CN101534077A - Solar energy thermo-electric generation device - Google Patents

Solar energy thermo-electric generation device Download PDF

Info

Publication number
CN101534077A
CN101534077A CN 200910097076 CN200910097076A CN101534077A CN 101534077 A CN101534077 A CN 101534077A CN 200910097076 CN200910097076 CN 200910097076 CN 200910097076 A CN200910097076 A CN 200910097076A CN 101534077 A CN101534077 A CN 101534077A
Authority
CN
China
Prior art keywords
solar
thermoelectric
power generation
cooling
cooling circuit
Prior art date
Application number
CN 200910097076
Other languages
Chinese (zh)
Inventor
勇 王
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to CN 200910097076 priority Critical patent/CN101534077A/en
Publication of CN101534077A publication Critical patent/CN101534077A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy

Abstract

The invention provides a solar energy thermo-electric generation device, which is composed of a solar thermal collector, a thermoelectric cell, a cooling pipeline and a radiating system, wherein, the cooling pipeline and the thermoelectric cell adhered to the surface thereof are positioned within the solar thermal collector, and the radiating system is connected with the cooling pipeline. In the meantime, the cool end of the thermoelectric cell is contacted with the outer surface of the cooling pipeline, and the hot end of the thermoelectric cell is contacted with the inner surface of the solar thermal collector. The invention solves the heating problem of the hot end and the cooling problem of the cool end of the thermoelectric cell, integrates the generation device with the solar thermal collector skillfully, improves the utilization rate of solar energy and reduces the cost of the solar energy generation.

Description

太阳能温差发电装置 Solar thermoelectric power generation unit

技术领域 FIELD

本发明涉及一种温差发电装置,特别涉及一种利用太阳能的温差发电装置,属于新能源的开发利用领域。 The present invention relates to a thermoelectric power generation apparatus, and particularly relates to a thermoelectric power generation device using solar energy, is in the field of new energy development and utilization.

背景技术 Background technique

温差电池发电时需要在电池两侧保持足够大的温差,才可以获得大的输出电能,所以在目前温差电池只作为补充发电方式的应用于余热发电或者小功率的发电装置。 The need to maintain a temperature difference on both sides of the battery cell power generation sufficiently large temperature difference, it is possible to obtain a large output power, so the heat is applied only as a supplement to current thermo-electric power generation or the generation of small power generating device. 由于太阳能的能量密度小达不到半导体温差电池的温差要求,太阳能只限制于热机发电和太阳能电池发电应用,因此温差电池在太阳能发电技术上很少被利用到。 As the solar energy density of semiconductor thermoelectric cells reach the temperature difference required, limited only to the solar power generation and solar heat engine power applications, the battery temperature differences in the solar power generation technology to seldom used. 而利用温差电池(又称温差发电片) 进行发电,可解决传统的太阳能发电技术的成本高的问题。 Utilize thermoelectric cell (also known as a thermoelectric power generation sheet) for power generation, solar power generation high solve the conventional problem that the cost of the technology.

发明内容 SUMMARY

本发明提供了一种太阳能温差发电装置,解决了温差电池热端的加热问题和冷端的冷却问题,使其和太阳能集热器巧妙地结合起来,提高了太阳能的利用效率,降低了太阳能发电的成本。 The present invention provides a solar thermoelectric power generation unit, the battery to solve the problem of heating the temperature difference between the warm end and cold end of the cooling issues, solar collectors, and so skillfully combined, improving the utilization efficiency of solar energy, reduce the cost of solar power .

一种太阳能温差发电装置,包括内置有温差电池的筒状的太阳能集热器,所述的太阳能集热器内设有冷却管路,所述的温差电池分布于冷却管路四周,温差电池的冷端与冷却管路的外表面接触换热,温差电池的热端与太阳能集热器的内表面接触换热。 A solar thermoelectric power generation apparatus, comprising a built-in thermo-electric tubular solar collector, said solar collector equipped with a cooling circuit, said cooling circuit thermoelectric cells distributed around the thermoelectric cells the outer surface of the cold end of the heat exchange contact with the cooling circuit, the temperature difference between the inner surface of the solar cell of the hot end of the collector contact heat exchange.

