengths of adjacent sides on the T plane is too large or too small, it may cause the strong peak phenomenon of the integrand and make the integrand partially non-integrable. Correctly inserting some virtual vertices can better solve this problem, and at the same time It can improve the accuracy and accelerate the speed of numerical integration and iterative convergence, such as adding virtual vertices Z 1 and Z 5 in Fig. 4(a). According to the polygonal conformal transformation rule, select T 0 = 0, T 1 = 1, T n-1 = ∞, and obtain the transformation formula as:

ZZ == CC 11 ∫∫ TT 00 TT (( TT ++ TT 44 )) -- θθ (( TT ++ TT 33 )) θθ (( TT ++ TT 22 )) -- 11 // 22 (( TT -- TT 22 )) -- 11 // 22 (( TT -- TT 33 )) θθ (( TT -- TT 44 )) -- θθ dtdt ++ CC 22 ;;

第4.2步,建立计算变换公式Z中Tj值的优化模型为:In step 4.2, the optimization model for calculating the value of T j in the transformation formula Z is established as follows:

find T2,T3,T4,...,Tn-2 find T 2 ,T 3 ,T 4 ,…,T n-2

minmin AIMAIM == ΣΣ jj == 11 nno -- 33 (( YY jj ‾‾ YY jj -- 11 )) 22

stst .. ZZ == CC 11 ∫∫ TT 00 TT ΠΠ ii == 00 nno -- 11 (( TT -- TT ii )) -- vv ii dTdT ++ CC 22

其中:in:

Y j = ZL j ZL 0 = | Z j + 1 - Z j | | Z 1 - Z 0 | = ∫ T j T j + 1 ( Π i = 0 n - 1 | T - T i | - v i ) dT ∫ T 0 T j + 1 ( Π i = 0 n = 1 | T - T i | - v i ) dT , 其中j=0,1,2,......n-3 Y j = ZL j ZL 0 = | Z j + 1 - Z j | | Z 1 - Z 0 | = ∫ T j T j + 1 ( Π i = 0 no - 1 | T - T i | - v i ) dT ∫ T 0 T j + 1 ( Π i = 0 no = 1 | T - T i | - v i ) dT , where j = 0, 1, 2, ... n-3

Y ‾ j = ∫ T j T j + 1 ( Π i = 0 n - 1 | T - Σ j = 0 i - 1 T ~ L j | - v i ) dT ∫ T 0 T j + 1 ( Π i = 0 n - 1 | T - Σ j = 0 i - 1 T ~ L j | - v i ) dT , 其中j=0,1,2,......n-3 Y ‾ j = ∫ T j T j + 1 ( Π i = 0 no - 1 | T - Σ j = 0 i - 1 T ~ L j | - v i ) dT ∫ T 0 T j + 1 ( Π i = 0 no - 1 | T - Σ j = 0 i - 1 T ~ L j | - v i ) dT , where j = 0, 1, 2, ... n-3

式中Zi为电容膜片截面多角形的各顶点在z平面内的坐标,In the formula, Z i is the coordinates of each vertex of the polygon in the section of the capacitor diaphragm in the z plane,

Ti为电容膜片截面多角形的各顶点在t平面内的坐标,T i is the coordinates of each vertex of the capacitor diaphragm cross-section polygon in the t plane,

|Zj+1-Zj|是Z平面上从Zj到Zj+1的边长,用ZLj表示,|Z j+1 -Z j | is the side length from Z j to Z j+1 on the Z plane, represented by ZL j ,

|Tj+i-Tj|是T平面上的对应边长,以TLj表示,|T j+i -T j | is the corresponding side length on the T plane, represented by TL j ,

Yj是用顶点表示的第j边的相对边长,Y j is the relative side length of the jth side represented by the vertex,

Yj是用边长表示的第j边的相对边长;Y j is the relative side length of the jth side represented by the side length;

第4.3步,对模型中的目标函数AIM进行优化,使其小于给定的精度要求,从而得到所有的Tj的准确值,该优化过程如图6所示:In step 4.3, optimize the objective function AIM in the model so that it is less than the given accuracy requirement, so as to obtain the accurate values of all T j , the optimization process is shown in Figure 6:

