CN101545868A - 有色金属加工质量控制中的产品表面缺陷检测方法 - Google Patents

有色金属加工质量控制中的产品表面缺陷检测方法 Download PDF

Info

Publication number
CN101545868A
CN101545868A CN200910050457A CN200910050457A CN101545868A CN 101545868 A CN101545868 A CN 101545868A CN 200910050457 A CN200910050457 A CN 200910050457A CN 200910050457 A CN200910050457 A CN 200910050457A CN 101545868 A CN101545868 A CN 101545868A
Authority
CN
China
Prior art keywords
row
value
wave filter
image
filtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910050457A
Other languages
English (en)
Other versions
CN101545868B (zh
Inventor
翟鸣
罗新斌
傅山
敬忠良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN2009100504572A priority Critical patent/CN101545868B/zh
Publication of CN101545868A publication Critical patent/CN101545868A/zh
Application granted granted Critical
Publication of CN101545868B publication Critical patent/CN101545868B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种有色金属加工质量控制系统中对产品表面缺陷进行检测的方法,采用常速模型对图像从上到下,从下到上,从左到右,从右到左,四个方向每行每列对应设置的一个卡尔曼滤波器设定初始像素值;利用步骤一中的初始像素值使用卡尔曼滤波器对图像进行四个方向的滤波,在对每行每列进行滤波的同时利用来自于每个滤波器在每个位置的测量残差μ(k)计算并保存该位置的ξ(k);将四个方向分别计算得到的相同位置的ξ(k)求和,将结果与由人工选取的域值进行二值化操作得到缺陷模版。本方法只需人工根据经验和检测效果确定两个参数,使用简单。本方法计算量与使用阈值的方法在同一数量级,能够应用于实时在线的情况。

