CN101532988B - 用于体外评价造影剂的仿肝脏超声体模装置及评价方法 - Google Patents

用于体外评价造影剂的仿肝脏超声体模装置及评价方法 Download PDF

Info

Publication number
CN101532988B
CN101532988B CN2009100307112A CN200910030711A CN101532988B CN 101532988 B CN101532988 B CN 101532988B CN 2009100307112 A CN2009100307112 A CN 2009100307112A CN 200910030711 A CN200910030711 A CN 200910030711A CN 101532988 B CN101532988 B CN 101532988B
Authority
CN
China
Prior art keywords
imitative
liver
body mould
pressure regulation
vitro evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009100307112A
Other languages
English (en)
Other versions
CN101532988A (zh
Inventor
顾宁
陈平
杨芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN2009100307112A priority Critical patent/CN101532988B/zh
Publication of CN101532988A publication Critical patent/CN101532988A/zh
Application granted granted Critical
Publication of CN101532988B publication Critical patent/CN101532988B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

用于体外评价造影剂的仿肝脏超声体模装置及评价方法,用于体外评价造影剂的仿肝脏超声体模,具有与人体肝脏相似的声学特性,用于体外评价造影剂时,可以提供模拟在体的背景超声图像。用于体外评价造影剂的仿肝脏超声体模装置包括测氧仪(1)、调压瓶(2)、鼓气泵(3)、蠕动泵(4)、仿肝脏超声体模(5)、仿肝动脉分布管道(6)、容器(7);仿肝脏超声体模(5)位于一个具有消声内衬(71)的容器(7)中,仿肝动脉分布管道(6)位于仿肝脏超声体模(5)中,仿肝动脉分布管道的出液口接蠕动泵(4)的进液端,蠕动泵(4)的出液端接调压瓶的进液端,调压瓶的出液端接仿肝动脉分布管道的进液端;侧氧仪(1)的探头位于调压瓶中,鼓气泵(3)的出口接调压瓶的鼓气口。

