CN101512288A - 用于监测具有定向轴线的可旋转轴的光学装置 - Google Patents

用于监测具有定向轴线的可旋转轴的光学装置 Download PDF

Info

Publication number
CN101512288A
CN101512288A CNA2007800331106A CN200780033110A CN101512288A CN 101512288 A CN101512288 A CN 101512288A CN A2007800331106 A CNA2007800331106 A CN A2007800331106A CN 200780033110 A CN200780033110 A CN 200780033110A CN 101512288 A CN101512288 A CN 101512288A
Authority
CN
China
Prior art keywords
optical
waveguide
rotatable shaft
light signal
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800331106A
Other languages
English (en)
Other versions
CN101512288B (zh
Inventor
托马斯·博塞尔曼
迈克尔·威尔希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN101512288A publication Critical patent/CN101512288A/zh
Application granted granted Critical
Publication of CN101512288B publication Critical patent/CN101512288B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/165Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by means of a grating deformed by the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35303Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using a reference fibre, e.g. interferometric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/04Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies
    • G01K13/08Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies in rotary movement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Optical Communication System (AREA)

Abstract

一种用于监测具有定向轴线(13)的可旋转轴(10)的光学装置。光学装置具有至少一个布置在可旋转轴(10)上的设有至少一个光传感器(21)的光波导(20),可以通过所述光波导(20)借助光信号(LS)查询所述至少一个光传感器(21)。光学装置还包括相对于可旋转轴(10)位置固定地布置的可发出光信号(LS)的发送/接收单元(40)。此外,光学装置具有可用于在位置固定地布置的发送/接收单元(40)和布置在可旋转轴(10)上的光波导(20)之间传送光信号(LS)的传送装置,和为发送/接收单元(40)配设的用于确定来自至少一个光传感器(21)且通过传送装置传送的光信号(LS′)中的物理量的估值单元(43)。在此,传送装置又具有至少一个关于可旋转轴(10)位置固定地布置的且为发送/接收单元(40)配设并带有相关的耦合装置(30K)的“多模”光波导(30),和在可旋转轴(10)上偏心于轴线(13)地布置且与至少一个光波导(20)连接并带有相关的耦合装置(31K)的至少一个另外的“多模”光波导(31)。在此,光信号(LS,LS′)可通过耦合装置(30K,31K)在“多模”光波导(30,31)之间传送。