所述的温差电池的冷端与冷却管路的外表面的形状可以不同,也可以相同,当两者形状不同时,所述的冷却管路外套有套管,套管的内外表面的形状分别与冷却管路及温差电池的冷端相应(套管外表面与温差电池的冷端形状相应,套管内表面与冷却管路形状相应),可以增大接触面积, 更利于导热。 Shape of the outer surface of the cold side of the cooling line may be different thermoelectric cells, may be the same, when the two shapes are different, the jacket cooling line with a sleeve, the shape of the inner and outer surfaces of the sleeve respectively, the cooling circuit and the cold end temperature difference between the respective cell (shape of the outer surface of the cold end temperature difference between the battery sleeve and the corresponding inner surface of the sleeve corresponding to the shape and cooling lines), can increase the contact area, it is more conducive to the thermally conductive.

作为优选,在温差电池的冷端和冷却管路的外表面之间涂有一层导热 Preferably, the outer surface of the cold end temperature difference between the battery and the cooling circuit is coated with a thermally conductive

物质。 substance. 这样可以填充接触部位局部的缝隙进一步提高导热效果,导热物质 Such gaps may be partially filled with a contact portion to further improve the effect of thermal conductivity, heat conductive materials

可采用导热硅胶等现有4支术。 Thermal silica and the like may be employed prior art four. 当冷却管路外套有套管时,在温差电池的冷端和冷却管路的套管的外表面之间涂有一层导热物质。 When the jacket cooling line with a sleeve, the sleeve between the outer surface of the cold end temperature difference between the battery and the cooling circuit is coated with a thermally conductive material.

作为优选,所述的温差电池为若干块分布于冷却管路四周,若干块温差电池可以串联或并联,满足更多的输出电源需求 Advantageously, the cell is a temperature difference in the cooling circuit into blocks distributed around several blocks thermoelectric cells can be in series or parallel, to meet the demand for more output power

作为优选,相邻近的两块温差电池之间填充有隔热材料,这样可以将冷却管路与太阳能集热器之间彻底隔离,避免不必要的热传导。 Preferably, a heat insulating material is filled between the adjacent two phases thermoelectric cell, so may be completely isolated from the cooling circuit and the solar collector, to avoid unnecessary heat conduction. 隔热材料可选用市售的泡沫或多孔材料。 Commercially available insulating material could be a foam or porous material. 作为进一步优选,太阳能集热器的两端填充有隔热材料,彻底避免温差电池的冷端和热端之间的热辐射和热传导, 从而保持温差电池的冷端和热端之间的最大温差。 As is further preferred, both ends of the solar collector is filled with heat insulating material, completely avoid the heat radiation and heat transfer between the warm end and cold end of thermoelectric cells, so as to maintain maximum temperature difference between the warm end and cold end of thermoelectric cells .

作为优选,所述的温差电池的热端和太阳能集热器内表面之间填充有导热体,导热体一般可选用铜片或铜块。 Advantageously, the hot side of the thermoelectric cells is filled with solar collectors and between the surface of the thermal conductor, the thermally conductive body generally use copper or a copper block. 导热体的一面和温差电池的热端紧贴,导热体的另一面和太阳能集热器内部的内表面相贴。 Heat conductor and the hot end side of the thermoelectric cells against the inner surface of the inner surface of the other solar collectors and the heat conductor paste phase. 导热体可以增大需要进行热交换部件的接触面积,更利于导热。 Heat conductor may increase the contact area of ​​the heat exchange required parts, more conducive to the thermally conductive.

本发明中,太阳能集热器可以是太阳能真空集热管或其它太阳能集热装置,本发明优选采用太阳能真空集热管。 In the present invention, solar collectors may be evacuated solar collector tube solar collector or other apparatus, the present invention preferably employs a solar vacuum tube. 太阳能真空集热管可以采用现有技术,其集热部件位于太阳能集热器的筒形壁中。 Solar vacuum tube may be employed the prior art, which collector solar collector member positioned in the cylindrical wall.