Description

用于体外评价造影剂的仿肝脏超声体模装置及评价方法
技术领域
本发明属于医学超声应用领域,尤其涉及一种用于体外评价造影剂的仿肝脏超声体模的设计。
背景技术
超声诊断技术是世界上使用最广泛的影像技术之一,具有适应面广、价格低廉、无辐射等优点。超声诊断是利用超声波在人体组织界面发生的反射和散射信号强弱差异来传递生物内部信息,从而达到诊断的目的。随着医学超声领域的不断发展,超声影像技术也发生了深刻的变革,产生了大量的成像新技术:彩色多普勒、介入超声、三维超声、宽频带超声等等,尤其是超声造影术的出现格外引人注目。超声造影就是基于超声成像的基本原理,将与人体组织有较大差异的物质——造影剂注入人体待查部位,通过改变超声特性(如频率、声强)等,人为的增大待查部位与周围组织之间的差异,使获得的超声图像显得更为清晰,便于诊断。超声造影剂是一类能够显著增强超声检测信号的诊断用药,在人体微循环和组织灌注检验成像方面,用超声造影剂进行超声检测简便、快捷、无创、无辐射,具有其他检查方法如PET、CT、MRI等无法比拟的优点。
超声造影剂经过近四十年的发展,已从最初的空气型微气泡造影剂(包膜为白蛋白、糖类、脂类、多聚体)经过第二代氟化气体微气泡造影剂(包膜为清蛋白、脂类、多聚体)发展成为具有靶向性的第三代微气泡造影剂,靶向造影剂连接有特异性配体,能积聚于目标组织,实现靶向性超声造影增强。近来,随着分子生物学和分子影像技术的发展,靶向性微气泡造影剂的研发也有了较大的进步,出现了第四代多功能微气泡造影剂,多功能造影剂不仅具有靶向显影的特点,而且可以作为药物载体,实现药物的定点控释,有些多功能造影剂还可以用于多模式成像的显影增强。超声造影剂的应用极大的促进了医学超声影像技术的发展,与传统医学超声相比,超声造影可以显著提高对病变组织脉管系统的微循环灌注情况的检测,提高对各种组织器官尤其是肝脏的局灶性病变的诊断与鉴别能力,尤其是多功能微气泡的应用有望实现多模式诊断成像技术的融合、实现诊断治疗一体化。所以,超声造影剂被称为是继实时二维成像、多普勒和彩色成像之后的医学超声的第三次革命,关于超声造影剂的制备与特性研究也成为医学超声领域的研究重点,对种类繁多、功能复杂的超声造影剂性能的评价是其应用于临床的必经阶段,所以建立完善的体外评价体系尤为重要。
绝大多数科研工作者在对微气泡造影剂的声特性进行体外评价时,采用的方法是将微气泡分散于水(去气、去离子)溶液中,然后装在吸声水槽里,超声探头直接接触水溶液进行成像,也有少部分用乳胶(硅胶)袋做成封闭的体系,将造影剂溶液装在乳胶(硅胶)袋里,探头接触乳胶(硅胶)袋对袋内微气泡进行成像。这些方法简单、方便,但是存在一些不足:第一,一般的去气、去离子水的声特性,比如声反射、声散射、声阻抗、声衰减等与人体组织的声学特性相差较大,造影剂成像时,不能提供与人体超声图像灰度级类似的背景;第二,为了模拟人体血管内不同血氧分压的环境,可以向造影剂溶液中通氮气、氧气、氦气和其他惰性气体等,常用的吸声水槽是个开放的体系,槽内溶液不能很好的维持在需要的氧分压条件下,而封闭的乳胶袋在调节氧分压时,操作不便;第三,微气泡在水溶液中的分布具有随机性,而超声探头辐射区域有限,不能有效跟踪观察目标,尤其是在研究单个微气泡时需要不断移动探头;第四,水槽和乳胶袋内溶液是静态不流动的,不能模拟人体内血液的循环状态,无法再现微气泡造影剂在体内循环时的成像效果。因此,我们设计了这套用于体外评价微气泡造影剂的超声体模系统,以实现以下几个方面的功能:①模拟人体肝脏的声学特性;②模拟肝动脉主支血管的分布,使观察区域集中于管路之中;③实现密闭循环、流速控制,模拟血液循环状态;④实现内部氧分压的测量、控制,等等。
目前,商业化的仿组织超声体模,主要用于超声诊断仪器成像性能的检测,是由中国科学院声学研究所于上世纪80年代研制生产的,已经有相当成熟的技术标准,可用于检测超声仪器的的盲区、探测深度、纵向分辨率、横向分辨率、典型病灶(肿瘤、囊肿或结石)成像能力等,但是由于该体模不具有特定组织器官(比如肝脏)的声学特征、缺少必要的管状通道而不能用于体外评价造影剂。中国计量科学院研究院设计制造的彩色多普勒仿组织超声体模系统,具有与人体相似的声学特性、仿血管通道等,布置了具有一定倾角的管道,主要用于评价彩超设备多普勒测血流这一功能的性能,但是不能实现对所测“血流”的内环境(氧分压)的调节和控制,因此也不能很好的应用于造影剂的评价。本发明设计了一套用于体外评价超声造影剂成像性能的仿肝脏超声体模,可以模拟人体血流状态、血液氧分压水平、肝脏组织的超声成像等特性,为各种造影剂的性能评价提供了良好的平台。
