CN101523627A - Thermoelectric material, method for producing the same, and thermoelectric converter - Google Patents
Thermoelectric material, method for producing the same, and thermoelectric converter Download PDFInfo
- Publication number
- CN101523627A CN101523627A CNA2007800383416A CN200780038341A CN101523627A CN 101523627 A CN101523627 A CN 101523627A CN A2007800383416 A CNA2007800383416 A CN A2007800383416A CN 200780038341 A CN200780038341 A CN 200780038341A CN 101523627 A CN101523627 A CN 101523627A
- Authority
- CN
- China
- Prior art keywords
- thermoelectric conversion
- sintered body
- conversion material
- oxide
- electric converting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 74
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims abstract description 85
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 7
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 31
- 238000005245 sintering Methods 0.000 claims description 26
- 239000002994 raw material Substances 0.000 claims description 20
- 239000013078 crystal Substances 0.000 claims description 19
- 239000012298 atmosphere Substances 0.000 claims description 8
- 239000011261 inert gas Substances 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 238000007493 shaping process Methods 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims 1
- 239000010936 titanium Substances 0.000 description 29
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 23
- 239000000203 mixture Substances 0.000 description 23
- 239000010955 niobium Substances 0.000 description 13
- 239000007858 starting material Substances 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 8
- 230000000704 physical effect Effects 0.000 description 8
- 229910010413 TiO 2 Inorganic materials 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 6
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 6
- 238000001354 calcination Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000010248 power generation Methods 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910000484 niobium oxide Inorganic materials 0.000 description 3
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 3
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910001936 tantalum oxide Inorganic materials 0.000 description 3
- 238000003826 uniaxial pressing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- -1 TiO 2 Chemical class 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical group [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical group [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 238000004857 zone melting Methods 0.000 description 1
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
技术领域 technical field
本发明涉及热电转换材料、其制造方法以及热电转换元件。The present invention relates to a thermoelectric conversion material, a method for producing the same, and a thermoelectric conversion element.
背景技术 Background technique
所谓的热电转换发电是指,利用通过在热电转换材料上赋予温度差时产生电压(热电动势)的现象(即,赛贝克效应),将热能转换为电能而进行的发电。在热电转换发电中,可以利用地热或焚烧炉的热等各种余热作为热源,因此作为可实用化的环境保护型的发电而被人们所期待。The so-called thermoelectric conversion power generation refers to power generation by converting thermal energy into electric energy by utilizing a phenomenon (ie, Seebeck effect) that a voltage (thermoelectromotive force) is generated when a temperature difference is applied to a thermoelectric conversion material. In thermoelectric conversion power generation, various residual heat such as geothermal heat and incinerator heat can be used as a heat source, and therefore, it is expected to be practically practical environment-friendly power generation.
热电转换材料的能量转换效率依赖于热电转换材料的性能指数(Z)。性能指数(Z)是使用该材料的赛贝克系数(α)、电导率(σ)和热导率(κ),利用下式(1)求出的值,性能指数越大的热电转换材料,则越能成为能量转换效率优异的热电转换元件。The energy conversion efficiency of the thermoelectric conversion material depends on the performance index (Z) of the thermoelectric conversion material. The performance index (Z) is the value obtained by the following formula (1) using the Seebeck coefficient (α), electrical conductivity (σ) and thermal conductivity (κ) of the material, and the thermoelectric conversion material with the larger performance index, Then, it becomes a thermoelectric conversion element excellent in energy conversion efficiency.
Z=α2×σ/K (1)Z= α2 ×σ/K (1)
特别地,式(1)中的α2×σ被称为输出因子,该输出因子越大的热电转换材料,则越能成为每单位温度的输出优异的热电转换元件。In particular, α 2 ×σ in the formula (1) is called an output factor, and a thermoelectric conversion material having a larger output factor is a thermoelectric conversion element having an excellent output per unit temperature.
在热电转换材料中有赛贝克系数为正值的p型热电转换材料和赛贝克系数为负值的n型热电转换材料。通常,在热电转换发电中,使用将p型热电转换材料和n型热电转换材料电串联连接的热电转换元件。因此,热电转换元件的能量转换效率依赖于p型热电转换材料和n型热电转换材料的性能指数。为了得到能量转换效率优异的热电转换元件,需要性能指数高的p型热电转换材料和n型热电转换材料。Among the thermoelectric conversion materials, there are p-type thermoelectric conversion materials having a positive Seebeck coefficient and n-type thermoelectric conversion materials having a negative Seebeck coefficient. Generally, in thermoelectric conversion power generation, a thermoelectric conversion element in which a p-type thermoelectric conversion material and an n-type thermoelectric conversion material are electrically connected in series is used. Therefore, the energy conversion efficiency of the thermoelectric conversion element depends on the performance index of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material. In order to obtain a thermoelectric conversion element excellent in energy conversion efficiency, a p-type thermoelectric conversion material and an n-type thermoelectric conversion material with a high performance index are required.
作为n型热电转换材料,已知将氧化钛和氧化钽(或者氧化钛和氧化铌)混合、成形,并且在空气中烧结而得到的热电转换材料(日本特开2005-276959号公报)。As an n-type thermoelectric conversion material, a thermoelectric conversion material in which titanium oxide and tantalum oxide (or titanium oxide and niobium oxide) are mixed, molded, and sintered in air is known (JP-A-2005-276959).
但是,公报记载的n型热电转换材料的输出因子不足。However, the output factor of the n-type thermoelectric conversion material described in the gazette is insufficient.
发明内容 Contents of the invention
本发明的目的在于提供性能指数和输出因子高的n型热电转换材料、其制造方法以及热电转换元件。An object of the present invention is to provide an n-type thermoelectric conversion material having a high performance index and high output factor, a method for producing the same, and a thermoelectric conversion element.