筒形的太阳能集热器可以是圆筒或方筒,也可以是一端封闭的结构。 Tubular solar collectors may be cylindrical or square tube, and may be closed at one end structure.

为便于冷却管路保持相对温度较低,设有与所述的冷却管路相连的散热系统。 To facilitate maintaining relatively low temperature cooling circuit, the cooling system is provided with the cooling circuit connected to. 所述的冷却管路可以是密闭热管或者非密闭的冷却管路。 The cooling circuit of the cooling tube may be heat sealed or non-sealed tube.

本发明中,散热系统可以是风冷、水冷或其它冷却系统,散热系统可以和冷却管路的内部相通,也可以置于冷却管i?各外部。 In the present invention, the cooling system may be air, water or other cooling systems, cooling system and internal cooling passage communicates, a cooling tube may be placed in I? Each external.

为满足冷却管路的工作要求,整个装置可以和水平面成一定角度放置,也可以水平放置,视冷却管路的要求而定。 To meet the requirements of the working of the cooling circuit, and the entire apparatus can be placed at an angle to the horizontal, it may also be placed horizontally, depending on the cooling circuit requirements.

4本发明的太阳能温差发电装置具有以下优点: Solar thermoelectric power generation device 4 according to the invention has the following advantages:

温差电池置于太阳能集热器的内部,这样可以使温差电池的热端得到充分的加热;同时温差电池的冷端紧贴于冷却管路,冷却管路可以很快带走温差电池的冷端的热量,从而保持冷端的温度不致太高;冷却管路又和位于太阳能集热器的外部的散热系统相连,可以进一步提高冷却管路的热交换效率。 Thermoelectric cell is placed inside the solar collector, which can make the hot end of the thermoelectric cells to obtain sufficient heating; while cold end of thermoelectric cells in close contact with the cooling circuit, cooling circuit can quickly take the cold end of the thermoelectric cells heat, thereby maintaining the cold end temperature will not be too high; and the cooling line and the external cooling system is connected to the solar collector, heat exchange efficiency can be further improved cooling duct. 本发明的设计使温差电池的热端保持尽可能高的温度,并对温差电池的另一侧及冷端进行冷却以保持尽可能低的温度,使太阳能得到了充分的利用,提高了温差电池的效率,降低了太阳能发电的成本。 Design of the present invention allows the hot side of thermoelectric cells maintained a temperature as high as possible, and on the other side and the cold end temperature difference of the battery is cooled to maintain a temperature as low as possible, to make use of solar energy has been fully improved thermoelectric cells the efficiency and reduce the cost of solar power.

附图说明 BRIEF DESCRIPTION

图l是本发明的太阳能热管温差发电装置剖面结构示意图。 Figure l is a schematic cross-sectional structure of the heat pipe solar thermoelectric power generation device of the present invention. 图2是图1中AA剖4见图。 FIG 2 is a cross-section AA in FIG. 1 shown in Figure 4.

图3是本发明太阳能热管温差发电装置另一种实施方式的示意图。 FIG 3 is a schematic view of another heat pipe solar thermoelectric power generation unit according to the present invention. FIG. 图4是本发明太阳能热管温差发电装置第三种实施方式的示意图。 FIG 4 is a schematic diagram of the solar heat pipe thermoelectric power generation apparatus of the third embodiment of the present invention embodiment.

具体实施方式 Detailed ways

参见图l、 2,本发明的太阳能温差发电装置,包括内置有温差电池2 的筒状的太阳能集热器l,太阳能集热器1内设有冷却管路3,外部设有与冷却管路3相连的散热系统4,散热系统4与冷却管路3的内部相通。 L Referring to FIG, 2, the solar power generation unit according to the present invention, including a built-cylindrical thermoelectric cells 2 L of solar collectors, solar collectors equipped with a cooling tube 3, an external cooling circuit is provided with cooling system 3 is connected to 4, 4 to communicate with the cooling system 3 of the internal cooling circuit.

太阳能集热器1是太阳能真空集热管。 A solar collector is a solar vacuum tube.