发明内容
技术问题:本发明旨在设计一种模拟在体环境下用于体外评价造影剂的仿肝脏超声体模装置及评价方法,用于体外评价造影剂的仿肝脏超声体模,具有与人体肝脏相似的声学特性,用于体外评价造影剂时,可以提供模拟在体的背景超声图像。
技术方案:本发明主要包括仿人体肝脏声学特性的超声体模、仿肝动脉分布的血管通道、溶液氧分压控制装置和待评价造影剂四个部分。用于体外评价造影剂的仿肝脏超声体模装置包括测氧仪、调压瓶、鼓气泵、蠕动泵、仿肝脏超声体模、仿肝动脉分布管道、容器;仿肝脏超声体模位于一个具有消声内衬的容器中,仿肝动脉分布管道位于仿肝脏超声体模中,仿肝动脉分布管道的出液口接蠕动泵的进液端,蠕动泵的出液端接调压瓶的进液端,调压瓶的出液端接仿肝动脉分布管道的进液端;侧氧仪的探头位于调压瓶中,鼓气泵的出口接调压瓶的鼓气口。
所述仿肝脏超声体模由二次蒸馏水、琼脂、甘油、钛白粉、金属颗粒材料混合,经加热、去气、冷却、凝固制成,其配比(质量)为:琼脂2~5%,甘油2~5%,二次蒸馏水80~95%,钛白粉0.5~6%,金属粉0.5~6%。
用于体外评价造影剂的仿肝脏超声体模装置评价方法为:
第一步:连接蠕动泵、调压瓶和仿肝脏超声体模内部仿血管分布管道形成整个循环通道;
第二步:当所述调压瓶的排气阀处于开放、鼓气口处于关闭状态、出样口截留时,将造影剂背景溶液通过调压瓶循环通道的入口注进调压瓶内部;
第三步:开启蠕动泵并调节到适当的转速,使内部液体循环,排尽循环管道内部的气体后关闭蠕动泵;
第四步:打开测氧仪,打开鼓气口和鼓气泵,实时监测内部溶液的氧分压情况;
第五步:当氧分压达到所需水平时,停止鼓气,用注射器通过进样塞注入待评价的造影剂,关闭排气阀;
第六步:开启蠕动泵,进入正常循环状态;
第七步:通过超声探头观察在仿肝脏超声体模内部仿血管通道中的造影剂的显像情况。
所述的造影剂背景溶液是水溶液或仿血液液体。
所述仿肝动脉分布管道是用硅橡胶仿血管分支磨具和仿肝脏超声体模材料制成的。
所述的仿肝动脉分布管道包括三级分支,特殊的可包括更多级分支,各级分支包括1个以上的管路,各分支、管路之间的夹角为10-60度之间;各级分支管道内径为2-8mm;更一般的,还可以模拟肝静脉、门静脉和其他器官血管的分支。
有益效果:本发明设计的用于体外评价造影剂的仿肝脏超声体模,具有与人体肝脏相似的声学特性,用于体外评价造影剂时,可以提供模拟在体的背景超声图像;实现溶液氧分压的测量和控制,改变造影剂存在环境的氧分压水平,研究不同氧分压环境下造影剂的显影性能;还可实现管道内部溶液按一定的方向和速度循环,模拟在体的血液流动状态,研究造影剂随血液流动时的显影效果。总上所述,本发明设计的超声体模装置可用于评价各种超声成像用造影剂,为新型造影剂的研发提供了性能评价的有效平台。
附图说明
图1是本发明的整体结构示意图,
图2a是本发明中的仿肝动脉血管分支模具示意图,
图2b是本发明中的仿肝动脉血管分布通道示意图,
图3是本发明中的连接管连接方式示意图,
图4是本发明中的连接蠕动泵的整个闭环通路的示意图,
图5是本发明中的溶液氧分压控制装置的结构示意图。
以上的各图中有:侧氧仪1、调压瓶2、鼓气泵3、蠕动泵4、仿肝脏超声体模5、仿肝动脉血管6、有机玻璃容器7、消声内衬71、超声探头8、硅胶管9、进样口10、主枝11、二级分枝12、三级分枝13、玻璃弯头14、硅胶短管15、玻璃三通16、排气阀17、进样塞18、循环入口19、循环出口20、截流夹21、单向阀22、鼓气口23、测氧仪探头24。
具体实施方式
用于体外评价超声造影剂的仿肝脏超声体模装置包括:
(1)仿肝脏超声体模;
(2)仿肝动脉血管分布管道;
(3)溶液氧分压控制装置;
(4)待评价的造影剂。
所述的仿肝脏超声体模包括仿肝脏体模和高频吸声内衬,用于模拟人体肝脏的超声成像特征;所述的仿肝动脉血管分布管道包括设置在体模内部的仿血管通道、体模外的通道和液体蠕动泵,用于维持液体按一定的速度和方向在管道中循环;所述的溶液氧分压控制装置包括测氧仪、调压瓶和鼓气泵,用于监测、控制管道内部循环溶液的氧分压水平;所述的待评价造影剂包括各种超声影像用造影剂,尤其特指超声微气泡造影剂。