首先,确定未知参数集Ti,(i=2,3,......n-2),C1,C2、适应度函数AIM和约束条件,使优化搜索一直在可行解空间里运行;First, determine the unknown parameter set T i , (i=2, 3,...n-2), C 1 , C 2 , fitness function AIM and constraint conditions, so that the optimization search is always in the feasible solution space run;

其次,根据遗传算法的随机选择法则在可行解区域内生成初始种群,判断适应度函数是否满足终止条件,如果满足即停止,如果不满足则按着遗传法则进行选择、交叉和变异,直到满足条件,得到最优解,作为初始点;Secondly, according to the random selection rule of the genetic algorithm, the initial population is generated in the feasible solution area, and it is judged whether the fitness function satisfies the termination condition. , get the optimal solution as the initial point;

最后,运用序列二次规划法再次优化,得到该模型最优解,即T2,T3,T4,...,Tn-2Finally, the optimal solution of the model is obtained by using the sequential quadratic programming method, namely T 2 , T 3 , T 4 ,..., T n-2 .

步骤5,求解等效电纳值和S′矩阵。Step 5, solving the equivalent susceptance value and S' matrix.

第5.1步,利用公式ω=μ+jv=arcsin(μ′+jv′)将t平面的上半复平面变换为ω平面的平板电容器,即将图4(b)中上半复平面A′B′C′D′T0T1T2T3T4T5变换到图4(c)中的平板电容器A"B"C"D"E"F"G"H"I";In step 5.1, use the formula ω=μ+jv=arcsin(μ′+jv′) to transform the upper half complex plane of the t plane into a plate capacitor of the ω plane, that is, the upper half complex plane A′B in Fig. 4(b) 'C'D'T 0 T 1 T 2 T 3 T 4 T 5 is converted to the plate capacitor A"B"C"D"E"F"G"H"I" in Figure 4(c);

第5.2步,将TA坐标代入上式,求出ωA=uA+jvAIn step 5.2, substitute TA coordinates into the above formula to obtain ω A =u A +jv A ;

第5.3步,根据电容器的宽度和长度求出电容总电容C,Step 5.3, calculate the total capacitance C of the capacitor according to the width and length of the capacitor,

由图4(c)看出,AD与AF之间平行板的单位宽度电容 C AD = ϵ v A π , It can be seen from Figure 4(c) that the capacitance per unit width of the parallel plate between AD and AF C AD = ϵ v A π ,

由于CAD中包括了AB段平行板电容CAB,设A点坐标为y=—b/2,z=L/2,则Since C AD includes the parallel plate capacitance C AB of section AB, set the coordinates of point A as y=—b/2, z=L/2, then

CC ABAB == ϵϵ LL 22 bb

因此,由于膜片加入所引入的电容应为CAD-CAB,故由膜片引入的总电容C应为Therefore, since the capacitance introduced by the addition of the diaphragm should be C AD -C AB , the total capacitance C introduced by the diaphragm should be

CC == 22 (( CC ADAD -- CC ABAB )) == 22 ϵϵ (( vv AA ππ -- LL 22 bb )) ;;

第5.4步,根据总电C求出等效电纳 B = ωC = 2 ωϵ ( v A π - L 2 b ) = 4 λ Y 0 ( v A - Lπ 2 b ) Step 5.4, calculate the equivalent susceptance according to the total current C B = ω C = 2 ωϵ ( v A π - L 2 b ) = 4 λ Y 0 ( v A - Lπ 2 b )

再以等效特性导纳Y0/b归一得Then use the equivalent characteristic admittance Y 0 /b to normalize

BB ‾‾ == BB YY 00 // bb == 44 bb λλ (( vv AA -- LπLπ 22 bb ))

第5.5步,根据归一化等效电纳得到单节电容膜片的S′矩阵参数为:In step 5.5, according to the normalized equivalent susceptance, the S′ matrix parameter of the single capacitor diaphragm is obtained as:

SS 1111 ′′ == -- jj BB ‾‾ 22 ++ jj BB ‾‾ ,, SS ii 1212 ′′ == 22 22 ++ jj BB ‾‾ ..

步骤6,优化求解矩形波导电容膜片的结构参数。Step 6, optimizing and solving the structural parameters of the rectangular waveguide capacitive diaphragm.