本发明人进行了各种研究,结果完成了本发明。The present inventors have conducted various studies, and as a result, the present invention has been accomplished.
即,本发明提供以下的<1>~<8>。That is, the present invention provides the following <1> to <8>.
<1>热电转换材料,该材料含有:含Ti、M和O的氧化物,其中,氧化物由式(1)表示,<1> A thermoelectric conversion material comprising: an oxide containing Ti, M and O, wherein the oxide is represented by formula (1),
Ti1-xMxOy (1)Ti 1-x M x O y (1)
M为选自V、Nb和Ta中的至少一种;M is at least one selected from V, Nb and Ta;
x为0.05以上0.5以下;x is not less than 0.05 and not more than 0.5;
y为1.90以上2.02以下。y is not less than 1.90 and not more than 2.02.
<2>上述<1>记载的热电转换材料,其中,氧化物具有金红石型晶体结构。<2> The thermoelectric conversion material according to the above <1>, wherein the oxide has a rutile crystal structure.
<3>上述<2>记载的热电转换材料,其中,氧化物a轴的晶格常数为0.4590nm以上0.4730nm以下,氧化物c轴的晶格常数为0.2950nm以上0.3000以下。<3> The thermoelectric conversion material according to the above <2>, wherein the a-axis lattice constant of the oxide is 0.4590 nm to 0.4730 nm, and the oxide c-axis lattice constant is 0.2950 nm to 0.3000 nm.
<4>上述<1>~<3>中任一项记载的热电转换材料,其中,M为Nb。<4> The thermoelectric conversion material according to any one of <1> to <3> above, wherein M is Nb.
<5>上述<1>~<4>中任一项记载的热电转换材料,其中,热电转换材料为烧结体,而且烧结体的相对密度为60%以上。<5> The thermoelectric conversion material according to any one of <1> to <4> above, wherein the thermoelectric conversion material is a sintered body, and the relative density of the sintered body is 60% or more.
<6>上述<5>记载的热电转换材料,其中,热电转换材料在其表面的至少一部分涂覆有不透氧膜。<6> The thermoelectric conversion material according to the above <5>, wherein at least a part of the surface of the thermoelectric conversion material is coated with an oxygen-impermeable film.
<7>热电转换元件,其具有上述<1>~<6>中任一项记载的热电转换材料。<7> A thermoelectric conversion element comprising the thermoelectric conversion material according to any one of <1> to <6> above.
<8>热电转换材料的制造方法,其含有工序(a)和(b),<8> A method for producing a thermoelectric conversion material, comprising steps (a) and (b),
(a)制备烧结用原料,该原料含有Ti、M(M选自V、Nb和Ta中的至少一种)和O,而且相对于Ti和M的总量(摩尔),M的量(摩尔)为0.05以上0.5以下;相对于Ti和M的总量(摩尔),O的量(摩尔)为1.90以上2.02以下。(a) prepare the raw material for sintering, the raw material contains Ti, M (M is selected from at least one of V, Nb and Ta) and O, and relative to the total amount (mole) of Ti and M, the amount of M (mole ) is not less than 0.05 and not more than 0.5; the amount (mol) of O is not less than 1.90 and not more than 2.02 relative to the total amount (mol) of Ti and M.
(b)成形烧结用原料,并且在900℃以上1700℃以下的惰性气体氛围下进行烧结。(b) Shaping the raw material for sintering, and performing sintering in an inert gas atmosphere at 900°C or higher and 1700°C or lower.
附图说明 Description of drawings
图1表示烧结体1-7的X射线衍射图。Fig. 1 shows an X-ray diffraction pattern of sintered bodies 1-7.
图2表示烧结体1-13的热电转换材料的晶格常数(a轴、c轴)与摩尔比x的关系。FIG. 2 shows the relationship between the lattice constant (a-axis, c-axis) and the molar ratio x of the thermoelectric conversion material of the sintered body 1-13.
图3表示烧结体1、3、10中的赛贝克系数的温度相关性。FIG. 3 shows the temperature dependence of the Seebeck coefficient in
图4表示烧结体1、3、10中的电导率的温度相关性。FIG. 4 shows the temperature dependence of the electrical conductivity in the
图5表示烧结体1、3、10中的热导率的温度相关性。FIG. 5 shows the temperature dependence of the thermal conductivity in the
图6表示烧结体1、3、10中的输出因子的温度相关性。FIG. 6 shows the temperature dependence of the output factor in the
图7表示烧结体1、3、10中的无因次性能指数的温度相关性。FIG. 7 shows the temperature dependence of the dimensionless figure of merit in
具体实施方式 Detailed ways
热电转换材料Thermoelectric conversion material
本发明的热电转换材料含有含钛(Ti)、M和氧(O)的氧化物。M为钒(V)、铌(Nb)、钽(Ta)。它们可以单独或组合使用。The thermoelectric conversion material of the present invention contains an oxide containing titanium (Ti), M, and oxygen (O). M is vanadium (V), niobium (Nb), or tantalum (Ta). They can be used alone or in combination.