超声造影剂实现超声显影的效果与造影剂所在背景溶液的声学特性直接相关,并且背景对超声波的反射、散射也直接影响着微气泡的反、散射效果,所以在研究造影剂成像性能时,背景是需要考虑到关键因素。为了模拟在体环境且使研究具有一定的针对性,我们选择肝脏作为模拟对象。
所述仿肝脏超声体模是由二次蒸馏水、琼脂、甘油、钛白粉、金属颗粒等材料混合,经加热、去气、冷却、凝固制成。为了模拟肝脏动脉血管的分布,体模的尺寸需要足够大,长大于30cm,宽大于10cm,高大于25cm。根据我国国家标准GB10152-1997、国家计量检测规程JJG639-98的有关规定,参考声学参数IEC61685-2001中的相关规定,并结合大量的科研文献报道,我们确定了设计的仿肝脏超声体模的声学特性需要符合以下标准:
声速:(1540±15)m/s    (23±3℃)
声衰减:(0.70±0.05)dB/(cm·MHz)(23±3℃)
声阻抗:1.648×105瑞利
所述的仿肝脏体模盛放在一个有机玻璃盒内,因为玻璃盒底和璧对超声的反射较强,会发生多次反射,干扰造影剂产生的回波信号,导致成像质量较差,所以需要在有机玻璃盒内做一个具有消声功能的吸声内衬,减少干扰。所述的高频吸声内衬是由室温硫化硅橡胶、固化剂、蛭石粉、石英砂等混合硫化而成,在1-10MHz频率范围内的声衰减为:20-40dB,具有较好的消声效果。
如果超声成像时感兴趣区域(造影剂存在的区域)相对固定,就可以通过固定超声探头来实时定点评价造影剂的成像效果,并保证实验测定的重复性,以便更客观的进行比较和分析。为此,我们设计了造影剂溶液循环的通道:仿肝动脉血管分布管道。
所述的仿肝动脉血管分布管道包括位于肝脏体模内部的通道、外部通道和蠕动泵。体模内的通道是用模具法构成的孔道:硅橡胶做成的仿血管分支模具固定于有机玻璃盒内,仿肝脏体模材料未凝固时(50摄氏度),倾倒入有机玻璃盒内,待凝固成形后取出硅橡胶模具,留下管形通道;体模外的通道是由硅胶管、玻璃弯头、玻璃三通、蠕动泵、调压瓶连接而成,将模具内通道与外部通道连接成一个闭环通路;蠕动泵连在通道中,实现溶液按一定的速度和方向循环,模拟血液在体循环的状态。
同时为了模拟肝动脉各个分支血管管径的不同,本发明所用硅胶模具有三级分支:主枝(直径5-8mm)、二级分枝(直径4-6mm)、三级分枝(直径2-4mm);为了满足体模凝固后模具可拆,模具分枝之间的连接是可拆卸的;主枝与二级分枝间夹角为20-40度,二级分枝与三级分枝夹角为20-50度;为了实现探头位置固定时可同时看到三级分枝,本发明设计的主、二、三级分枝位于同一垂直平面内。所述的仿血管分支模具示意图如图2a,所述的体模内部仿血管通道示意图如图2b。
所述体模内部通道与外部通道的连接是用硅胶管、玻璃弯头、玻璃三通实现的,连接管所在平面与模具所在竖直平面垂直。所述的连接管连接方式示意图如图3,所述的内部通道与外部通道的连接示意图如图4。
超声造影剂,尤其是常用的微气泡型造影剂,成像效果与其所在的液体环境的氧分压密切相关,并且在不同的氧分压条件下造影剂的稳定性也不同,所以评价造影剂的显影效果时,溶液的氧分压是需要严格控制的条件,所以本发明设计了用于调节体模内部溶液氧分压的控制装置。
所述的溶液氧分压控制装置包括测氧仪、调压瓶和鼓气泵,调压瓶配有一个进样塞、一个排气阀、一个监测口、两个循环通道出入口。测氧仪通过插入检测口的探头实时监测调压瓶内部溶液的氧分压;鼓气泵用于向调压瓶内鼓入氮气、氦气或氧气,实现溶液氧分压的控制;用进样塞代替一般的空洞是为了避免进样时引起内部氧分压变化,注射器借助注射针头插入进样塞,推进待评价的造影剂;排气阀用于维持调压瓶内部的压力;循环通道出入、口用于液体循环通道硅胶管的进出口,实现调压瓶内部与循环管道中溶液的循环流通。所述氧分压控制装置示意图如图5所示。
目前,已上市的医学影像诊断用造影剂种类繁多,正处于实验室研制、评价阶段的造影剂更是不计其数,本设计所述体模系统可用于评价各种超声成像用造影剂:空气型微气泡造影剂(Albunex、Levovist等)、氟化气体型微气泡造影剂(Sono Vue、0ptison等)、靶向超声造影剂、多功能多模式超声造影剂、其它处于临床中和临床前研究的造影剂等。
实例:
本发明是设计一种用于体外评价造影剂的仿肝脏超声体模,设计内容主要包括:
(1)构建仿肝脏超声体模,包括制备消声内衬和仿肝脏体模;
(2)构建仿肝动脉血管分布通道,包括固定仿血管分枝模具、连接体模内外管道构成封闭循环通路。
(3)构建溶液氧分压控制装置,包括设计专用调压瓶、连接测氧仪、连接鼓气泵。