第6.1步,建立优化模型为:In step 6.1, the optimization model is established as follows:

find d,m,αfind d, m, α

min  ΔSi11,ΔSi12 min ΔSi 11 , ΔSi 12

其中, S i 11 = K ‾ i 2 - 1 1 + K ‾ i 2 , S i 12 = j - 2 K ‾ i 1 + K ‾ i 2 , S i 11 ′ = - j B ‾ i 2 + j B ‾ i , S i 12 ′ = 2 2 + j B ‾ i , in, S i 11 = K ‾ i 2 - 1 1 + K ‾ i 2 , S i 12 = j - 2 K ‾ i 1 + K ‾ i 2 , S i 11 ′ = - j B ‾ i 2 + j B ‾ i , S i 12 ′ = 2 2 + j B ‾ i ,

ΔΔ SS ii 1111 == || || SS ii 1111 ′′ || -- || SS ii 1111 || || ,, ΔΔ SS ii 1212 == || || SS ii 1212 ′′ || -- || SS ii 1212 || ||

式中,di,mi,αi分别为第i个电容膜片的窗口宽度、膜片厚度和加工倾角,Bi为归一化等效电纳,ΔSi11,ΔSi12分别为反射系数Si11和传输系数Si12误差;In the formula, d i , mi , α i are the window width, film thickness and processing inclination angle of the i-th capacitive diaphragm respectively, Bi is the normalized equivalent susceptance, ΔS i11 , ΔS i12 are the reflection coefficients S i11 and transmission coefficient S i12 error;

第6.2步,利用遗传算法优化使得S′矩阵近似等于S矩阵,最终确定单节电容膜片的窗口宽度d′、膜片厚度m′和加工倾角α′。In step 6.2, the genetic algorithm is used to optimize so that the S′ matrix is approximately equal to the S matrix, and finally determine the window width d′, diaphragm thickness m′ and processing inclination α′ of the single capacitor diaphragm.

步骤7,重复将矩形波导膜片的截面多角形进行施瓦茨-克里斯托弗反变换求解等效电纳和S′矩阵步骤和优化矩形波导电容膜片结构参数步骤,确定矩形波导低通滤波器的所有电容膜片参数。Step 7, repeating the Schwartz-Christopher inverse transformation of the cross-sectional polygon of the rectangular waveguide diaphragm to solve the equivalent susceptance and S' matrix steps and the steps of optimizing the structural parameters of the rectangular waveguide capacitive diaphragm to determine the rectangular waveguide low-pass filter All capacitor diaphragm parameters.

步骤8,修正波导腔长度。Step 8, correcting the length of the waveguide cavity.

第8.1步,根据电容膜片的S′参数,得到等效电路的并联电抗:In step 8.1, according to the S′ parameter of the capacitor diaphragm, the parallel reactance of the equivalent circuit is obtained:

jj Xx ‾‾ ii == 22 SS ii 1212 ′′ (( 11 -- SS ii 1111 ′′ )) 22 -- (( SS ii 1212 ′′ )) 22 ;;

第8.2步,根据并联电抗得到K变换器的相角:φi=-arctan(2Xi);In step 8.2, the phase angle of the K converter is obtained according to the parallel reactance: φ i =-arctan(2X i );

第8.3步,修正电长度为: θ k = θ 0 + φ i - 1 , i + φ i , i + 1 = θ 0 - 1 2 ( arctan ( 2 X ‾ i - 1 , i ) + arctan ( 2 X ‾ i , i + 1 ) ) ; In step 8.3, correct the electrical length as: θ k = θ 0 + φ i - 1 , i + φ i , i + 1 = θ 0 - 1 2 ( arctan ( 2 x ‾ i - 1 , i ) + arctan ( 2 x ‾ i , i + 1 ) ) ;

第8.4步,修正波导腔长度为: L i = λ g 2 π ( θ 0 + φ i - 1 , i + φ i , i + 1 ) . Step 8.4, modify the length of the waveguide cavity as: L i = λ g 2 π ( θ 0 + φ i - 1 , i + φ i , i + 1 ) .

步骤9,重复所述波导腔长修正步骤,确定矩形波导低通滤波器所有两电容膜片间的波导腔长,完成整个矩形波导低通滤波器的设计。Step 9, repeating the waveguide cavity length correction step to determine the waveguide cavity lengths between all two capacitive diaphragms of the rectangular waveguide low-pass filter, and complete the design of the entire rectangular waveguide low-pass filter.