Description

用于监测具有定向轴线的可旋转轴的光学装置
技术领域
本发明涉及一种用于监测具有定向轴线的可旋转轴的光学装置。
背景技术
在对例如驱动轴和发电机轴的可旋转零件上的温度和膨胀的测量越来越具有意义,因为由于不断提高的功率要求,这些零件在直至其载荷极限下运行。通常,为此使用常规的电子温度传感器(例如热电偶)和电子膨胀传感器(例如压电传感器)。在此,必须首先将轴上的传感器信号进行调整。这通常以特定的测量放大器进行。通过无线传送或红外传送,将经此调整的测量信号从轴发送到相对于轴固定地布置的发送/接收单元上。为此,总是必须向轴提供辅助能量,以能够驱动布置在轴上的电子部件。这例如可通过电池或也通过电感性传送器实现。总之,对此需要大成本。因为在快速旋转的轴中可能出现非常高的离心力,所以相应的电子部件必须适应此极端条件。电子部件通常被封装。
已知的是,作为电子传感器的替代,将基于光波导的光传感器,例如FBG传感器(FBG:光纤布拉格光栅)用于快速旋转零件上的此类测量。在此,在位置固定地布置的光发送/接收单元和旋转的轴之间的耦合和解耦合被证明是十分困难的。为此,例如在轴线上布置在旋转的轴的端侧上的光传送器是特别合适的,该传送器通过两个准直仪将光信号在相对于轴位置固定地布置的发送/接收单元和布置在旋转的轴上的光波导之间传送。在此,两个准直仪布置在一个共同的壳体内,该壳体构造有旋转固定的部分和可旋转的部分。然而,此类光传送器不适合于对其端侧不可接近的轴进行测量。
发明内容
本发明所要求解决的技术问题是给出用于监测可旋转轴的光学装置,该光学装置是耐用的且可以通用地沿轴使用。
根据本发明,此技术问题以权利要求1中给出的特征解决。
根据本发明的光学装置是一种用于监测具有定向轴线的可旋转轴的光学装置,包括:
-至少一个布置在可旋转轴上的具有至少一个光传感器的光波导,可以借助于光信号通过所述光波导查询所述至少一个光传感器,
-关于可旋转轴固定地布置的发送/接收单元,通过该发送/接收单元可发出所述光信号,
-传送装置,可利用该传送装置将光信号在位置固定地布置的发送/接收单元和布置在可旋转轴上的光波导之间传送,和
-为所述发送/接收单元配设的估值单元,该估值单元用于确定来自至少一个光传感器且通过传送装置传送的光信号中的物理量,
其中
传送装置具有:
-至少一个关于可旋转轴位置固定地布置且为发送/接收单元配设并带有相关的耦合装置的“多模”光波导,和
-在可旋转轴上偏心于轴线地布置且与至少一个光波导连接并带有相关的耦合装置的至少一个另外的“多模”光波导,和
光信号可通过耦合装置在“多模”光波导之间传送。
通过将所述另外的“多模”波导和相关的耦合装置偏心地安装到可旋转轴上,使得光信号能够仅通过自由辐射耦合在布置在轴上的耦合装置和位置固定地布置的耦合装置之间传送。在此,在轴旋转时,光信号仅在一个短的时间窗口内在耦合装置之间耦合通过。因为传送装置具有“多模”波导,所以保证在光信号在耦合装置之间传送时不发生耦合损失。通过两次经过耦合路径,即两个耦合装置之间的路径,在测量中例如在使用“单模”光波导而非“多模”光波导时出现了很高的耦合损失,这使得几乎不能进行可靠的测量。此外,与“单模”光波导相比,“多模”光波导的自由辐射耦合在校正上明显更廉价且对于去校正不敏感。待确定的物理量特别是轴的温度和/或膨胀。
根据本发明的光学装置的优点由权利要求1的从属权利要求给出。
因此,有利的是所述至少一个光传感器是至少一个FBG传感器,且所述至少一个光波导是至少一个“单模”波导。FBG传感器允许在轴上进行几乎点状的即局部很窄地限定边界的温度和/或膨胀测量。与此相对,基本上也可使用的根据布里渊(Brillouin)原理或拉曼(Raman)原理的光传感器通常具有一定的局部积分效果,例如可达到数米。因而此类光传感器几乎不能实现点状测量,即尤其是将测量位置局部地限制在数毫米。然而,这可以通过FBG传感器容易地实现。对此,在FBG传感器中,从输入的光信号中将通过各布拉格波长(焦点波长,德语:
Figure A200780033110D0006142614QIETU
)确定的成分反射回来。布拉格波长随着在测量位置上存在的作用量而变化,在此作用量尤其是在FBG传感器位置处的轴的温度和/或膨胀。各反射回的(部分)光信号的波长成分(波长频谱)变化可用作对于待测作用量(温度和/或膨胀)的表征。为借助于光信号查询FBG传感器而使用宽带光源,该宽带光源例如是带宽为大约45nm的LED、带宽为大约20nm的SLD、或带宽为大约100nm的可调谐激光器。