氧化物由上述式(1)表示。式(1)中,x为0.05以上0.5以下。从增大输出因子的观点考虑,x优选为0.05以上0.20以下。x如果不足0.05,则电导率有变小的趋势,不能得到足够的输出因子值。另外,x如果超过0.5,则赛贝克系数有变小的趋势。The oxide is represented by the above formula (1). In formula (1), x is not less than 0.05 and not more than 0.5. From the viewpoint of increasing the output factor, x is preferably not less than 0.05 and not more than 0.20. If x is less than 0.05, the electrical conductivity tends to be small, and a sufficient output factor value cannot be obtained. In addition, when x exceeds 0.5, the Seebeck coefficient tends to be small.
y为1.90以上2.02以下。从增大输出因子的观点考虑,y优选为1.93以上2.01以下。y如果不足1.90,则生成杂质晶相TinO2n-1,赛贝克系数有变小的趋势,而且不能得到足够的输出因子值。y如果超过2.02,则生成杂质晶相(例如,M为Nb时,生成TiNb2O5、Nb2O5等),电导率有变小的趋势,不能得到足够的输出因子值。y is not less than 1.90 and not more than 2.02. From the viewpoint of increasing the output factor, y is preferably not less than 1.93 and not more than 2.01. If y is less than 1.90, an impurity crystal phase T n O 2n-1 is formed, the Seebeck coefficient tends to be small, and a sufficient output factor value cannot be obtained. If y exceeds 2.02, impurity crystal phases are formed (for example, when M is Nb, TiNb 2 O 5 , Nb 2 O 5 , etc. are formed), the electrical conductivity tends to decrease, and a sufficient output factor value cannot be obtained.
从进一步提高输出因子的观点考虑,更优选:当y为1.99以上2.01以下时,x为0.10以上0.15以下;当y为1.96以上且不足1.99时,x为0.15以上0.20以下。From the viewpoint of further improving the output factor, x is more preferably 0.10 to 0.15 when y is 1.99 to 2.01, and x is 0.15 to 0.20 when y is 1.96 to less than 1.99.
氧化物的晶体结构为金红石型、锐钛矿型、板钛矿型,优选为金红石型。如果氧化物为金红石型晶体结构,则即使在高温下使用时,也能提供能量转换效率良好、难以产生由长期使用导致的劣化的热电转换元件。The crystal structure of the oxide is rutile type, anatase type, brookite type, preferably rutile type. If the oxide has a rutile crystal structure, even when used at a high temperature, it is possible to provide a thermoelectric conversion element having good energy conversion efficiency and being less likely to deteriorate due to long-term use.
当氧化物具有金红石型晶体结构时,a轴的晶格常数为0.4590nm以上0.4730nm以下,优选为0.4600nm以上0.4660nm以下;c轴的晶格常数为0.2950nm以上0.3000nm以下,优选为0.2960nm以上0.2990nm以下。当氧化物的a轴和c轴的晶格常数在上述范围内时,热电转换材料的输出因子变得更大。晶格常数可以由以下方法计算:在利用X射线衍射得到的X射线衍射图中,识别由金红石型晶体结构产生的峰,由该峰位置(2θ)的值利用最小二乘法而计算出晶格常数(例如,参照“结晶解析“universal program system(II)”日本结晶学会编集:樱井敏雄(1967))。When the oxide has a rutile crystal structure, the lattice constant of the a-axis is not less than 0.4590 nm and not more than 0.4730 nm, preferably not less than 0.4600 nm and not more than 0.4660 nm; the lattice constant of the c-axis is not less than 0.2950 nm and not more than 0.3000 nm, preferably 0.2960 Above nm and below 0.2990nm. When the lattice constants of the a-axis and c-axis of the oxide are within the above range, the output factor of the thermoelectric conversion material becomes larger. Lattice constants can be calculated by identifying peaks arising from the rutile crystal structure in an X-ray diffraction pattern obtained by X-ray diffraction, and calculating the lattice constant from the value of the peak position (2θ) using the least squares method. Constant (for example, refer to "Crystal Analysis "universal program system (II)" edited by the Crystallographic Society of Japan: Toshio Sakurai (1967)).
从增大输出因子的观点考虑,M优选含有Nb,更优选仅含有Nb。From the viewpoint of increasing the output factor, M preferably contains Nb, and more preferably contains only Nb.
热电转换材料的形态例如为粉体、烧结体、薄膜,优选为烧结体。当热电转换材料为烧结体时,只要其形状为作为热电转换元件的合适形状即可,例如为板、圆柱、圆盘、棱柱。The form of the thermoelectric conversion material is, for example, a powder, a sintered body, or a thin film, preferably a sintered body. When the thermoelectric conversion material is a sintered body, it may be in a suitable shape as a thermoelectric conversion element, for example, a plate, a column, a disc, or a prism.
从增大电导率的观点考虑,热电转换材料优选取向性高的热电转换材料。取向性高的形态例如为取向烧结体、单晶体等。From the viewpoint of increasing electrical conductivity, the thermoelectric conversion material is preferably a thermoelectric conversion material with high orientation. A form with high orientation is, for example, an oriented sintered body, a single crystal, or the like.
上述的热电转换材料为n型,是输出因子高的热电转换材料,通过与p型热电转换材料组合,可以提供性能指数高的热电转换元件。The above-mentioned thermoelectric conversion material is n-type, which is a thermoelectric conversion material with a high output factor. By combining it with a p-type thermoelectric conversion material, a thermoelectric conversion element with a high performance index can be provided.
热电转换材料的制造方法Method for producing thermoelectric conversion material
热电转换材料例如可以通过对原料(该原料通过烧结而形成热电转换材料)进行成形,并进行烧结的方法来制造。例如,可以通过含有上述工序(a)和(b)的方法来制造。The thermoelectric conversion material can be produced by, for example, molding and sintering a raw material (the raw material is sintered to form the thermoelectric conversion material). For example, it can be produced by a method including the above steps (a) and (b).