温差电池2共有四块分布于冷却管^各3四周,每个温差电池2的冷端21与冷却管路3的外表面接触换热,温差电池2的热端22与太阳能集热器1的内表面接触换热。 A total of four thermoelectric cell 2 located in the respective cooling pipe ^ 3 around each of the cold end temperature difference between the battery 2 and the outer surface of the cooling circuit of the contact heat exchanger 3, the temperature difference between the heat battery 22 and the end 21 of the solar heat collector 1 contacting the inner surface of the heat exchanger.

冷却管路3外套有套管31,套管31外表面与温差电池2的冷端21 形状相应,套管31内表面与冷却管路3形状相应。 3 the jacket cooling line 31 with a sleeve, the shape of the cold end 31 the sleeve 21 and the outer surface of the respective thermoelectric cells 2, the inner sleeve 31 and the surface shape of the corresponding cooling circuit 3. 温差电池2的冷端21 和冷却管路3的外表面之间涂有一层导热物质32。 Cold end 21 of thermoelectric cells 2 and the cooling passage 32 is coated with a thermally conductive material between the outer surface 3.

相邻近的两块温差电池2之间填充有隔热材料33,太阳能集热器1的两端分布填充有隔热材料33a和隔热材料33b。 Adjacent to the two thermoelectric cells is filled with an insulating material 233 between the solar collector 1 at both ends is filled with an insulating material distribution of heat insulating material 33a and 33b.

温差电池2的热端22和太阳能集热器1内表面之间填充有导热体34。 34 is filled with a heat conductor between the hot end 22 of thermoelectric cells 2 and an inner surface of the solar collector.

图3给出了本发明的另一个实施方式的示意图,它包括太阳能集热器1、温差电池2、冷却管路3、散热系统4、套管31、隔热材料33a、隔热材料33b和导热体34。 Figure 3 shows a schematic view of another embodiment of the present invention, which comprises a solar collector 1, thermoelectric cells 2, the cooling circuit 3, the cooling system 4, the sleeve 31, a heat insulating material 33a, 33b and the insulating material heat conductor 34.

太阳能集热器1采用太阳能热水器中常用的U型太阳能真空集热管, 冷却管路3使用超导热管,散热系统4为一水箱。 1 using solar collectors of solar water heaters commonly used in the U-shaped vacuum tube solar cooling line using superconducting heat pipe 3, a water tank 4 is a cooling system. 超导热管放入套管31 内,温差电池2的冷端21紧贴于套管31的周围。 Superconductive tube into the cannula 31, the cold end 21 of thermoelectric cells 2 in close contact around the sleeve 31.

超导热管、套管31以及温差电池2—起放置于U型太阳能真空集热管中。 Superconducting heat pipe, and the sleeve 31 from 2- thermoelectric cells placed in the U-tube solar collector vacuum. 温差电池2的热端22紧贴于导热体34的一面,导热体34的另一面紧贴于U型太阳能真空集热管的内侧面,导热体34使用金属铜片折叠而成。 2 hot end 22 of thermoelectric cells in close contact with one surface of the thermally conductive body, the inner side surface close to the U-shaped vacuum tube solar other side of the thermal conductor 34, heat conductor 34 using 34 folded from metal copper.

超导热管的冷凝端42放置于散热系统4即水箱中。 Condensation superconducting heat pipe 42 is placed in the end of the heat dissipation system 4, i.e. the tank. 整个装置和水平面成一定角度放置,放置角度满足超导热管工作时的要求即可。 And the entire apparatus placed at an angle to the horizontal, the angle to meet the requirements placed upon the superconducting heat pipe to work.