具体实施过程中,所述构建仿肝脏超声体模步骤包括:
a.制备消声内衬,将室温硫化硅橡胶、固化剂、石英砂、蛭石粉等按一定比例混合调匀,置入真空干燥器内去气(5到10分钟),倒如模具内硫化,固化成形后取出,待用。所述模具是内部底面带有锯齿状凹槽(厚度为3mm)的无盖长方体铁质器皿(型号:30cm×25cm×1cm;25cm×10cm×1cm;30cm×10cm×1cm),所述模具内部在倒入所述混合材料前涂有脱模剂。
b.制备仿肝脏超声体模,将琼脂、甘油、二次蒸馏水、钛白粉和金属颗粒按一定的比例混合调匀,加热到90摄氏度保持一小时(不断搅拌),置于真空干燥器内去气(5分钟),于50度水浴内保温,待用。
c.取少量体模材料,于烧杯内凝固;取医用硅胶软管(8mm,6mm,4mm)剪成1cm长的小段,软管内部塞进凝固的体模材料(取至烧杯),制成体模塞,待用。
所述构建仿肝动脉血管分布通道步骤包括:
a.在有机玻璃槽(30cm×10cm×25cm)内部四壁和底面贴上前述制备好的消声内衬,在有机玻璃槽内中央布置仿血管硅胶模具,硅胶模具(如图2b)所在平面与有机玻璃槽的长边所在平面平行,连接管(如图3)所在平面与仿血管硅胶模具所在平面垂直。
b.在体模内部,仿血管硅胶模具(图2b)的主枝底部经弯头与总进液硅胶软管连接,连接管(图3)出口端也经过弯头与总出液硅胶软管连接;在体模外部,总进液与出液软管之间连接有蠕动泵和调压瓶;整个循环通路分为外部循环管道和内部循环管道。
c.倒入如前所述的50摄氏度的体模材料,倒如材料的量应该保持硅胶血管模具上端的连接口与水平面上的连接管道刚好被完全淹没,并且硅胶模具上端还有2mm露出为宜,常温下凝固。
d.待体模材料凝固后,取出硅胶血管模具,连接管留在体模内部,将前述制作的体模塞塞进取出硅胶模具后留下的孔道口,5mm在体模下,5mm在体模外。
e.第二次倒入如前所述的50摄氏度的体模材料,直至插入的硅胶软管全部被淹没,凝固后成上表面光滑的体模,内部留有仿血管分布通道。
所述构建溶液氧分压控制装置的步骤包括:
a.设计专用调压瓶,该调压瓶是一密闭的长方体有机玻璃缸,配有循环通道出、入口,进样塞,排气阀,鼓气口,监测口和三角支架。循环通道出、入口位于调压瓶底面,且带有连接头和截流夹;鼓气口位于调压瓶底面,且配有连接头和单向阀;进样塞、排气阀和检测口位于调压瓶顶面,检测口大小与测氧仪探头吻合,密闭不露气;三角支架用于支撑、稳定调压瓶。
b.所述外部循环管道的硅胶软管,通过所述调压瓶底部的循环通道出、入口与调压瓶连接;所述的鼓气口通过连接头与氮气瓶连接,且连接管上配备单向阀,防止液体倒流;所述检测口插入测氧仪探头,保证探头与调压瓶瓶壁不接触且与内部液体充分接触。
正常使用所述评价造影剂超声体模系统的方法是:
第一步:连接蠕动泵、调压瓶和体模内部仿血管分布管道形成整个循环通道;
第二步:当所述调压瓶的排气阀处于开放、鼓气口处于关闭状态、出样口截流时,将造影剂背景溶液(根据需要可以是水溶液、仿血液液体等)通过调压瓶循环通道的入口注进调压瓶内部;
第三步:开启蠕动泵并调节到适当的转速,使内部液体循环,排尽循环管道内部的气体后关闭蠕动泵;
第四步:打开测氧仪,打开鼓气泵,实时监测内部溶液的氧分压情况;
第五步:当氧分压达到所需水平时,停止鼓气泵,用注射器通过进样塞注入待评价的造影剂,关闭排气阀;
第六步:开启蠕动泵,进入正常循环状态;
第七步:通过超声探头观察在仿肝脏超声体模内部仿血管通道中的造影剂的显像情况。
人体内不同部位的血流速度和氧分压等情况是不同的,通过本发明设计的系统可以调节液体循环的速度和溶液的氧分压水平,模拟在体环境,所述的仿肝脏声学特性、仿肝动脉分布都只是示意代表,使用过程中可以根据实验需要调节体模材料的配方和循环管路的分布,实现模拟人体不同组织器官的声学特性和血管分布。
随着医学超声技术、材料科学、纳米技术的不断发展,各种造影剂的制备与评价也成为目前研究的热点,一般的体外评价平台与在体环境相差较大,不能很好的模拟造影剂在体内的显影性能,活体动物实验又相对复杂,很多条件难以控制。本发明设计的用于体外评价造影剂的仿肝脏超声体模操作方便,模拟人体肝脏的超声图像特征,为造影剂的评价提供类似与在体的背景图像;能根据需要进行溶液的流速控制,模拟体内血液循环状态;还可以实现溶液氧分压的控制、调节,模拟人体血液内氧分压水平,为准确评价各种造影剂成像特性提供了良好的体外研究平台。