本发明的有效性可以通过仿真数据进行说明:The effectiveness of the present invention can be illustrated by simulation data:

1.选择主模频率范围为1.4-2.8GHz的单节矩形波导电容膜片,厚度为1mm,加工倾角为1°,进行仿真试验,分别得到本发明方法的S矩阵参数、传统方法的S矩阵参数和通过Ansoft HFSS仿真得到的S矩阵参数,如图7所示。1. Select the single-section rectangular waveguide capacitor diaphragm whose main mode frequency range is 1.4-2.8GHz, the thickness is 1mm, and the processing inclination angle is 1°, carry out the simulation test, and obtain the S matrix parameters of the inventive method and the S matrix of the traditional method respectively Parameters and S matrix parameters obtained through Ansoft HFSS simulation, as shown in Figure 7.

2.按照电性能指标为:截止频率为2.0GHz;通带内最大衰减为0.2dB,在阻带3.5GHz处衰减大于60dB,设计2.0GHz波导低通滤波器,并利用HFSS进行仿真验证可以得到如图8所示的幅频特性曲线。2. According to the electrical performance indicators: the cutoff frequency is 2.0GHz; the maximum attenuation in the passband is 0.2dB, and the attenuation is greater than 60dB at the stopband 3.5GHz, design a 2.0GHz waveguide low-pass filter, and use HFSS for simulation verification to get The amplitude-frequency characteristic curve shown in Figure 8.

在图7中,将传统方法的S矩阵参数与通过Ansoft HFSS仿真得到的S矩阵参数进行比较,S11,S12平均误差分别为-18.29%和3.04%;将本发明的S矩阵参数与通过AnsoftHFSS仿真得到的S矩阵参数进行比较,S11,S12平均误差分别为2.12%和-0.1%。可见利用本发明方法得到的传输系数和反射系数吻合相对于传统方法更准确,提高了设计精度。In Fig. 7, the S matrix parameter of traditional method is compared with the S matrix parameter obtained by Ansoft HFSS simulation, S 11 , S 12 average errors are respectively -18.29% and 3.04%; Compared with the S matrix parameters obtained by Ansoft HFSS simulation, the average errors of S 11 and S 12 are 2.12% and -0.1% respectively. It can be seen that the coincidence of the transmission coefficient and the reflection coefficient obtained by the method of the present invention is more accurate than the traditional method, and the design accuracy is improved.

从图8可见,本发明方法设计的滤波器截止频率为2.0GHz,通带内反射系数S11低于-20dB,阻带内衰减大于60dB,满足设计性能要求。无需反复调试,提高了设计效率。As can be seen from Fig. 8, the cut-off frequency of the filter designed by the method of the present invention is 2.0GHz, the reflection coefficient S11 in the passband is lower than -20dB, and the attenuation in the stopband is greater than 60dB, which meets the design performance requirements. There is no need for repeated debugging, which improves the design efficiency.

Claims (4)