装置工作时,真空集热管把直射、散射以及其它反射面反射的太阳光转化为热量,并且通过导热体34把热量传递到温差电池2的热端22。 When the device is operated, the vacuum tube blank, and the other reflecting surface scattering sunlight is converted to heat, and the heat transferred to the temperature difference between the battery terminal 22 2 34 heat heat conductor. 从而使温差电池2开始工作产生电能。 2 so that the thermo-electric generating electrical energy to work. 为了使温差电池2能够正常工作,应该保持温差电池2的热端和冷端有足够的温差。 In order to make the temperature difference between the battery 2 to work properly, the battery should keep the temperature difference between the warm end and a cold end 2 a sufficient temperature difference. 由于温差电池2本身具有传热特性,随着温差电池2的热端22的温度升高,温差电池2的冷端21 的温度也会升高,当温差电池2的冷端21的热量会通过套管31传递到超导热管的蒸发端41,此时超导热管内的工质将会受热蒸发变为气态,气态的工质会跑到超导热管的上端即冷凝端42,冷凝端42被散热系统4冷却, 这样超导热管中气态的工质又会变为液态。 Since the temperature difference heat transfer characteristics of the battery 2 itself, as the temperature of the hot end of the thermoelectric cells 2 22 rises, the temperature difference between the temperature of the cold end 21 of the battery 2 will increase, when the heat of the cold end of thermoelectric cells 2 through 21 will end of sleeve 31 is transmitted to the superconducting heat pipe evaporator 41, then the working fluid within the heat pipe will superconducting evaporated into gas heated gaseous working fluid will go to the upper end of the superconducting heat pipe condenser end 42, i.e., the condensing end 42 4 was cooled cooling system, so that the superconducting heat pipe will gaseous refrigerant to a liquid. 受到重力的作用,液态工质又会流会到超导热管的蒸发端41并重新被加热蒸发和冷凝,如此不断循环, 不断带走温差电池冷端21的热量,从而保证了4争温差电池热端22和冷端21的温差,使其正常发电。 By the action of gravity, the liquid refrigerant will flow to the evaporator will end the superconducting heat pipe 41 is heated and re-evaporation and condensation, so the cycle, thermoelectric cells continue to take heat of the cold end 21, thus ensuring the contention thermoelectric cells 4 hot end 22 and cold end temperature difference of 21, so that the normal power generation. 图4给出了本发明的另一个实施实例的示意图,它包括太阳能集热器1、温差电池2、冷却管路3、散热系统4、套管31、隔热材料33a、导热体34。 A schematic view of another example of FIG. 4 shows the embodiment of the present invention, which comprises a solar collector 1, thermoelectric cells 2, the cooling circuit 3, the cooling system 4, the sleeve 31, a heat insulating material 33a, heat conductor 34.

太阳能集热器1采用直通型太阳能真空集热管,冷却管路3使用环路的结构,散热系统4为一水箱,它和冷却管路3连接在一起。 Through a solar collector using solar vacuum tube, using the cooling circuit 3 loop structure, a cooling system for the tank 4, and its cooling circuit 3 connected together.

冷却管路3放入套管31内,温差电池2的冷端21紧贴于套管31的周围。 Cooling circuit 3 into the sleeve 31, the cold end 21 of thermoelectric cells 2 in close contact around the sleeve 31.

冷却管路3、套管31以及温差电池2—起放置于直通型太阳能真空集热管中。 The cooling circuit 3, the sleeve 31 and placed on the thermoelectric cells from 2- straight tube type solar collector vacuum. 温差电池2的热端22紧贴于导热体34的一面,导热体34的另一面紧贴于直通型太阳能真空集热管的内侧面,导热体34使用金属铜片4斤叠而成。 2 hot end 22 of thermoelectric cells in close contact with one surface of the thermally conductive body, the other through close contact with the surface 34 of the vacuum tube solar inner side thermal conductor, heat conductor 34 using 4 pounds copper metal 34 are laminated.