Claims (5)

1.一种用于体外评价造影剂的仿肝脏超声体模装置,其特征在于该装置包括测氧仪(1)、调压瓶(2)、鼓气泵(3)、蠕动泵(4)、仿肝脏超声体模(5)、仿肝动脉分布管道(6)、容器(7);仿肝脏超声体模(5)位于一个具有消声内衬(71)的容器(7)中,仿肝动脉分布管道(6)位于仿肝脏超声体模(5)中,仿肝动脉分布管道(6)的出液口接蠕动泵(4)的进液端,蠕动泵(4)的出液端接调压瓶(2)的进液端,调压瓶(2)的出液端接仿肝动脉分布管道(6)的进液端;测氧仪(1)的探头位于调压瓶(2)中,鼓气泵(3)的出口接调压瓶(2)的鼓气口;
所述仿肝脏超声体模(5)由二次蒸馏水、琼脂、甘油、钛白粉、金属颗粒材料混合,经加热、去气、冷却、凝固制成,其配比(质量)为:琼脂2~5%,甘油2~5%,二次蒸馏水80~95%,钛白粉0.5~6%,金属粉0.5~6%。
2.根据权利要求1所述的用于体外评价造影剂的仿肝脏超声体模装置,其特征在于所述仿肝动脉分布管道(6)是用硅橡胶仿血管分支磨具和仿肝脏超声体模(5)材料制成的。
3.根据权利要求1所述的用于体外评价造影剂的仿肝脏超声体模装置,其特征在于所述的仿肝动脉分布管道(6)包括三级分支,各级分支包括1个以上的管路,主枝直径5-8mm、二级分枝直径4-6mm、三级分枝直径2-4mm;主枝与二级分枝间夹角为20-40度,二级分枝与三级分枝夹角为20-50度。
4.一种如权利要求1所述用于体外评价造影剂的仿肝脏超声体模装置体外评价方法,其特征在于该方法为:
第一步:连接蠕动泵、调压瓶和仿肝脏超声体模内部仿血管分布管道形成整个循环通道;
第二步:当所述调压瓶的排气阀处于开放、鼓气口处于关闭状态、出样口截留时,将造影剂背景溶液通过调压瓶循环通道的入口注进调压瓶内部;
第三步:开启蠕动泵并调节到适当的转速,使内部液体循环,排尽循环管道内部的气体后关闭蠕动泵;
第四步:打开测氧仪,打开鼓气口和鼓气泵,实时监测内部溶液的氧分压情况;
第五步:当氧分压达到所需水平时,停止鼓气,用注射器通过进样塞注入待评价的造影剂,关闭排气阀;
第六步:开启蠕动泵,进入正常循环状态;
第七步:通过超声探头观察在仿肝脏超声体模内部仿血管通道中的造影剂的显像情况。
5.根据权利要求5所述的体外评价造影剂的仿肝脏超声体模装置体外评价方法,其特征在于所述的造影剂背景溶液是水溶液或仿血液液体。 
CN2009100307112A 2009-04-10 2009-04-10 用于体外评价造影剂的仿肝脏超声体模装置及评价方法 Expired - Fee Related CN101532988B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100307112A CN101532988B (zh) 2009-04-10 2009-04-10 用于体外评价造影剂的仿肝脏超声体模装置及评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100307112A CN101532988B (zh) 2009-04-10 2009-04-10 用于体外评价造影剂的仿肝脏超声体模装置及评价方法