1.一种矩形波导低通滤波器的参数确定方法,包括如下步骤:1. A method for determining parameters of a rectangular waveguide low-pass filter, comprising the steps of: A.参数预确定步骤:A. Parameter pre-determined steps: 根据矩形波导低通滤波器的频率要求选择矩形波导型号;根据矩形波导低通滤波器的相对带宽BW,确定两电容膜片间矩形波导电长度θ0;根据矩形波导低通滤波器电性能指标和电路变换得到只含有电容元件的低通原型电路,进而得到广义阻抗变换系数K,确定并联电容的容抗X,通过查取矩形波导电容加载的等效电纳图,初步确定矩形波导内电容膜片的窗口宽度d、膜片厚度m和加工倾角α:Select the rectangular waveguide model according to the frequency requirements of the rectangular waveguide low-pass filter; according to the relative bandwidth BW of the rectangular waveguide low-pass filter, determine the length θ 0 of the rectangular waveguide between the two capacitor diaphragms; according to the electrical performance index of the rectangular waveguide low-pass filter The low-pass prototype circuit containing only capacitive elements is obtained by summing circuit transformation, and then the generalized impedance transformation coefficient K is obtained, and the capacitive reactance X of the parallel capacitor is determined. By checking the equivalent susceptance diagram loaded by the rectangular waveguide capacitance, the internal capacitance of the rectangular waveguide is preliminarily determined Diaphragm window width d, diaphragm thickness m and processing inclination α: B.膜片参数优化步骤:B. Diaphragm parameter optimization steps: 根据广义阻抗变换系数K,确定矩形波导单节电容膜片的S矩阵;According to the generalized impedance transformation coefficient K, determine the S matrix of the rectangular waveguide single-section capacitive diaphragm; 对由初步确定矩形波导内电容膜片的窗口宽度d、膜片厚度m和加工倾角α及波导高度b所形成的膜片截面多角形进行施瓦茨—克里斯托弗反变换,并求解电容膜片的归一化等效电纳B;The inverse Schwartz-Christopher transformation is performed on the diaphragm cross-section polygon formed by the preliminary determination of the window width d of the capacitive diaphragm in the rectangular waveguide, the diaphragm thickness m, the processing inclination angle α, and the waveguide height b, and the solution of the capacitive diaphragm Normalized equivalent susceptance B; 根据等效电纳B确定电容膜片的S′矩阵: S 11 ′ = - j B ‾ 2 + j B ‾ , S 12 ′ = 2 2 + j B ‾ ; Determine the S' matrix of the capacitive diaphragm according to the equivalent susceptance B: S 11 ′ = - j B ‾ 2 + j B ‾ , S 12 ′ = 2 2 + j B ‾ ; 利用遗传算法优化使得S′矩阵近似等于S矩阵,最终确定单节电容膜片的窗口宽度d′、膜片厚度m′和加工倾角α′;The genetic algorithm is used to optimize so that the S' matrix is approximately equal to the S matrix, and finally determine the window width d', diaphragm thickness m' and processing inclination α' of the single capacitor diaphragm; 重复所述的膜片参数优化步骤,确定矩形波导低通滤波器的其余电容膜片参数;Repeat the diaphragm parameter optimization step to determine the remaining capacitor diaphragm parameters of the rectangular waveguide low-pass filter; C.波导腔长修正步骤:C. Waveguide cavity length correction steps: 通过电容膜片的S′矩阵,得到修正后的两膜片间的波导长度为:Through the S' matrix of the capacitive diaphragm, the corrected waveguide length between the two diaphragms is: LL ii == λλ gg 22 ππ (( θθ 00 -- 11 22 (( arctanarctan (( 22 Xx ‾‾ ii -- 11 ,, ii )) ++ arctanarctan (( 22 Xx ‾‾ ii ,, ii ++ 1212 )) )) )) ,, ii ≥&Greater Equal; 22 ,, λg为波导波长,θ0为初始确定两电容膜片间矩形波导电长度,λ g is the wavelength of the waveguide, θ 0 is the length of the rectangular waveguide between the two capacitive diaphragms initially determined, X为电容膜片等效电路的并联电抗即 j X ‾ = 2 S 12 ′ ( 1 - S 11 ′ ) 2 - ( S 12 ′ ) 2 ; X is the parallel reactance of the equivalent circuit of the capacitive diaphragm, that is j x ‾ = 2 S 12 ′ ( 1 - S 11 ′ ) 2 - ( S 12 ′ ) 2 ; 重复所述波导腔长修正步骤,确定矩形波导低通滤波器其余两电容膜片间的波导长度,完成整个矩形波导低通滤波器的设计。