工序(a)中,可以称量含Ti的物质和含M的物质并混合,以形成规定的组成,从而制得用于下一工序(b)的原料。在制备上述式(1)表示的热电转换材料(x为0.05以上0.5以下;y为1.90以上、优选1.93以上,且为2.02以下、优选2.01以下)时,可以称量并混合含Ti的物质和含M的物质,使满足Ti∶M=0.95~0.5∶0.05~0.5。另外,在制备上述式(1)表示的热电转换材料(x为0.05以上0.2以下;y为1.90以上、优选1.93以上,且为2.02以下、优选2.01以下)时,可以称量并混合含Ti的物质和含M的物质,使满足Ti∶M=0.95~0.8∶0.05~0.2。例如,在制备含有式Ti0.85Nb0.15O2.00表示的氧化物的热电转换材料时,可以称量并混合TiO2、Ti、Nb2O5,使Ti∶Nb∶O的摩尔比为0.85∶0.15∶2.00。In the step (a), the Ti-containing substance and the M-containing substance can be weighed and mixed so as to have a predetermined composition, thereby preparing a raw material for the next step (b). When preparing the thermoelectric conversion material represented by the above formula (1) (x is not less than 0.05 and not more than 0.5; y is not less than 1.90, preferably not less than 1.93, and not more than 2.02, preferably not more than 2.01), it is possible to weigh and mix the Ti-containing material and The substance containing M satisfies Ti:M=0.95-0.5:0.05-0.5. In addition, when preparing the thermoelectric conversion material represented by the above formula (1) (x is not less than 0.05 and not more than 0.2; y is not less than 1.90, preferably not less than 1.93, and not more than 2.02, preferably not more than 2.01), it is possible to weigh and mix Ti-containing The substance and the substance containing M satisfy Ti:M=0.95-0.8:0.05-0.2. For example, when preparing a thermoelectric conversion material containing an oxide represented by the formula Ti 0.85 Nb 0.15 O 2.00 , TiO 2 , Ti, and Nb 2 O 5 can be weighed and mixed so that the molar ratio of Ti:Nb:O is 0.85:0.15 : 2.00.
含Ti的物质例如为:TiO2、Ti2O3、TiO之类的钛氧化物以及Ti。含钛的物质通常为至少两种这些物质的组合,优选TiO2和Ti的组合。Substances containing Ti include, for example, titanium oxides such as TiO 2 , Ti 2 O 3 , and TiO, and Ti. The titanium-containing species is usually a combination of at least two of these species, preferably a combination of TiO2 and Ti.
含M的物质例如为:Nb2O5之类的铌氧化物;Ta2O5之类的钽氧化物;V2O5之类的钒氧化物;以及Nb、Ta、V。含M的物质通常为这些物质的至少一种,优选为氧化物。M-containing substances are, for example: niobium oxides such as Nb 2 O 5 ; tantalum oxides such as Ta 2 O 5 ; vanadium oxides such as V 2 O 5 ; and Nb, Ta, V. The M-containing substance is usually at least one of these substances, preferably an oxide.
可以采用干式、湿式中的任一种方式进行混合。混合可以使用例如球磨机、V型混合机、振动磨机、磨碎机、精磨机(dyno mill)、电动磨机(dynamic mill)等进行。所得的混合物可以成形。Mixing can be carried out by either a dry method or a wet method. Mixing can be performed using, for example, a ball mill, a V-type mixer, a vibration mill, an attritor, a dyno mill, a dynamic mill, or the like. The resulting mixture can be shaped.
另外,混合物可以进行煅烧。例如,当混合物中,相对于Ti和M的重量(摩尔),O的量(摩尔)超过2.02时,将混合物在还原性气体氛围下煅烧并调节摩尔比,可以作为原料使用。另一方面,当O的量(摩尔)不足1.90时,将混合物在氧化性气体氛围下煅烧并调节摩尔比,可以作为原料使用。另外,O的量(摩尔)为1.90以上2.02以下的混合物则在惰性气体氛围下进行煅烧,可以抑制在后述烧结中烧结体的变形。在惰性气体氛围下进行煅烧时,煅烧条件与混合物的组成相关,煅烧时间例如为0.5~24小时。煅烧后的混合物可以粉碎。粉碎可以利用例如球磨机、振动磨机、磨碎机、精磨机、电动磨机等进行。Alternatively, the mixture can be calcined. For example, when the amount (mol) of O in the mixture exceeds 2.02 relative to the weight (mol) of Ti and M, the mixture can be used as a raw material by calcining the mixture in a reducing gas atmosphere and adjusting the molar ratio. On the other hand, when the amount (mol) of O is less than 1.90, the mixture can be used as a raw material by calcining the mixture in an oxidizing gas atmosphere and adjusting the molar ratio. In addition, the mixture in which the amount (mol) of O is 1.90 to 2.02 is calcined in an inert gas atmosphere, and deformation of the sintered body during sintering described later can be suppressed. When the calcination is carried out under an inert gas atmosphere, the calcination conditions are related to the composition of the mixture, and the calcination time is, for example, 0.5 to 24 hours. The calcined mixture can be pulverized. Pulverization can be performed using, for example, a ball mill, a vibration mill, an attritor, a refiner, an electric mill, or the like.
工序(b)中,如上所述,将原料进行成形并烧结。In the step (b), the raw material is molded and sintered as described above.
成形例如可以通过单轴压制、冷静水压压制(CIP,冷間静水圧プレス)、机械压制、热压、热等静压压制(HIP,熱間等プレス)来进行。可以对应于热电转换元件的形状而适当选择成形。形状例如为板、圆柱、圆盘、棱柱。成形中可以向原料中添加粘合剂、分散剂、脱模剂等。Forming can be performed by, for example, uniaxial pressing, cold hydraulic press (CIP, cold inter-static press), mechanical press, hot press, hot isostatic press (HIP, hot press). The shape can be appropriately selected according to the shape of the thermoelectric conversion element. Shapes are eg plates, cylinders, discs, prisms. Binders, dispersants, release agents, etc. can be added to the raw materials during molding.