在此,有利的是将多个FBG传感器设在沿至少一个“单模”光波导的不同位置处。也有利的是将至少一个布置在可旋转轴上的“多模”波导与多个“单模”光波导连接。因此,一方面可确定位置分辨的温度和/或膨胀分布,且另一方面在点状事件下,例如突然的限制在局部上的温度升高和/或膨胀时可精确限定时间位置。在此,分辨率仅由各FBG传感器的相互间距确定。
有利的是FBG传感器具有相互不同的布拉格波长。如果利用根据本发明的光学装置使用所谓的波长多路复用方法,则通常可以在一波导内前后相继布置直至10个FBG传感器。由发送/接收单元输入“多模”波导内的光信号为此必须具有覆盖所有布拉格波长的波长范围。如果另一方面作为波长多路复用方法的替代使用所谓的时间多路复用方法(OFDR:光频域反射测量术),则在一个光波导上可布置几乎无限多个FBG传感器。在此,传感器即使在布拉格波长相同的情况下也在空间上不同。
有利地,可由发送/接收单元发出的光信号具有可见光波长范围内的波长,即从380nm至780nm,和/或具有近红外波长(NIR)范围内的波长,即从780nm至2500nm。
有利的是,可由发送/接收单元发出的光信号是至少一个光脉冲。有利的是,以轴的旋转触发光信号的发出。因此,仅在需要时才发出且再次接收光信号。在此,发送/接收单元以节能的方式工作,且在此同时具有较长的运行持续时间。
有利的是,估值单元具有带有至少一个CCD列的光谱分析仪。但也有利的是,估值单元具有带有至少一个图像检测器的至少一个补偿的边缘过滤器。该估值单元的此构造与刚刚提及的情况相比廉价地实现。
附图说明
现在根据附图详细解释本发明的方法和设备的优选、但绝非限制性的实施例。为清楚起见,附图并未按比例绘出且将一定的特征示意性地示出。各图为:
图1示出了一种用于借助“单模”波导内的光传感器监测可旋转轴的光学装置,
图2示出了一种用于借助多个“单模”波导内的光传感器监测可旋转轴的光学装置,
图3示出了穿过“多模”波导与多个“单模”导体的接触面的横截面,
图4示出了穿过“多模”波导与与图3相比外径增大了的多个“单模”波导的接触面的横截面,
图5示出了带有径向定向的耦合路径和曲折地布置的“单模”波导的一种用于监测可旋转轴的光学装置,
图6示出了带有布置在轴上的用于偏转耦合路径的装置的一种用于监测可旋转轴的光学装置,和
图7示出了带有位置固定地布置的用于偏转耦合路径的装置的一种用于监测可旋转轴的光学装置。
具体实施方式
在图1至图7中,相互对应的零件具有相同的附图标记。
在图1中示出了根据本发明的用于监测轴10的光学装置,特别是用于监测与机器或发电机连接的且可旋转地支承的轴的光学装置。轴10在此可以围绕其定向的轴线13旋转。轴10的端侧以12表示。在轴10的外表面11上和/或内布置了带有光传感器的光波导20以用于测量轴10的温度和/或膨胀。如在图1中示出,传感器21是处于(eingeschrieben)“单模”光波导20内的FBG传感器21。在具有多个FBG传感器21时,每个单独的传感器21可以具有与其余的传感器不同的特定的焦点波长,即所谓的布拉格波长。FBG传感器21由宽带光源41、特别是SLD(超辐射发光二极管)所产生的光信号LS查询。光源41在此是位置固定地布置的发送/接收单元40的部分。光源信号由此位置固定地布置的发送/接收单元40产生,并通过传送装置输入设有FBG传感器21的“单模”波导内。在每个FBG传感器21内,从输入的光信号LS反射回来带有有关布拉格波长的成分作为部分反射光信号。而光信号LS的剩余成分通过相关的FBG传感器21且必要时到达下一个FBG传感器21。在发送/接收单元40处由FBG传感器21反射的光信号LS′排列等待处理,该光信号LS′由各FBG传感器21的部分反射光信号组成。
来自FBG传感器21而再次输入发送/接收单元40内的光信号LS′由光耦合器42引导到估值单元43。该估值单元43尤其包括光电转换器,模数转换器和数字信号处理器(在图中未示出)。光转换器有利地具有光谱选择元件以用于选择单个的部分反射信号,所述光谱选择元件例如形式为带有至少一个CCD列的光谱分析仪。对此作为替代,光电转换器可具有带有至少一个光电探测器的至少一个补偿的边缘过滤器。在光电转换后,在模数转换器内进行模数转换。将模数转换器的数字化的输出信号提供给数字信号处理器,通过该数字信号处理器确定对于FBG传感器21内测量的温度和/或膨胀的测量值M1、M2...。