Publications (2)

Publication Number Publication Date
CN101532988A CN101532988A (zh) 2009-09-16
CN101532988B true CN101532988B (zh) 2011-02-09

Family

ID=41103718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100307112A Expired - Fee Related CN101532988B (zh) 2009-04-10 2009-04-10 用于体外评价造影剂的仿肝脏超声体模装置及评价方法

Country Status (1)

Country Link
CN (1) CN101532988B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105640533B (zh) * 2015-12-23 2019-02-01 南昌大学 一种体外血流动力学特性测试装置
WO2018091265A1 (en) * 2016-11-17 2018-05-24 INSERM (Institut National de la Santé et de la Recherche Médicale) Phantom, simulation installation and method for preparing a detection system for detecting a lesion under influence of a respiratory movement
CN107307875B (zh) * 2017-06-26 2020-12-15 南京普爱医疗设备股份有限公司 一种基于dsa减影技术的模拟实验装置及方法
CN108613732B (zh) * 2018-07-10 2024-02-20 广东省计量科学研究院(华南国家计量测试中心) 一种超声仿组织模体内材料的声速测量装置
KR102051116B1 (ko) * 2018-09-08 2020-01-08 한국표준과학연구원 간 모사 모형의 제조방법 및 이에 따라 제조된 간 모사 모형