在惰性气氛下进行烧结。惰性气体例如含氮的气体、含稀有气体的气体,优选含稀有气体的气体,更优选只含稀有气体。从操作性的观点考虑,稀有气体优选氩气(Ar)。烧结温度为900℃以上1700℃以下,优选为1200℃以上1500℃以下,更优选为1250℃以上1450℃以下。如果烧结温度不足900℃,则不能充分进行固相反应和烧结,根据组成使电导率降低。如果烧结温度超过1700℃,则根据组成,由于组成元素的溶出或挥发而不能得到目标氧化物,热电转换材料的性能指数降低。烧结时间通常为0.5~24小时左右。Sintering is performed under an inert atmosphere. The inert gas is, for example, a nitrogen-containing gas, a noble gas-containing gas, preferably a rare gas-containing gas, more preferably only a rare gas. From the standpoint of operability, the rare gas is preferably argon (Ar). The sintering temperature is not less than 900°C and not more than 1700°C, preferably not less than 1200°C and not more than 1500°C, more preferably not less than 1250°C and not more than 1450°C. If the sintering temperature is lower than 900° C., the solid phase reaction and sintering will not proceed sufficiently, and the electrical conductivity will decrease depending on the composition. If the sintering temperature exceeds 1700° C., depending on the composition, target oxides cannot be obtained due to elution or volatilization of constituent elements, and the performance index of the thermoelectric conversion material decreases. The sintering time is usually about 0.5 to 24 hours.
工序(b)中,可以同时进行原料的成形和烧结。这时,作为装置可以使用热压装置、热等静压压制(HIP)装置。In the step (b), molding and sintering of the raw material may be performed simultaneously. At this time, as the apparatus, a hot press apparatus or a hot isostatic pressing (HIP) apparatus can be used.
所得烧结体的烧结密度通常为60%以上,从提高烧结体的强度的观点考虑,优选为80%以上,更优选为85%以上。含有这种高密度烧结体的热电转换材料的电导率大。烧结体的密度可以通过例如原料粒子大小、成形压力、烧结温度、烧结时间来控制。The sintered density of the obtained sintered body is usually 60% or more, preferably 80% or more, more preferably 85% or more from the viewpoint of improving the strength of the sintered body. A thermoelectric conversion material including such a high-density sintered body has a high electrical conductivity. The density of the sintered body can be controlled by, for example, the size of raw material particles, molding pressure, sintering temperature, and sintering time.
根据需要可以粉碎烧结体,在上述条件下对所得的粉碎品再进行烧结。另外,烧结体的表面可以涂覆不透氧膜。不透氧膜只要是氧气无法透过、或者难以透过的膜即可,例如包括:氧化铝、氧化钛、氧化锆、二氧化硅、碳化硅。涂覆可以采用气溶胶沉积、热喷涂、化学气相沉积(CVD)等进行。含这种涂覆的烧结体的热电转换材料,即使在氧化气氛中使用的情况下,仍然能抑制表面氧化,性能不易降低。If necessary, the sintered body may be pulverized, and the obtained pulverized product may be further sintered under the above conditions. In addition, the surface of the sintered body may be coated with an oxygen-impermeable film. The oxygen-impermeable film may be a film that cannot or hardly permeates oxygen, and includes, for example, alumina, titania, zirconia, silica, and silicon carbide. Coating can be performed using aerosol deposition, thermal spraying, chemical vapor deposition (CVD), and the like. A thermoelectric conversion material including such a coated sintered body can suppress surface oxidation and is less prone to performance degradation even when used in an oxidizing atmosphere.
热电转换材料,除了上述方法之外,还可以采用以下方法制造:含共沉淀工序的方法、含水热工序的方法、含干透(drying-up)工序的方法、含溅射工序的方法、含利用CVD的工序的方法、含溶胶-凝胶工序的方法、含FZ(悬浮区熔法)工序的方法、含利用TSCG(模板型单晶生长法,template-type single crystal growth method)工序的方法。The thermoelectric conversion material can also be produced by the following methods besides the above methods: a method including a co-precipitation process, a method including a hydrothermal process, a method including a drying-up (drying-up) process, a method including a sputtering process, a method including A method using a CVD process, a method including a sol-gel process, a method including a FZ (floating zone melting method) process, a method including a TSCG (template-type single crystal growth method) process .
热电转换元件Thermoelectric conversion element
本发明的热电转换元件具有前述的n型热电转换材料,通常具有n型热电转换材料、p型热电转换材料、n电极和p电极。p型热电转换材料例如为NaCo2O4、Ca3Co4O9(日本特开平9-321346号公报、日本特开2001-64021号公报)。p型热电转换材料可以使用市售品。热电转换元件可以用公知的方法制造(例如日本特开平5-315657号公报)。The thermoelectric conversion element of the present invention has the aforementioned n-type thermoelectric conversion material, and generally has an n-type thermoelectric conversion material, a p-type thermoelectric conversion material, an n electrode, and a p electrode. The p-type thermoelectric conversion material is, for example, NaCo 2 O 4 and Ca 3 Co 4 O 9 (JP-A-9-321346 and JP-A-2001-64021). As the p-type thermoelectric conversion material, a commercial item can be used. A thermoelectric conversion element can be produced by a known method (for example, Japanese Patent Application Laid-Open No. 5-315657).
实施例Example
通过实施例更详细地说明本发明。热电转换材料的各物性采用以下的方法测定。The present invention is illustrated in more detail by way of examples. The various physical properties of the thermoelectric conversion material were measured by the following methods.
1.电导率(σ)1. Conductivity (σ)
将烧结体试料加工成棱柱状,用银浆料固定铂线,通过直流四端子法进行测定。在氮气流中、室温~500℃的范围内,一边改变温度一边进行测定。A sintered body sample was processed into a prism shape, a platinum wire was fixed with a silver paste, and measurement was performed by a direct current four-terminal method. In a nitrogen stream, the measurement was performed while changing the temperature within the range from room temperature to 500°C.