Description

有色金属加工质量控制中的产品表面缺陷检测方法
技术领域
本发明涉及一种检测技术领域的一种方法,具体是一种有色金属加工质量控制中的产品表面缺陷检测方法。
背景技术
为了满足国防、民用对有色金属产品高质量的要求和与国际产品质量标准接轨,消费者对于有色金属材料质量的要求越来越高,其中表面质量是产品质量的重要指标之一,需要通过表面检测系统进行实时在线检测。目前,表面检测系统已经大量应用于陶瓷、纺织、冶金行业(主要以黑色金属加工为主)。随着有色金属行业近年来的快速发展,迫切需要能够对有色金属产品表面进行实时在线检测的方法。
对有色金属行业中的产品表面缺陷检测是表面缺陷识别系统中关键且难度非常大的环节,其原因在于系统数据量过大,以精整线尤甚,由于系统需要实时在线检测,要求算法实时性和有效性都要好。同时由于检测对象反光率高,在板型不好或者有色产品表面涂有附着物的情况下极易出现大量干扰性数据,其中代表性的有板型缺陷和清洗液缺陷,这些缺陷的出现一般数据量巨大,会导致大量重复的检测和识别,急剧增加系统的处理负担,并可能干扰正常缺陷的检测和识别。基于图像阈值的方法虽然速度快但是一般不能适用于缺陷复杂的情况,大多应用于简单的缺陷检测领域如陶瓷的缺陷检测中。基于Garbor小波的检测方法,利用Garbor小波的方向性检测产品表面地缺陷,通常应用于纺织领域。因此根据有色金属行业产品的特点研究快速有效的表面缺陷检测算法是有色金属行业产品表面缺陷检测和识别系统的重要研究内容之一。
通过对相关技术文献检索发现Vasilic S.等在工业电子(IndustrialElectronics)的2006年IEEE国际论坛上发表了《基于边缘检测的瓷砖表面缺陷检测方法》(《The Edge Detecting Methods in Ceramic Tiles DefectsDetection》),但是该方法是基于边缘检测的,而有色金属表面却险种的边缘较少,因而该方法难以适用。此外Cem Baykal等人在电路与系统的2004年国际会议上发表了《纺织品缺陷检测》(《IN-CAMERA DETECTION OF FABRIC DEFECTS》),该方法利用纹理特征进行缺陷检测,然而有色金属表面缺乏纹理信息,这同样不能应用于有色金属表面缺陷检测。
发明内容
本发明针对上述现有技术的问题,提供一种有色金属加工质量控制中的产品表面缺陷检测方法,能够对有色金属产品表面进行快速有效的实时在线检测。
本发明是通过以下技术方案实现的,包括如下步骤:
步骤一,采用常速模型对图像从上到下,从下到上,从左到右,从右到左,四个方向每行每列对应设置的一个卡尔曼滤波器设定初始像素值;
步骤二,利用步骤一中的初始像素值使用卡尔曼滤波器对图像进行四个方向的滤波,在对每行每列进行滤波的同时利用来自于每个滤波器在每个位置的测量残差计算并保存该位置的ξ(k);
步骤三,将四个方向分别计算得到的相同位置的ξ(k)求和,将结果与由人工选取的域值进行二值化操作得到缺陷模版。
步骤一中的卡尔曼滤波器采用一个最优化自回归数据处理算法,采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。
步骤一中采用常速模型的卡尔曼滤波器的参数设定为:状态向量
Figure A200910050457D00051
Figure A200910050457D00052
Figure A200910050457D00053
是对图像中某行某列的某个像素的灰度值的估计,η没有具体的意义,测量向量的值z(k)等于某个滤波器在第k时刻与该滤波器对应的行或列的第k个元素的像素值,测量矩阵H=(01),系统控制矩阵G=0,状态转移矩阵 F = 1 T 0 1 , T为采样时间,这里T=1,这里测量噪声方差R=50,状态噪声方差 Q = 1 0 0 1 , 初始方差 P ( 0 | 0 ) = R R / T R / T 2 R / T 2 .
步骤一中卡尔曼滤波器设定初始像素值为:
a.从上到下沿着每一列分别滤波时第n(n=1,2,3,…)个滤波器初始状态值确定如下:x(0|0)=(0 I(1,n))T,I(1,n)为图像第1行,n列的像素值;
b.从下到上沿着每一列分别滤波时第n个滤波器初始状态值确定如下:
x(0|0)=(0,I(M,n))T,I(M,n)为图像第M行,n列的像素值;