光源41、光耦合器42和估值单元43组合在发送/接收单元40内。但它们的子单元或零件也可以结构上相互分开地形成,即不构造为整体的发送/接收单元40。此外,也可仅进行纯粹的模拟估值,例如通过固定布线的电子电路进行。如果不具有模数转换器,则估值单元43通过模拟技术实现。
传送装置用于将从发送/接收单元40发出的和再次接收的光信号LS和LS′在位置固定地布置的发送/接收单元40和随轴10旋转的“单模”波导20之间传送。传送装置因此包括位置固定的为发送/接收单元40配设的部分和布置在可旋转轴10上的部分。位置固定的部分包括与发送/接收单元40连接并带有第一耦合装置30K的“多模”光波导30,该第一耦合装置30K尤其是准直仪。在另一侧,传送器的布置在可旋转轴10上的部分包括与“单模”波导20连接并带有朝向第一耦合装置30K的第二耦合装置31K的“多模”波导31,该耦合装置31K也尤其是准直仪。在“多模”波导31和“单模”波导20之间的连接通过两个波导20和31的相互面对的端侧实现。
由发送/接收单元40发出的光信号LS因此通过第一“多模”波导30到达第一耦合装置31K,当两个耦合装置30K和31K相互面对时该第一耦合装置31K优选地将光信号LS几乎无损失地准直地向第二耦合装置31K传送。在两个耦合装置之间保留的路径以S表示。光信号LS从第二耦合装置31K通过第二“多模”波导31到达“单模”波导20内,在波导20内可通过光信号LS查询FBG传感器21。由FBG传感器21反射的光信号LS′则在相反的路径上再次回到发送/接收单元40而用于估值。
有利地,发送/接收单元40且因此光源41和必要时还有估值单元43被脉冲地驱动,使得光信号LS以光脉冲的形式发出。光脉冲的发出优选与轴的旋转同步地进行,使得仅在两个耦合装置30K和31K适合于传送地对置时的时间窗口内发出光脉冲。在此,发送/接收单元40例如可以由用于确定轴10的转速的装置触发地驱动。
在图2中示出的根据本发明的光学装置的实施例与图1中的光学装置的不同之处仅在于将多个(在此为三个)“单模”波导20与“多模”波导31连接。以此可实现覆盖(外)表面的传感器布置,使得轴10的温度和/或膨胀可以位置分辨地确定。
在图3中描绘了图2中划出的横截面线III的横截面。在此横截面走向通过“多模”波导31和“单模”波导20的端侧接触面。七个“单模”波导20在此组合为束,使其横截面布置为最紧密的轮廓。“多模”波导31的外部区域示出了波导外套312,该外套312将波导芯311包围。此外,类似地,“单模”波导20也以波导外套202和波导芯201构成。需要注意的是,在“单模”波导20中波导芯201与波导外套202的比例明显小于在“多模”波导31中波导芯311与波导外套312的关系。为使光信号LS、LS′能在“多模”波导31和“单模”波导20之间传送,“单模”波导20的波导芯201必须位于“多模”波导31的波导芯311内部。在图3中绘出的布置中,例如“多模”波导31的芯直径为200μm,而单独的“单模”波导20的外径为80μm。单独的“单模”波导20的芯直径通常大约为5μm。
在图4中也如图3描绘了沿图2中绘出的横截面线IV的横截面。然而在此“单模”波导20的外径选择得更大,使得在此例子中仅三个“单模”波导20可与“多模”波导31连接。在此,例如在“多模”波导31的芯直径为200
μm时,“单模”波导20每个具有125μm的外径。
在图1和图2中耦合路径S总是轴向地定向,即平行于轴线13地定向,而图5示出了耦合路径径向定向、即垂直于轴线13地定向的实施例。如在图1中所示,仅一个“单模”波导20与“多模”波导31连接。“单模”波导20连同其数个FBG传感器21在此曲折地布置在轴10的外套11上和/或内。以这样的布置也实现了对轴10的“面覆盖的”监测。当然,也可以类似于图2将多个此类的曲折设置的“单模”波导20与“多模”波导31连接。
在图6和图7中分别绘出了耦合路径S,该耦合路径S由径向延伸的部分S1和轴向延伸的部分S2组成。光信号LS和LS′在此由反射装置32、尤其是偏转棱镜偏转优选90°。以此,各反射装置32在两个实施例中是传送装置的一部分。各反射装置32被固定以保持在为其所提供的支架33、33a上。
在图6中,支架33在轴10上靠近第二耦合装置31K固定。而如图7所示,支架33a关于可旋转轴10位置固定地布置。此外,可提供支架33a,以用于固定第一耦合装置30K,如图7所示。为避免支架33a与轴10接触,例如将第二耦合装置31K固定在一个基座32上。