2.赛贝克系数(α)2. Seebeck coefficient (α)
在加工成与电导率测定时同样形状的烧结体试料的两端上,用银浆料固定R热电对和铂线,测定烧结体试料的温度和热电动势。在氮气流中、室温~500℃的范围内,一边改变温度一边进行测定。用冷却管对烧结体试料的单面进行冷却,作成低温部,用R热电对测定烧结体试料两端的温度,同时测定烧结体试料的两端面之间产生的热电动势(ΔV)。烧结体试料两端的温度差(ΔT)控制在0.5~10℃的范围内,由ΔT和ΔV的斜率计算赛贝克系数(α)。On both ends of the sintered body sample processed into the same shape as that used for the electrical conductivity measurement, R thermocouples and platinum wires were fixed with silver paste, and the temperature and thermoelectromotive force of the sintered body sample were measured. In a nitrogen stream, the measurement was performed while changing the temperature within the range from room temperature to 500°C. Cool one side of the sintered body sample with a cooling tube to make a low temperature part, measure the temperature at both ends of the sintered body sample with an R thermoelectric pair, and measure the thermoelectromotive force (ΔV) generated between the two ends of the sintered body sample. The temperature difference (ΔT) at both ends of the sintered body sample is controlled within the range of 0.5-10°C, and the Seebeck coefficient (α) is calculated from the slope of ΔT and ΔV.
3.热导率(κ)3. Thermal conductivity (κ)
采用激光闪光法在真空下、室温~500℃的范围内一边改变温度一边测定烧结体试料的比热和热扩散率。采用真空理工株式会社制激光闪光法热导率测定装置TC-7000型进行测定。The specific heat and thermal diffusivity of the sintered body samples were measured by the laser flash method under vacuum in the range of room temperature to 500°C while changing the temperature. The measurement was carried out using a laser flash method thermal conductivity measuring device TC-7000 manufactured by Vacuum Riko Co., Ltd.
4.结构和组成分析4. Structure and Composition Analysis
采用株式会社Rigaku制X射线衍射测定装置RINT2500TTR型,利用以CuKα为射线源的粉末X射线衍射法分析粉末试料、烧结体试料的晶体结构。试料的金红石型晶体结构的晶格常数(a轴、c轴)由以下方式计算:使用通过X射线衍射得到的X射线衍射图形,识别由金红石型晶体结构产生的峰,由该峰位置(2θ)的值利用最小二乘法进行计算。对于试料的金属元素的组成,使用Philips公司制荧光X射线装置PW1480进行测定。另外,对于试料中所含的O量由以下方式计算:将试料在大气中、1000℃以上1200℃以下的温度(起始原料中使用Ta时为1000℃;起始原料中使用Nb时为1200℃)下,实施热处理48小时,这时的重量增加量全部作为O的增加量。The crystal structure of the powder sample and the sintered body sample was analyzed by a powder X-ray diffraction method using CuKα as a radiation source using an X-ray diffraction measuring device RINT2500TTR manufactured by Rigaku Co., Ltd. The lattice constant (a-axis, c-axis) of the rutile crystal structure of the sample is calculated by using the X-ray diffraction pattern obtained by X-ray diffraction to identify the peak generated by the rutile crystal structure, from the peak position ( 2θ) were calculated using the least squares method. The composition of the metal element of the sample was measured using a fluorescent X-ray apparatus PW1480 manufactured by Philips. In addition, the amount of O contained in the sample is calculated as follows: the sample is placed in the air at a temperature of 1000°C to 1200°C (1000°C when Ta is used as the starting material; 1000°C when Nb is used as the starting material 1200°C), heat treatment was performed for 48 hours, and the weight increase at this time was all taken as the increase of O.
5.烧结体的密度5. Density of sintered body
用阿基米德法测定烧结体试料的真密度。基于真密度和由粉末X射线衍射法得到的晶格常数的数据来计算相对密度。The true density of the sintered samples was determined by the Archimedes method. Relative densities were calculated based on data of true densities and lattice constants obtained by powder X-ray diffractometry.
实施例1Example 1
[烧结用原料的制备][Preparation of raw materials for sintering]
作为起始原料,使用氧化钛(TiO2,石原テクノ株式会社制,PT-401M(商标名))、金属钛(Ti,高纯度化学)和氧化铌(Nb2O5,高纯度化学)。如表1所示,称量这些原料使它们满足TiO2∶Ti∶Nb2O5=0.9375∶0.0025∶0.0250,利用干式球磨机(介质:塑料制球)混合6小时,得到Ti∶Nb∶O=0.95∶0.05∶2.00的混合物。As starting materials, titanium oxide (TiO 2 , manufactured by Ishihara Techno Co., Ltd., PT-401M (trade name)), metallic titanium (Ti, High Purity Chemicals), and niobium oxide (Nb 2 O 5 , High Purity Chemicals) were used. As shown in Table 1, weigh these raw materials so that they meet TiO 2 : Ti: Nb 2 O 5 =0.9375: 0.0025: 0.0250, and use a dry ball mill (medium: plastic ball) to mix for 6 hours to obtain Ti: Nb: O = A mixture of 0.95:0.05:2.00.