c.从左到右沿着每一行分别滤波时第n个滤波器初始状态值确定如下:
x(0|0)=(0 I(n,1))T,I(n,0)为图像第n行,1列的像素值;
d.从右到左沿着每一行分别滤波时第n个滤波器初始状态值确定如下:
x(0|0)=(0 I(n,N))T,I(n,N)为图像第n行,N列的像素值,其中I表示图像的灰度值。
步骤二中的测量残差的公式为:μ(k+1)=z(k+1)-z(k+1|k),其中,k为时刻,测量向量的值z(k+1)等于某个滤波器的第k+1时刻与该滤波器对应的行或列的第k+1个元素的像素值;
所述的将结果与由人工选取的域值进行二值化操作,是指:当某一位置ξ(k)的和大于所设定的域值,将此位置的值设为1,当ξ(k)的和小于所设定的域值,将此位置的值设为0。
与现有技术相比,本发明具有以下有益效果:本方法只需人工根据经验和检测效果确定Kalman滤波器中的测量噪声的方差和获取缺陷模版时的域值两个参数,计算量与使用阈值的方法在同一数量级,能够应用于实时在线的情况使用简单,对大部分缺陷有着较好的检测效果。
附图说明
图1一些典型的缺陷产品图像和用本方法得到的缺陷模版
具体实施方式
下面结合附图对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
步骤一,采用常速模型对图像从上到下,从下到上,从左到右,从右到左,四个方向每行每列对应设置的一个卡尔曼滤波器设定初始像素值。
设产品图像I大小为MxN像素,由于需要从四个方向进行滤波,即从上到下,从下到上,从左到右,从右到左,每行(列)对应一个滤波器,所以需要初始化2(M+N)个滤波器。
步骤一中的卡尔曼滤波器采用一个最优化自回归数据处理算法,采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。
该方法适用于高斯噪声情况下对线性系统进行参数估计。给定状态方程和测量方程如下:
x(k+1)=F(k)x(k)+G(k)u(k)+v(k)
                                  (1)
z(k+1)=H(k+1)x(k+1)+w(k+1)
其中x,z为状态向量和测量向量;v,w为零均值高斯噪声,分别被称作状态噪声和测量噪声,Q,R分别其为方差;u是已知的输入向量,F,H为状态转移矩阵和测量矩阵;F,G,Q假设已知并且可能是时变的;这两个噪声序列和初始状态假设互不相关。
卡尔曼滤波方法可以描述如下:
x(k+1|k)=F(k)x(k|k)+G(k)u(k)
z(k+1)=H(k+1)x(k+1|k)
                         (2)
μ(k+1)=z(k+1)-z(k+1|k)
P(k+1|k)=F(k)P(k|k)F(k)′+Q(k)
S(k+1)=R(k+1)+H(k+1)P(k+1|k)H(k+1)′
x(k+1|k+1)=x(k+1|k)+W(k+1)μ(k+1)
W(k+1)=P(k+1|k)H(k+1)′S(k+1)-1
P(k+1|k+1)=P(k+1|k)-W(k+1)S(k+1)W(k+1)′
其中A(k+1|k)表示在k时刻对k+1时刻A的值的估计;P,S为状态协方差矩阵和更新协方差矩阵;W,μ为滤波器增益和测量残差。
本实施例在滤波时采用常速模型(CV模型)的卡尔曼滤波器进行滤波。即使用CV模型来描述图像的变化情况。缺陷区域的图像不满足CV模型,因而只要检测出这些不满足CV模型的区域就可以检测出缺陷区域。在采用常速模型(CV模型)的卡尔曼滤波器中,步骤一中采用常速模型的卡尔曼滤波器的参数设定为:状态向量
Figure A200910050457D00081
Figure A200910050457D00082
是对图像中某行某列的某个像素的灰度值的估计,η没有具体的意义,测量向量的值z(k)等于某个滤波器在第k时刻与该滤波器对应的行或列的第k个元素的像素值,测量矩阵H=(01),系统控制矩阵G=0,状态转移矩阵 F = 1 T 0 1 , T为采样时间,这里T=1,这里测量噪声方差R=50,状态噪声方差 Q = 1 0 0 1 , 初始方差 P ( 0 | 0 ) = R R / T R / T 2 R / T 2 .