Repeat the waveguide cavity length correction step to determine the waveguide length between the remaining two capacitive diaphragms of the rectangular waveguide low-pass filter, and complete the design of the entire rectangular waveguide low-pass filter. 2.根据权利要求1所述的矩形波导低通滤波器的参数确定方法,其中膜片参数优化步骤中所述的对由初步确定矩形波导内电容膜片的窗口宽度d、膜片厚度m和加工倾角α及波导高度b所形成的膜片截面多角形进行施瓦茨一克里斯托弗反变换,求解电容膜片的等效电纳,按如下步骤进行:2. the method for determining the parameters of the rectangular waveguide low-pass filter according to claim 1, wherein the pair described in the diaphragm parameter optimization step is initially determined by the window width d of the capacitance diaphragm in the rectangular waveguide, the diaphragm thickness m and The diaphragm cross-section polygon formed by processing the inclination angle α and the waveguide height b is subjected to inverse Schwartz-Christopher transformation to solve the equivalent susceptance of the capacitor diaphragm, as follows: 第一步,运用遗传算法与序列二次规划法相结合的混合优化算法对施瓦茨-克里斯托弗反变换 Z = C 1 ∫ T 0 T Π i = 0 n - 1 ( T - T i ) - v i dt + C 2 进行优化求解,得到变换后的各顶点坐标:T1,T2,T3,T4,...,Tn-2The first step is to use the hybrid optimization algorithm combining the genetic algorithm and the sequential quadratic programming method to inverse the Schwartz-Christopher transformation Z = C 1 ∫ T 0 T Π i = 0 no - 1 ( T - T i ) - v i dt + C 2 Perform an optimization solution to obtain the transformed coordinates of each vertex: T 1 , T 2 , T 3 , T 4 ,..., T n-2 ; 第二步,将各顶点坐标代入施瓦茨-克里斯托弗反变换公式Z中,在复平面内,将多角形平面变换到上半复平面;In the second step, the coordinates of each vertex are substituted into the Schwartz-Christopher inverse transformation formula Z, and in the complex plane, the polygonal plane is transformed into the upper half complex plane; 第三步,将上半复平面变换为平板电容器,根据平板电容器的长度和宽度求出膜片电容及等效电纳值。The third step is to transform the upper half of the complex plane into a plate capacitor, and calculate the diaphragm capacitance and equivalent susceptance value according to the length and width of the plate capacitor. 3.根据权利要求2所述的矩形波导低通滤波器的参数确定方法,其中第一步所述的对施瓦茨-克里斯托弗反变换 Z = C 1 ∫ T 0 T Π i = 0 n - 1 ( T - T i ) - v i dt + C 2 进行优化求解,按如下步骤进行:3. the method for determining the parameters of the rectangular waveguide low-pass filter according to claim 2, wherein the Schwartz-Christopher inverse transform described in the first step Z = C 1 ∫ T 0 T Π i = 0 no - 1 ( T - T i ) - v i dt + C 2 To optimize the solution, proceed as follows: 第1步,建立优化模型为:In the first step, the optimization model is established as: find T2,T3,T4,...,Tn-2 find T 2 ,T 3 ,T 4 ,…,T n-2 minmin AIMAIM == ΣΣ jj == 11 nno -- 33 (( YY jj ‾‾ YY jj -- 11 )) 22 stst .. ZZ == CC 11 ∫∫ TT 00 TT ΠΠ ii == 00 nno -- 11 (( TT -- TT ii )) -- vv ii dTdT ++ CC 22 其中:in: Y j = ZL j ZL 0 = | Z j + 1 - Z j | | Z 1 - Z 0 | = ∫ T j T j + 1 ( Π i = 0 n - 1 | T - T i | - v i ) dT ∫ T 0 T j + 1 ( Π i = 0 n = 1 | T - T i | - v i ) dT , 其中j=0,1,2,......n-3 Y j = ZL j ZL 0 = | Z j + 1 - Z j | | Z 1 - Z 0 | = ∫ T j T j + 1 ( Π i = 0 no - 1 | T - T i | - v i ) dT ∫ T 0 T j + 1 ( Π i = 0 no = 1 | T - T i | - v i ) dT , where j = 0, 1, 2, ... n-3 Y ‾ j = ∫ T j T j + 1 ( Π i = 0 n - 1 | T - Σ j = 0 i - 1 T ~ L j | - v i ) dT ∫ T 0 T j + 1 ( Π i = 0 n - 1 | T - Σ j = 0 i - 1 