[成形、烧结][forming, sintering]
通过单轴压制(成形压力:200kg/cm2)对混合物进行成形,将所得的圆盘状成型体在氩气气氛(Ar纯度:99.9995%)、1000℃下煅烧3小时。利用球磨机(介质:氧化锆制球)对所得的煅烧品进行干式粉碎。通过单轴压制(成形压力:200kg/cm2)、进一步静水压压制(成形压力:1500kg/cm2)对所得的粉碎品进行成形,将得到的圆盘状成型体放入烧结炉内,在氩气气氛(Ar纯度:99.9995%)、1300℃下烧结12小时,得到烧结体1。The mixture was molded by uniaxial pressing (molding pressure: 200 kg/cm 2 ), and the resulting disk-shaped molded body was calcined at 1000° C. for 3 hours in an argon atmosphere (Ar purity: 99.9995%). The obtained calcined product was dry-pulverized with a ball mill (medium: balls made of zirconia). The obtained pulverized product was formed by uniaxial pressing (forming pressure: 200kg/cm 2 ) and further hydrostatic pressing (forming pressure: 1500kg/cm 2 ), and the obtained disc-shaped compact was put into a sintering furnace, Sintering was performed at 1300° C. for 12 hours in an argon atmosphere (Ar purity: 99.9995%) to obtain a
烧结体1外观呈黑色,相对密度为82.3%。烧结体1具有金红石型晶体结构,其晶格常数a轴为0.4680nm、c轴为0.2968nm。烧结体1的组成、晶格常数、相对密度如表2所示。The appearance of the
对于烧结体1(热电转换材料),测定500℃下的赛贝克系数(α)、电导率(σ)、热导率(κ)、输出因子(α2×σ)、无因次性能指数(ZT),其结果如表3所示。无因次性能指数是性能指数(Z,单位K-1)乘以绝对温度(T,单位K)得到的值。For sintered body 1 (thermoelectric conversion material), the Seebeck coefficient (α), electrical conductivity (σ), thermal conductivity (κ), output factor (α 2 ×σ), dimensionless performance index ( ZT), and the results are shown in Table 3. The dimensionless performance index is the value obtained by multiplying the performance index (Z, unit K -1 ) by the absolute temperature (T, unit K).
实施例2~13Embodiment 2-13
(实施例2~13分别对应于烧结体2~13的制作例)(Examples 2 to 13 correspond to production examples of sintered bodies 2 to 13, respectively)
烧结体2~13中起始原料及其用量如表1所示。除了改变起始原料的使用量之外,与实施例1[烧结用原料的制备]和[成形、烧结]进行同样的操作,得到烧结体2~13。烧结体2~13均为金红石型晶体结构。烧结体2~13的各物性如表2、表3所示。Table 1 shows the starting materials and their amounts in sintered bodies 2-13. Sintered bodies 2 to 13 were obtained in the same manner as in Example 1 [Preparation of Raw Materials for Sintering] and [Molding and Sintering], except that the amount of the starting material used was changed. Sintered bodies 2 to 13 all have a rutile crystal structure. The physical properties of the sintered bodies 2 to 13 are shown in Table 2 and Table 3.
表1 起始原料的使用量Table 1 The amount of starting material used
表2 烧结体的各物性Table 2 Physical properties of sintered body
表3 烧结体的热电特性Table 3 Thermoelectric properties of sintered body
实施例14Example 14
作为起始原料,使用氧化钛(TiO2,石原テクノ株式会社制,PT-401M(商标名))、金属钛(Ti,高纯度化学)和氧化钽(Ta2O5,高纯度化学)。如表4所示,称量这些原料使它们满足TiO2∶Ti∶Ta2O5=0.9375∶0.0025∶0.025,利用干式球磨机(介质:塑料制球)混合6小时,得到Ti∶Ta∶O=0.95∶0.05∶2.00的混合物。As starting materials, titanium oxide (TiO 2 , manufactured by Ishihara Techno Co., Ltd., PT-401M (trade name)), metal titanium (Ti, High Purity Chemicals), and tantalum oxide (Ta 2 O 5 , High Purity Chemicals) were used. As shown in Table 4, these raw materials are weighed so that they satisfy TiO 2 : Ti: Ta 2 O 5 =0.9375:0.0025:0.025, and are mixed for 6 hours using a dry ball mill (medium: plastic balls) to obtain Ti:Ta:O= A mixture of 0.95:0.05:2.00.
对于混合物,进行与实施例1的[成形、烧结]同样的操作,得到烧结体14。烧结体14具有金红石型晶体结构。烧结体14的各物性如表5、表6所示。With respect to the mixture, the same operations as [shaping and sintering] in Example 1 were performed to obtain a sintered body 14 . The sintered body 14 has a rutile crystal structure. The physical properties of the sintered body 14 are shown in Table 5 and Table 6.
实施例15、16Example 15, 16
(实施例15、16分别对应于烧结体15、16的制作例)(Examples 15 and 16 correspond to production examples of sintered bodies 15 and 16, respectively)
烧结体15、16中起始原料及其用量如表4所示。除了改变起始原料的使用量之外,与实施例14进行同样的操作,得到烧结体15、16。烧结体15、16均为金红石型晶体结构。烧结体15、16的各物性如表5、表6所示。Table 4 shows the starting materials and their amounts in the sintered bodies 15 and 16 . Sintered bodies 15 and 16 were obtained in the same manner as in Example 14 except that the amount of the starting material used was changed. Both the sintered bodies 15 and 16 have a rutile crystal structure. The physical properties of the sintered bodies 15 and 16 are shown in Table 5 and Table 6.