把图像中的每行(列)看作是一个测量序列,即(1)式中的z,那么就可以使用上述CV模型的卡尔曼滤波器对图像的每一行(列)分别进行滤波。每一行(列)对应一个卡尔曼滤波器。由于将图像中的行(列)看作是测量序列,因此对应于某个滤波器的第k时刻的测量向量的值z(k)等于与该滤波器对应的行(列)的第k个元素的像素值。每个滤波器均采用上述相同的参数设置。步骤一中卡尔曼滤波器设定初始像素值为:
a.从上到下沿着每一列分别滤波时第n(n=1,2,3,…)个滤波器初始状态值确定如下:x(0|0)=(0 I(1,n))T,I(1,n)为图像第1行,n列的像素值;
b.从下到上沿着每一列分别滤波时第n个滤波器初始状态值确定如下:
x(0|0)=(0,I(M,n))T,I(M,n)为图像第M行,n列的像素值;
c.从左到右沿着每一行分别滤波时第n个滤波器初始状态值确定如下:
x(0|0)=(0 I(n,1))T,I(n,0)为图像第n行,1列的像素值;
d.从右到左沿着每一行分别滤波时第n个滤波器初始状态值确定如下:
x(0|0)=(0 I(n,N))T,I(n,N)为图像第n行,N列的像素值,其中I表示图像的灰度值。也可以将所有滤波器状态初始值设置为x(0|0)=(0I)T,I为图像I的平均灰度值,但求取I会一定程度上降低检测速度。
步骤二,利用步骤一中的初始像素值使用卡尔曼滤波器对图像进行四个方向
的滤波,在对每行每列进行滤波的同时利用来自于每个滤波器在每个位置的测量残差μ(k)计算并保存该位置的ξ(k);步骤二中的测量残差的公式为:μ(k+1)=z(k+1)-z(k+1|k),其中,k为时刻,测量向量的值z(k+1)等于某个滤波器的第k+1时刻与该滤波器对应的行或列的第k+1个元素的像素值;
这里的测量残差来自于卡尔曼滤波器,即(2)式中的μ。对于步骤一中的任意一个滤波器,在高斯条件下μ(k):N(0,S(k)),N(0,S(k))为均值0,方差为S(k)的正态分布,并且
ξ(k)=μT(k)S-1(k)μ(k)               (3)
服从
Figure A200910050457D00091
是μ的维数)分布,其中μ(k),S(k)见(2)式。
沿自上而下的方向对对图片每一列进行滤波的同时利用来自于滤波器在的测量残差μ(k)计算该位置的ξ(k),将其保存矩阵∑up中。类似的沿自下而上的方向、自左而右、自由而左的方向对图片进行滤波时可以分别得到∑down,∑left,∑right。矩阵∑up,∑down,∑left,∑right用以在步骤三中确定缺陷模版。
步骤三,将四个方向分别计算得到的相同位置的ξ(k)求和,将结果与由人工选取的域值进行二值化操作得到缺陷模版。
所述的将结果与由人工选取的域值进行二值化操作,是指:当某一位置ξ(k)的和大于所设定的域值,将此位置的值设为1,当ξ(k)的和小于所设定的域值,将此位置的值设为0。
由于基于残差的x2检测有一定的滞后性,仅采用从一个方向进行检测会造成检测到的缺陷偏离真实位置,例如,仅采从上到下的检测会发生检测到的缺陷比实际缺陷的位置略为偏下,因此采用从四个方向分别滤波并计算ξ(k),然后将四个方向分别计算得到相同位置的ξ(k)分别相加,即,计算
∑=∑up+∑down+∑left+∑right          (4)
如果ξ(k)的和超过了某个域值
ξ ( k ) > χ n z 2 ( α ) - - - ( 5 )
该位置就极有可能存在缺陷,其中1-α为置信区间,
Figure A200910050457D00102
为选取域值的一个参照,具体的取值范围可以根据x2分布表来选取,人工选取域值的时候一般应适当增大域值。
由人工选取的域值对∑进行二值化操作得到缺陷模版。即,若矩阵∑中第i行j列元素的值大于设定的域值则将矩阵中该元素的值置为1,否则置为0。对矩阵∑进行二值化后就得到了缺陷模版。该域值应不低于
Figure A200910050457D0010142643QIETU
(α),可根据实际检测效果进行增加,本实例中该域值设置为60。这样所取得的缺陷模版略大于真实的缺陷,但缺陷的中心位置能够保持与实际缺陷位置一致。
本实施例的缺陷图片来自于某铝箔生产线在产过程中所产生的缺陷,该生产线采用线扫描摄像机对铝箔表面进行扫描。对所产生的图片进行人工筛选,筛选出缺陷样本,一些缺陷样本和使用本发明检测所得的缺陷模版如图1所示。图1中的检测结果均是利用相同的参数值,即测量噪声方差为50、提取缺陷模版时域值为60。
对样本图像的实验表明本实施例对缺陷的检测成功率在98%以上。