装置工作时,真空集热管把直射、散射以及其它反射面反射的太阳光转化为热量,并且通过导热体344巴热量传递到温差电池2的热端22。 When the device is operated, the vacuum tube blank, and the other reflecting surface scattering sunlight is converted to heat, and the heat transferred to the temperature difference between the battery 2 through the end 22 of heat conductor bar 344 calories. 乂人而使温差电池2开始工作产生电能。 Qe people to work the two thermoelectric cells generate electrical energy. 为了使温差电池2能够正常工作,应该保持温差电池2的热端22和冷端21有足够的温差。 In order to make the temperature difference between the battery 2 to work properly, it should be kept hot end 22 of thermoelectric cells 2 and the cold end 21 a sufficient temperature difference. 由于温差电池2本身具有传热特性,随着温差电池2的热端22的温度升高,温差电池2的冷端21的温度也会升高,当温差电池2的冷端21的热量会通过套管31传递到冷却管路3 上,此时冷却管路内的工质受热后将膨胀上升,进入冷却水箱并^C冷却, 冷却后的工质将流回冷却管路中。 Since the temperature difference heat transfer characteristics of the battery 2 itself, as the temperature of the hot end of the thermoelectric cells 2 22 rises, the temperature difference between the temperature of the cold end 21 of the battery 2 will increase, when the heat of the cold end of thermoelectric cells 2 through 21 will the sleeve 31 is transmitted to the cooling tubes 3, then heated working fluid after expansion in the cooling line rises into the cooling tank and cooled ^ C, after cooling the working fluid back into the cooling circuit. 为了提高工质的流速,可以使整个装置和水平面成一定角度放置,利用重力使工质流动,也可以在冷却管路的内部安装一个小水泵,帮助工质的流动。 In order to increase the flow rate of the working fluid, and the whole apparatus can be placed at an angle to the horizontal plane, the working fluid to flow by gravity, a small pump may be mounted within the cooling circuit, to help the flow of the working fluid.

工质的流动不断带走温差电池冷端21的热量,从而保证了持温差电池热端22和冷端21的温差,使其正常发电。 The working fluid flows away continually thermoelectric cells 21 the cold end of the heat, thus ensuring the temperature difference between the hot end of the thermoelectric cell holder 22 and the cold end 21, so that the normal power generation. 为了提高散热效率,冷却管路还可以采用蛇形多弯结构。 In order to improve heat dissipation efficiency, a serpentine cooling circuit and winding structure also may be employed.

以上列举的仅是本发明的若干个具体实施例,本发明不限于以上实施例,还可以有许多变形,本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。 Listed above are merely several specific embodiments of the present invention, the present invention is not limited to the above embodiments, there can be many variations, content those of ordinary skill in the art from the present disclosure derived directly or associate all modifications, It should be considered the scope of the invention.

Claims (8)