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1236905A (zh) * 1998-03-05 1999-12-01 通用电器横河医疗系统株式会社 超声成象方法和设备
CN1369311A (zh) * 2001-02-12 2002-09-18 中国人民解放军总医院 超声造影剂及其制备方法
CN1422598A (zh) * 2001-11-22 2003-06-11 株式会社东芝 超声波诊断设备及控制超声波诊断设备的方法
US6984211B2 (en) * 2003-01-03 2006-01-10 Mayo Foundation For Medical Education And Research Detection of tumor halos in ultrasound images

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1236905A (zh) * 1998-03-05 1999-12-01 通用电器横河医疗系统株式会社 超声成象方法和设备
CN1369311A (zh) * 2001-02-12 2002-09-18 中国人民解放军总医院 超声造影剂及其制备方法
CN1422598A (zh) * 2001-11-22 2003-06-11 株式会社东芝 超声波诊断设备及控制超声波诊断设备的方法
US6984211B2 (en) * 2003-01-03 2006-01-10 Mayo Foundation For Medical Education And Research Detection of tumor halos in ultrasound images

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
唐杰等.含氟碳气体的表面活性剂类声学造影剂的体外实验.《中国医学影像技术》.2002,第18卷(第2期),99-101. *

Also Published As

Publication number Publication date
CN101532988A (zh) 2009-09-16

Similar Documents

Publication Publication Date Title
Wang et al. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery
Chen et al. Tocilizumab–conjugated polymer nanoparticles for NIR‐II photoacoustic‐imaging‐guided therapy of rheumatoid arthritis
CN101532988B (zh) 用于体外评价造影剂的仿肝脏超声体模装置及评价方法
Meltzer et al. The source of ultrasound contrast effect
WO2015012540A1 (en) Apparatus and method for combined photoacoustic and ultrasound diagnosis
CN102568287A (zh) 多模态仿生体模
JPH10503480A (ja) 心筋の灌流を超音波で定量するための組成物
US8992231B2 (en) Prostate phantom, system for planning a focal therapy of a prostate cancer comprising such prostate phantom and method for planning a focal therapy of a prostate cancer implementing such system
Ahmad et al. Dynamic hepatocellular carcinoma model within a liver phantom for multimodality imaging
CN105640533A (zh) 一种体外血流动力学特性测试装置
Meagher et al. Anatomical flow phantoms of the nonplanar carotid bifurcation, part II: experimental validation with Doppler ultrasound
Russo et al. Prostatic perfusion in the dog using contrast‐enhanced Doppler ultrasound
CN104083779A (zh) 近红外光/超声双模式淋巴结靶向造影剂,制备方法及用途
CN105590531B (zh) 一种模拟肿瘤超声造影表现用于肿瘤诊治研究的仿体模型
Hong et al. Deep NIR-II optical imaging combined with minimally invasive interventional photothermal therapy for orthotopic bladder cancer
Bortot et al. Image-guided cancer surgery: a narrative review on imaging modalities and emerging nanotechnology strategies
KR101913204B1 (ko) 유체순환 팬텀장치
CN105374266B (zh) 一种用于模拟肿瘤超声造影的仿体模型
Chhoda et al. Contrast enhanced harmonic endoscopic ultrasound: a novel approach for diagnosis and management of gastrointestinal stromal tumors
CN110639032A (zh) 一种高频超声造影剂及其制备方法
CN102940895B (zh) 一种纳米泡溶液及其制备方法和应用
CN105758620A (zh) 一种血管支架耦合系统血流动力学性能测试装置
Aoki et al. Image of tumor metastasis and inflammatory lymph node enlargement by contrast-enhanced ultrasonography
CN114014976B (zh) 一种用于us/ct引导下行肿瘤穿刺或热消融训练的荷瘤组织模型及其制备方法
CN209656869U (zh) 磁共振动脉自旋标记灌注成像的质量控制体模

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110209

Termination date: 20140410