Claims (6)

1、一种有色金属加工质量控制系统中对产品表面缺陷进行检测的方法,其特征在于,包括如下步骤:
步骤一,采用常速模型对图像从上到下,从下到上,从左到右,从右到左,四个方向每行每列对应设置的一个卡尔曼滤波器设定初始像素值;
步骤二,利用步骤一中的初始像素值使用卡尔曼滤波器对图像进行四个方向的滤波,在对每行每列进行滤波的同时利用来自于每个滤波器在每个位置的测量残差计算并保存该位置的ξ(k);
步骤三,将四个方向分别计算得到的相同位置的ξ(k)求和,将结果与由人工选取的域值进行二值化操作得到缺陷模版。
2、根据权利要求1所述的有色金属加工质量控制系统中对产品表面缺陷进行检测的方法,其特征是,步骤一中的卡尔曼滤波器采用一个最优化自回归数据处理算法,采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。
3、根据权利要求1所述的有色金属加工质量控制系统中对产品表面缺陷进行检测的方法,其特征是,步骤一中采用常速模型的卡尔曼滤波器的参数设定为:
状态向量x=(η
Figure A200910050457C0002114050QIETU
Figure A200910050457C0002114054QIETU
是对图像中某行某列的某个像素的灰度值的估计,η没有具体的意义;
测量向量的值z(k)等于某个滤波器在第k时刻与该滤波器对应的行或列的第k个元素的像素值;
测量矩阵H=(0 1);
系统控制矩阵G=0;
状态转移矩阵 F = 1 T 0 1 , T为采样时间,T=1;
测量噪声方差R=50;
状态噪声方差 Q = 1 0 0 1 ;
初始方差 P ( 0 | 0 ) = R R / T R / T 2 R / T 2 .
4、根据权利要求1或3所述的有色金属加工质量控制系统中对产品表面缺陷进行检测的方法,其特征是,步骤一中卡尔曼滤波器设定初始像素值为:
a.从上到下沿着每一列分别滤波时第n(n=1,2,3,…)个滤波器初始状态值确定如下:x(00)=(0 I(1,n))T,I(1,n)为图像第1行,n列的像素值;
b.从下到上沿着每一列分别滤波时第n个滤波器初始状态值确定如下:x(0|0)=(0,I(M,n))T,I(M,n)为图像第M行,n列的像素值;
c.从左到右沿着每一行分别滤波时第n个滤波器初始状态值确定如下:x(0|0)=(0I(n,1))T,I(n,0)为图像第n行,1列的像素值;
d.从右到左沿着每一行分别滤波时第n个滤波器初始状态值确定如下:x(0|0)=(0I(n,N))T,I(n,N)为图像第n行,N列的像素值,其中I表示图像的灰度值。
5、根据权利要求1所述的有色金属加工质量控制系统中对产品表面缺陷进行检测的方法,其特征是,步骤二中的测量残差的公式为:
μ(k+1)=z(k+1)-z(k+1|k).
其中,k为时刻,测量向量的值z(k+1)等于某个滤波器的第k+1时刻与该滤波器对应的行或列的第k+1个元素的像素值。
6、根据权利要求1所述的有色金属加工质量控制系统中对产品表面缺陷进行检测的方法,其特征是,所述的将结果与由人工选取的域值进行二值化操作,是指:当某一位置ξ(k)的和大于所设定的域值,将此位置的值设为1,当ξ(k)的和小于所设定的域值,将此位置的值设为0。
CN2009100504572A 2009-04-30 2009-04-30 有色金属加工质量控制中的产品表面缺陷检测方法 Expired - Fee Related CN101545868B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100504572A CN101545868B (zh) 2009-04-30 2009-04-30 有色金属加工质量控制中的产品表面缺陷检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100504572A CN101545868B (zh) 2009-04-30 2009-04-30 有色金属加工质量控制中的产品表面缺陷检测方法

Publications (2)

Publication Number Publication Date
CN101545868A true CN101545868A (zh) 2009-09-30
CN101545868B CN101545868B (zh) 2011-06-08