1、一种太阳能温差发电装置,包括内置有温差电池(2)的筒状的太阳能集热器(1),其特征在于:所述的太阳能集热器(1)内设有冷却管路(3),所述的温差电池(2)分布于冷却管路(3)四周,温差电池(2)的冷端(21)与冷却管路(3)的外表面接触换热,温差电池(2)的热端(22)与太阳能集热器(1)的内表面接触换热。 1, a solar thermoelectric power generation apparatus, comprising a built-in thermoelectric cell (2) of the tubular solar collector (1), characterized in that: said solar collector (1) is provided with cooling line ( 3), said thermoelectric cells (2) distributed in the outer surface of the cooling circuit (3) around thermoelectric cells (2) a cold end (21) and the cooling circuit (3) contacting the heat exchanger, thermoelectric cells (2 ) the inner surface of the hot end (22) and the solar collector (1) is in contact with a heat exchanger.
2、 根据权利要求1所述的太阳能温差发电装置,其特征在于:所述的冷却管路(3)外套有套管(31),套管(31)外表面与温差电池(2) 的冷端(21)形状相应,套管(31)内表面与冷却管路(3)形状相应。 , (31) the outer surface of the thermoelectric cell (2) of the cooling circuit of the cooling sleeve (3) has outer cannula (31): 2, The solar power generation unit according to claim 1, characterized in that inner end (21) corresponding to the shape of the sleeve (31) and the surface of the cooling circuit (3) corresponding to the shape.
3、 根据权利要求1所述的太阳能温差发电装置,其特征在于:所述的温差电池(2)的冷端(21)和冷却管路(3)的外表面之间涂有一层导热物质(32)。 3, the solar power generation unit according to claim 1, characterized in that: the thermally conductive material is coated with a temperature difference between the outer surface of the battery (2) a cold end (21) and the cooling circuit (3) ( 32).
4、 根据权利要求1所述的太阳能温差发电装置,其特征在于:所述的温差电池(2)为若干块分布于冷却管路(3)四周,相邻近的两块温差电池(2)之间填充有隔热材料(33)。 4. The solar power generation unit according to claim 1, wherein: said thermoelectric cells (2) distributed in a number of blocks the cooling circuit (3) around and adjacent to the two thermoelectric cells (2) between filled with insulating material (33).
5、 根据权利要求4所述的太阳能温差发电装置,其特征在于:所述的太阳能集热器(1)的两端填充有隔热材料(33a、 33b)。 5. The solar power generation unit according to claim 4, wherein: filled with an insulating material (33a, 33b) at both ends of the solar collector (1).
6、 根据权利要求1所述的太阳能温差发电装置,其特征在于:所述的温差电池(2)的热端(22)和太阳能集热器(1)内表面之间填充有导热体(34)。 6. The solar power generation unit according to claim 1, wherein: said thermoelectric cells (2) a hot end (22) and the solar collector (1) is filled with a heat conductor (between the surfaces 34 ).
7、 根据权利要求1 ~ 5任一项所述的太阳能温差发电装置,其特征在于:所述的太阳能集热器(1)是太阳能真空集热管。 7, the solar power generation unit according to claim any one of claims 1 to 5, wherein: said solar collector (1) is a vacuum tube solar energy.
8、 根据权利要求1 ~5任一项所述的太阳能温差发电装置,其特征在于:设有与所述的冷却管路(3)相连的散热系统(4)。 8, a solar power generation unit according to claim any one of claims 1 to 5, wherein: said cooling circuit is provided with a cooling system (4) connected to (3).
CN 200910097076 2009-03-31 2009-03-31 Solar energy thermo-electric generation device CN101534077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910097076 CN101534077A (en) 2009-03-31 2009-03-31 Solar energy thermo-electric generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910097076 CN101534077A (en) 2009-03-31 2009-03-31 Solar energy thermo-electric generation device

Publications (1)

Publication Number Publication Date
CN101534077A true CN101534077A (en) 2009-09-16

Family

ID=41104511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910097076 CN101534077A (en) 2009-03-31 2009-03-31 Solar energy thermo-electric generation device

Country Status (1)

Country Link
CN (1) CN101534077A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011091620A1 (en) * 2010-01-29 2011-08-04 中国科学院广州能源研究所 System for thermoelectric converting type solar thermal power generation
WO2011160293A1 (en) * 2010-06-23 2011-12-29 常州天合光能有限公司 Efficient heat shield for silicon single crystal furnace
CN102355168A (en) * 2011-09-30 2012-02-15 广东工业大学 Solar energy temperature difference generation device
CN102487259A (en) * 2009-10-15 2012-06-06 何仁城 Method and device for generating power by using temperature difference
CN102721202A (en) * 2012-06-08 2012-10-10 无锡旭能光热电能源有限公司 Bi-pass thermovoltaic vacuum tube
CN102748881A (en) * 2012-05-28 2012-10-24 无锡旭能光热电能源有限公司 Inner condensation thermovoltaic vacuum tube
CN102889696A (en) * 2012-10-26 2013-01-23 华北电力大学 Pyroelectric co-production device of solar water heater
CN104025327A (en) * 2011-12-26 2014-09-03 中沼忠司 Thermoelectric generator
CN104390502A (en) * 2014-11-06 2015-03-04 吴速 Composite heat pipe
CN106160579A (en) * 2014-09-01 2016-11-23 现代自动车株式会社 Thermoelectric Generation Apparatus For Vehicle
CN106412017A (en) * 2016-08-31 2017-02-15 重庆伟睿科技有限公司 Adjacent pushing system
CN107733286A (en) * 2017-11-15 2018-02-23 肇庆市高新区晓靖科技有限公司 Thermoelectric power generation device utilizing solar energy