T ~ L j | - v i ) dT , 其中j=0,1,2,......n-3 Y ‾ j = ∫ T j T j + 1 ( Π i = 0 no - 1 | T - Σ j = 0 i - 1 T ~ L j | - v i ) dT ∫ T 0 T j + 1 ( Π i = 0 no - 1 | T - Σ j = 0 i - 1 T ~ L j | - v i ) dT , where j = 0, 1, 2, ... n-3 式中Zi为电容膜片截面多角形的各顶点在z平面内的坐标,In the formula, Z i is the coordinates of each vertex of the polygon in the section of the capacitor diaphragm in the z plane, Ti为电容膜片截面多角形的各顶点在t平面内的坐标,T i is the coordinates of each vertex of the capacitor diaphragm cross-section polygon in the t plane, |Zj+1-Zj|是Z平面上从Zj到Zj+1的边长,用ZLj表示,|Z j+1 -Z j | is the side length from Z j to Z j+1 on the Z plane, represented by ZL j , |Tj+1-Tj|是T平面上的对应边长,以TLj表示,|T j+1 -T j | is the corresponding side length on the T plane, represented by TL j , Yj是用顶点表示的第j边的相对边长,Y j is the relative side length of the jth side represented by the vertex, Yj是用边长表示的第j边的相对边长;Y j is the relative side length of the jth side represented by the side length; 第2步,采用改进的混合遗传算法对该模型进行优化求解:In the second step, the improved hybrid genetic algorithm is used to optimize and solve the model: 首先,对遗传算法进行约束条件处理,即采取缩小搜索空间的方法,使优化搜索一直在可行解空间里运行,优化求解出初始点;First of all, the genetic algorithm is processed with constraints, that is, the method of narrowing the search space is adopted, so that the optimal search is always running in the feasible solution space, and the initial point is optimized and solved; 其次,运用序列二次规划法再次优化,得到该模型最优解,即:T2,T3,...,Tn-2°Secondly, use the sequential quadratic programming method to optimize again to obtain the optimal solution of the model, namely: T 2 , T 3 ,..., T n-2 ° 4.根据权利要求1所述的矩形波导低通滤波器的参数确定方法,其中膜片参数优化步骤中所述的利用遗传算法优化使得S′矩阵近似等于S矩阵,通过如下优化模型进行优化求解,即:4. the method for determining the parameters of the rectangular waveguide low-pass filter according to claim 1, wherein the utilization of genetic algorithm optimization described in the diaphragm parameter optimization step makes S 'matrix approximately equal to the S matrix, and optimizes and solves by following optimization model ,Right now: find di,mi,αi find d i ,m i ,α i min ΔSi11,ΔSi12 min ΔS i11 , ΔS i12 其中, S i 11 = K ‾ i 2 - 1 1 + K ‾ i 2 , S i 12 = j - 2 K ‾ i 1 + K ‾ i 2 , S i 11 ′ = - j B ‾ i 2 + j B ‾ i , S i 12 ′ = 2 2 + j B ‾ j , in, S i 11 = K ‾ i 2 - 1 1 + K ‾ i 2 , S i 12 = j - 2 K ‾ i 1 + K ‾ i 2 , S i 11 ′ = - j B ‾ i 2 + j B ‾ i , S i 12 ′ = 2 2 + j B ‾ j , ΔSΔS ii 1111 == || || SS ii 1111 ′′ || -- || SS ii 1111 || || ,, ΔSΔS ii 1212 == || || SS ii 1212 ′′ || -- || SS ii 1212 || || ,, 式中,di,mi,αi分别为第i个电容膜片的窗口宽度、膜片厚度和加工倾角,Bj为归一化等效电纳,ΔSi11,ΔSi,2分别为反射系数Si11和传输系数Si12的误差。In the formula, d i , m i , α i are the window width, diaphragm thickness and processing inclination angle of the i-th capacitive diaphragm respectively, B j is the normalized equivalent susceptance, ΔS i11 , ΔS i, 2 are respectively The error of reflection coefficient S i11 and transmission coefficient S i12 .
CN2008101509282A 2008-09-12 2008-09-12 Parameter Determination Method of Rectangular Waveguide Low-pass Filter Expired - Fee Related CN101546347B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101509282A CN101546347B (en) 2008-09-12 2008-09-12 Parameter Determination Method of Rectangular Waveguide Low-pass Filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101509282A CN101546347B (en) 2008-09-12 2008-09-12 Parameter Determination Method of Rectangular Waveguide Low-pass Filter