Family

ID=41193123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100504572A Expired - Fee Related CN101545868B (zh) 2009-04-30 2009-04-30 有色金属加工质量控制中的产品表面缺陷检测方法

Country Status (1)

Country Link
CN (1) CN101545868B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901734A (zh) * 2011-07-25 2013-01-30 东友精细化工有限公司 薄膜成品率预测系统及方法
CN110235173A (zh) * 2017-02-10 2019-09-13 Abb瑞士股份有限公司 用于卷材制造监督的实时完整的卷材图像处理方法和系统
CN116934749A (zh) * 2023-09-15 2023-10-24 山东虹纬纺织有限公司 基于图像特征的纺织物瑕疵快速检测方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901734A (zh) * 2011-07-25 2013-01-30 东友精细化工有限公司 薄膜成品率预测系统及方法
CN102901734B (zh) * 2011-07-25 2017-04-12 东友精细化工有限公司 光学薄膜成品率预测系统以及方法
CN110235173A (zh) * 2017-02-10 2019-09-13 Abb瑞士股份有限公司 用于卷材制造监督的实时完整的卷材图像处理方法和系统
CN110235173B (zh) * 2017-02-10 2023-04-18 Abb瑞士股份有限公司 用于卷材制造监督的实时完整的卷材图像处理方法和系统
CN116934749A (zh) * 2023-09-15 2023-10-24 山东虹纬纺织有限公司 基于图像特征的纺织物瑕疵快速检测方法
CN116934749B (zh) * 2023-09-15 2023-12-19 山东虹纬纺织有限公司 基于图像特征的纺织物瑕疵快速检测方法

Also Published As

Publication number Publication date
CN101545868B (zh) 2011-06-08

Similar Documents

Publication Publication Date Title
Mei et al. An unsupervised-learning-based approach for automated defect inspection on textured surfaces
CN110431404B (zh) 表面缺陷检查方法及表面缺陷检查装置
CN109870461B (zh) 一种电子元器件质量检测系统
Elbehiery et al. Surface defects detection for ceramic tiles using image processing and morphological techniques
CN102156996B (zh) 一种图像边缘检测的方法
CN111080582B (zh) 工件内外表面缺陷检测方法
CN106780455A (zh) 一种基于滑动的局部邻域窗口的产品表面检测方法
CN111539927B (zh) 汽车塑料组合件紧固卡扣缺装检测装置的检测方法
Lin Computer-aided visual inspection of surface defects in ceramic capacitor chips
CN116912248B (zh) 基于计算机视觉的不规则五金件表面缺陷检测方法
CN101545868B (zh) 有色金属加工质量控制中的产品表面缺陷检测方法
CN108447070A (zh) 一种基于像素向量不变关系特征的工业零件缺损检测算法
CN105069778A (zh) 基于目标特征显著图构建的工业产品表面缺陷检测方法
CN104568956A (zh) 基于机器视觉的带钢表面缺陷的检测方法
CN116468726B (zh) 一种在线异物线路检测方法及系统
CN108399614B (zh) 一种基于无抽样小波与Gumbel分布的织物缺陷检测方法
CN115131348A (zh) 一种纺织品表面缺陷的检测方法及系统
CN113610850A (zh) 一种基于图像处理的装饰纸纹理异常检测方法
CN104574417A (zh) 一种图像边缘灰度起伏性度量与自适应检测方法
Ye et al. An improved algorithm for Harris corner detection
Chiu et al. Creation of image models for inspecting visual flaws on capacitive touch screens
CN114581447B (zh) 一种基于机器视觉的运输皮带跑偏识别方法和装置
CN111028215A (zh) 一种基于机器视觉的检测钢卷端面缺陷方法
CN101701918A (zh) 多通道滤波金属表面并行检测方法
Zhai et al. Defect detection in aluminum foil by measurement-residual-based chi-square detector

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110608

Termination date: 20180430

CF01 Termination of patent right due to non-payment of annual fee