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102487259A (en) * 2009-10-15 2012-06-06 何仁城 Method and device for generating power by using temperature difference
WO2011091620A1 (en) * 2010-01-29 2011-08-04 中国科学院广州能源研究所 System for thermoelectric converting type solar thermal power generation
WO2011160293A1 (en) * 2010-06-23 2011-12-29 常州天合光能有限公司 Efficient heat shield for silicon single crystal furnace
CN102355168A (en) * 2011-09-30 2012-02-15 广东工业大学 Solar energy temperature difference generation device
CN102355168B (en) 2011-09-30 2014-04-02 广东工业大学 Solar energy temperature difference generation device
CN104025327B (en) * 2011-12-26 2017-02-22 中沼忠司 The thermoelectric power generating apparatus
CN106340583A (en) * 2011-12-26 2017-01-18 中沼忠司 Thermoelectric generator
CN104025327A (en) * 2011-12-26 2014-09-03 中沼忠司 Thermoelectric generator
CN106340583B (en) * 2011-12-26 2018-10-30 中沼忠司 The thermoelectric power generating apparatus
CN102748881A (en) * 2012-05-28 2012-10-24 无锡旭能光热电能源有限公司 Inner condensation thermovoltaic vacuum tube
CN102721202A (en) * 2012-06-08 2012-10-10 无锡旭能光热电能源有限公司 Bi-pass thermovoltaic vacuum tube
CN102889696A (en) * 2012-10-26 2013-01-23 华北电力大学 Pyroelectric co-production device of solar water heater
CN106160579A (en) * 2014-09-01 2016-11-23 现代自动车株式会社 Thermoelectric Generation Apparatus For Vehicle
CN104390502A (en) * 2014-11-06 2015-03-04 吴速 Composite heat pipe
CN106412017A (en) * 2016-08-31 2017-02-15 重庆伟睿科技有限公司 Adjacent pushing system
CN107733286A (en) * 2017-11-15 2018-02-23 肇庆市高新区晓靖科技有限公司 Thermoelectric power generation device utilizing solar energy

Similar Documents

Publication Publication Date Title
CN102510990B (en) Heat pipes and thermoelectric cooling devices
JP2013516050A (en) High efficiency heat dissipation device and a cogeneration system for photovoltaic panels
CN100498132C (en) Heat-collecting energy-storage evaporation integral solar energy heat pump system
CN102487255B (en) Solar energy utilization means
CN201332372Y (en) Residual heat thermoelectric power generation system using circulating liquid cooling
CN101398231B (en) Solar thermal power generating multifunctional equipment with heat absorption, heat storage and vapor generation function
CN2847686Y (en) Light focusing heat collecting type solar energy temperature differential generator
CN1862148A (en) Integrated apparatus of solar heat pump heating and photovoltaic generating
CN102052782A (en) Heat-pipe type solar energy photoelectric and optothermal comprehensive utilization system
CN101319821A (en) Construction flat plate shaped split wall hanging vacuum solar superconducting heat collection apparatus
WO2010092283A2 (en) Solar collector, and power-generating plant including such solar collectors
CN105737439B (en) Utilizing solar energy and thermoelectric air conditioning system subcooling means
CN101414644A (en) Radiating device for photovoltaic battery
JPH11215867A (en) Thermoelectric power generation element structure and system thereof
CN101592455A (en) Solar energy high-temperature phase-change heat reservoir
CN201414093Y (en) Solar photovoltaic power-heat conversion device based on cooling of flat heat pipe
CN201983669U (en) Loop thermosyphon heat pipe heat conducting apparatus
CN101907362A (en) Phase change thermal storage solar water heater without thermal storage tank
CN102538524A (en) Loop gravity-assisted heat pipe heat transfer device
CN104795610B (en) Power battery thermal management system based on the thermoelectric cooling
CN202885621U (en) Medium-low temperature heat storage unit
JP2005195187A (en) Solar heat pump system
CN101882898A (en) Low temperature smoke temperature difference generator
CN2708195Y (en) A semiconductor refrigerating system
CN202692447U (en) Anti-freezing water tank-free high-efficiency flat-plate solar water heater

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C12 Rejection of an application for a patent