Publications (2)

Publication Number Publication Date
CN101546347A true CN101546347A (en) 2009-09-30
CN101546347B CN101546347B (en) 2011-04-27

Family

ID=41193480

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101509282A Expired - Fee Related CN101546347B (en) 2008-09-12 2008-09-12 Parameter Determination Method of Rectangular Waveguide Low-pass Filter

Country Status (1)

Country Link
CN (1) CN101546347B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944145A (en) * 2010-08-31 2011-01-12 电子科技大学 Finite element simulation method capable of removing microwave tube high-frequency circuit in pseudo-DC mode
CN103077271A (en) * 2012-09-12 2013-05-01 电子科技大学 8 mm substrate integrated waveguide circulator parameter determination method
CN109713412A (en) * 2018-12-20 2019-05-03 常州机电职业技术学院 Tunable E-plane cutting H-plane waveguide bandpass filter and design method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2171924Y (en) * 1993-02-16 1994-07-13 杨戎 rectangular waveguide band-pass filter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944145A (en) * 2010-08-31 2011-01-12 电子科技大学 Finite element simulation method capable of removing microwave tube high-frequency circuit in pseudo-DC mode
CN101944145B (en) * 2010-08-31 2012-08-08 电子科技大学 Finite element simulation method capable of removing microwave tube high-frequency circuit in pseudo-DC mode
CN103077271A (en) * 2012-09-12 2013-05-01 电子科技大学 8 mm substrate integrated waveguide circulator parameter determination method
CN103077271B (en) * 2012-09-12 2016-08-03 电子科技大学 8 millimeters of substrate integrated wave guide ring device parameter determination method
CN109713412A (en) * 2018-12-20 2019-05-03 常州机电职业技术学院 Tunable E-plane cutting H-plane waveguide bandpass filter and design method thereof
CN109713412B (en) * 2018-12-20 2024-03-29 常州机电职业技术学院 Tunable E-plane cutting H-plane waveguide band-pass filter and design method thereof

Also Published As

Publication number Publication date
CN101546347B (en) 2011-04-27

Similar Documents

Publication Publication Date Title
Yan et al. Investigations on the propagation characteristics of the substrate integrated waveguide based on the method of lines
Conciauro et al. Wideband modeling of arbitrarily shaped H-plane waveguide components by the" boundary integral-resonant mode expansion method"
CN102411647A (en) Time domain analysis method for transient response of lossy nonuniform multi-conductor transmission lines
Krupezevic et al. The wave-equation FD-TD method for the efficient eigenvalue analysis and S-matrix computation of waveguide structures
CN106848506A (en) Microstrip filter method for designing
CN101546347B (en) Parameter Determination Method of Rectangular Waveguide Low-pass Filter
CN115392079A (en) A Calculation Method of Uniform Waveguide Mode Based on Complete Vector Finite Element
CN113590476B (en) Test method, apparatus, electronic device, and storage medium for on-chip transmission line characteristics
Sercu et al. Full-wave space-domain analysis of open microstrip discontinuities including the singular current-edge behavior
Zairi et al. Analysis of planar circuits using a multigrid iterative method
CN113904088B (en) Design method of ultra-wideband power divider based on vertical mounting substrate
CN116070705A (en) Superconducting qubit coupling method and device, electronic equipment and computer medium
CN111062184B (en) A fast three-pin automatic impedance matching system
Zargano et al. Electrodynamic analysis and synthesis of selective devices based on thin diaphragms in ridge waveguides
Lilonga‐Boyenga et al. Uniaxial discontinuities analysis by a new multimodal variational method—application to filter design
CN106785298A (en) A kind of microstrip filter method for designing
Fanti et al. A fourth order FDFD approach for the analysis of sectorial elliptic waveguides
Luo et al. An efficient modal FDTD for absorbing boundary conditions and incident wave generator in waveguide structures
Yu et al. Modeling of periodic structures using the finite difference time domain (FDTD)
Wang et al. Numerical evaluation on cutoff frequency of twisted waveguide with rectangular cross-section
Luo et al. A compact one‐dimensional modal FDTD method
Singh Moment Method Analysis of Rectangular Waveguide Disconti-nuities using Higher-Order Basis Functions
CN115758878A (en) MEFSS interlayer coupling analysis method and device based on deep learning
CN117741265A (en) Method for measuring internal field reflection coefficient of electromagnetic structures
Lin et al. An Efficient Scheme of Waveguide Port Modeling Based on Conformal and Nonuniform Mesh for Time Domain Finite Integration Technique

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110427

Termination date: 20140912

EXPY Termination of patent right or utility model