表4 起始原料的使用量Table 4 The amount of starting material used
表5 烧结体的各物性Table 5 Physical properties of sintered body
表6 烧结体的热电特性Table 6 Thermoelectric properties of sintered body
3030
比较例1~3Comparative example 1-3
(比较例1~3分别对应于烧结体17~19的制作例)(Comparative examples 1 to 3 correspond to production examples of sintered bodies 17 to 19, respectively)
烧结体17~19中起始原料及其用量如表7所示。除了改变起始原料的使用量之外,与实施例1的[烧结用原料的制备]和[成形、烧结]进行同样的操作,得到烧结体17~19。烧结体17~19均具有TiO2的金红石型晶体结构和TiNb2O7的不同晶体结构的两相,烧结体的真密度较低。烧结体17~19的各物性如表8、表9所示。Table 7 shows the starting materials and their amounts in sintered bodies 17-19. Sintered bodies 17 to 19 were obtained in the same manner as in [Preparation of raw material for sintering] and [Molding and sintering] in Example 1 except that the amount of the starting material used was changed. The sintered bodies 17-19 all have two phases of the rutile crystal structure of TiO 2 and the different crystal structure of TiNb 2 O 7 , and the true density of the sintered bodies is low. The physical properties of the sintered bodies 17 to 19 are shown in Table 8 and Table 9.
表7 起始原料的使用量Table 7 The amount of starting material used
表8 烧结体的各物性Table 8 Physical properties of sintered body
表9 烧结体的热电特性Table 9 Thermoelectric properties of sintered body
工业适用性Industrial Applicability
本发明的n型热电转换材料,性能指数和输出因子高,能量转换效率高,适用于每单位温度的输出大的热电转换元件。The n-type thermoelectric conversion material of the present invention has high performance index and output factor, high energy conversion efficiency, and is suitable for thermoelectric conversion elements with large output per unit temperature.
Claims (8)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP227483/2006 | 2006-08-24 | ||
JP2006227483 | 2006-08-24 | ||
JP104644/2007 | 2007-04-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101523627A true CN101523627A (en) | 2009-09-02 |
Family
ID=41082516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007800383416A Pending CN101523627A (en) | 2006-08-24 | 2007-08-13 | Thermoelectric material, method for producing the same, and thermoelectric converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101523627A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102557448A (en) * | 2010-12-24 | 2012-07-11 | 株式会社日立制作所 | Thermoelectric conversion material |
CN110078122A (en) * | 2019-05-27 | 2019-08-02 | 九江有色金属冶炼有限公司 | A kind of preparation method of p-type high purity niobium oxide |
CN111185602A (en) * | 2020-01-14 | 2020-05-22 | 湖北若林电器科技有限公司 | Preparation process of thermoelectric conversion material with atomization effect for 3D flame electric fireplace |
CN111819704A (en) * | 2018-07-23 | 2020-10-23 | 松下知识产权经营株式会社 | Thermoelectric conversion material and method for obtaining electricity using thermoelectric conversion material |
-
2007
- 2007-08-13 CN CNA2007800383416A patent/CN101523627A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102557448A (en) * | 2010-12-24 | 2012-07-11 | 株式会社日立制作所 | Thermoelectric conversion material |
CN111819704A (en) * | 2018-07-23 | 2020-10-23 | 松下知识产权经营株式会社 | Thermoelectric conversion material and method for obtaining electricity using thermoelectric conversion material |
CN110078122A (en) * | 2019-05-27 | 2019-08-02 | 九江有色金属冶炼有限公司 | A kind of preparation method of p-type high purity niobium oxide |
CN111185602A (en) * | 2020-01-14 | 2020-05-22 | 湖北若林电器科技有限公司 | Preparation process of thermoelectric conversion material with atomization effect for 3D flame electric fireplace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101669222B (en) | Thermoelectric conversion material, method for production thereof, and thermoelectric conversion element | |
JP4967772B2 (en) | Thermoelectric conversion material and method for producing the same | |
Park et al. | Effect of TiO2 on high-temperature thermoelectric properties of ZnO | |
EP2088634A1 (en) | Thermo-electric converting material, process for producing the same, thermo-electric converting element, and method of heightening strength of thermo-electric converting material | |
JP4867618B2 (en) | Thermoelectric conversion material | |
Maekawa et al. | Physical properties of polycrystalline SrVO3− δ | |
WO2006109884A1 (en) | Thermoelectric conversion material, method for production thereof and thermoelectric conversion element | |
CN101523627A (en) | Thermoelectric material, method for producing the same, and thermoelectric converter | |
TW200940474A (en) | Sintered article and thermo-electric conversion material | |
JPH08236818A (en) | Thermoelectric material | |
JP4876721B2 (en) | Thermoelectric conversion material and method for producing the same | |
JPH08231223A (en) | Thermoelectric conversing material | |
US7186391B1 (en) | Sintered compact of lanthanum sulfide or cerium sulfide and method for preparing the same | |
WO1989008077A1 (en) | PROCESS FOR PRODUCING SUPERCONDUCTING (Bi, Tl)-Ca-(Sr, Ba)-Cu-O CERAMIC | |
JP2006062951A (en) | Thermoelectric conversion material and method for producing the same | |
JP2006100683A (en) | Titanium oxide thermoelectric conversion material | |
CN101983437A (en) | Sintered compact and thermoelectric conversion material | |
Muguerra et al. | Improvement of the thermoelectric properties of [Bi1. 68Ca2O4− δ] RS [CoO2] 1.69 cobaltite by chimie douce methods | |
JP4844043B2 (en) | Thermoelectric conversion material and method for producing the same | |
JP2008300759A (en) | Thermoelectric conversion material | |
JP2001044520A (en) | Thermoelectric semiconductor and manufacture thereof | |
US20100213646A1 (en) | Method for producing metal complex oxide sintered body | |
JP4320398B2 (en) | Composite oxide, method for producing composite oxide, temperature sensor material for resistance thermometer, and resistance thermometer | |
JP2001127350A (en) | Thermoelectric conversion material and thermoelectric conversion element | |
JPH08242021A (en) | Manufacturing method for thermoelectricity converting material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
AD01 | Patent right deemed abandoned |
Effective date of abandoning: 20090902 |
|
C20 | Patent right or utility model deemed to be abandoned or is abandoned |