Claims (9)

1.一种用于监测具有定向轴线(13)的可旋转轴(10)的光学装置,所述光学装置包括:
-至少一个布置在所述可旋转轴(10)上的设有至少一个光学传感器(21)的光波导(20),可以通过所述光波导(20)借助光信号(LS)查询所述至少一个光传感器(21),
-关于所述可旋转轴(10)固定地布置的发送/接收单元(40),可以利用所述发送/接收单元(40)发出所述光信号(LS),
-传送装置,可以利用所述传送装置将所述光信号(LS)在位置固定地布置的所述发送/接收单元(40)和布置在所述可旋转轴(10)上的所述光波导(20)之间传送,和
-为所述发送/接收单元(40)配设的估值单元(43),所述估值单元(43)用于确定来自所述至少一个光传感器(21)且通过所述传送装置传送的光信号(LS′)中的物理量,
其中
所述传送装置具有:
-至少一个关于所述可旋转轴(10)位置固定地布置且为所述发送/接收单元(40)配设并带有相关的耦合装置(30K)的“多模”光波导(30),和
-在所述可旋转轴(10)上偏心于所述轴线(13)地布置且与所述至少一个光波导(20)连接并带有相关的耦合装置(31K)的至少一个另外的“多模”光波导(31),和
所述光信号(LS,LS′)能够通过所述耦合装置(30K,31K)在所述“多模”光波导(30,31)之间传送。
2.根据权利要求1所述的光学装置,其特征在于:所述至少一个光传感器(21)是至少一个光纤布拉格光栅传感器,且所述至少一个光波导(20)是至少一个“单模”光波导。
3.根据权利要求2所述的光学装置,其特征在于:沿所述至少一个“单模”光波导(20)在不同位置处有多个所述光纤布拉格光栅传感器(21)。
4.根据权利要求2或3所述的光学装置,其特征在于:所述至少一个布置在所述可旋转轴(10)上的“多模”波导(31)与多个所述“单模”光波导(20)连接。
5.根据权利要求3或4所述的光学装置,其特征在于:所述光纤布拉格光栅传感器(21)具有相互不同的布拉格波长。
6.根据前述权利要求的一项所述的光学装置,其特征在于:可由所述发送/接收装置(40)发出的所述光信号(LS)具有在可见光波长范围内和/或近红外波长范围内的波长。
7.根据前述权利要求的一项所述的光学装置,其特征在于:可由所述发送/接收装置(40)发出的所述光信号(LS)是至少一个光脉冲。
8.根据前述权利要求的一项所述的光学装置,其特征在于:所述估值单元(43)具有带有至少一个CCD列的光谱分析仪。
9.根据权利要求1至7的一项所述的光学装置,其特征在于:所述估值单元(43)具有带有至少一个光电探测器的至少一个补偿的边缘过滤器。
CN2007800331106A 2006-09-06 2007-08-23 用于监测具有定向轴线的可旋转轴的光学装置 Expired - Fee Related CN101512288B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006041865A DE102006041865A1 (de) 2006-09-06 2006-09-06 Optische Einrichtung zur Überwachung einer drehbaren Welle mit gerichteter Achse
DE102006041865.4 2006-09-06
PCT/EP2007/058750 WO2008028813A2 (de) 2006-09-06 2007-08-23 Optische einrichtung zur überwachung einer drehbaren welle mit gerichteter achse

Publications (2)

Publication Number Publication Date
CN101512288A true CN101512288A (zh) 2009-08-19
CN101512288B CN101512288B (zh) 2011-05-25

Family

ID=39104440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800331106A Expired - Fee Related CN101512288B (zh) 2006-09-06 2007-08-23 用于监测具有定向轴线的可旋转轴的光学装置

Country Status (9)

Country Link
US (1) US7881567B2 (zh)
EP (1) EP2059765B1 (zh)
JP (1) JP5377311B2 (zh)
CN (1) CN101512288B (zh)
AT (1) ATE528613T1 (zh)
DE (1) DE102006041865A1 (zh)
ES (1) ES2373339T3 (zh)
PL (1) PL2059765T3 (zh)
WO (1) WO2008028813A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975867A (zh) * 2010-11-03 2011-02-16 武汉理工大学 一种基于光纤光栅的转速检测系统及其检测方法
CN105004522A (zh) * 2015-07-15 2015-10-28 上海电机学院 基于光信号的风机轴系故障诊断和状态监测系统

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8390240B2 (en) * 2007-08-06 2013-03-05 GM Global Technology Operations LLC Absolute position sensor for field-oriented control of an induction motor
US8179127B2 (en) * 2007-11-06 2012-05-15 GM Global Technology Operations LLC Method and apparatus to monitor position of a rotatable shaft
DE102011105427A1 (de) * 2011-06-20 2012-12-20 Voith Patent Gmbh Elektrische Maschine mit einer Einrichtung zum Überwachen der Rotorgeometrie
EP3051285B1 (en) 2011-07-21 2018-10-10 Fisher Controls International Llc Control valve monitoring system
US9234790B2 (en) 2012-03-19 2016-01-12 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and methods utilizing optical sensors operating in the reflection mode
US9134178B2 (en) 2012-07-27 2015-09-15 Imax Corporation Observer metameric failure compensation method
US9140607B2 (en) * 2012-07-27 2015-09-22 Imax Corporation Observer metameric failure reduction method
US9954609B2 (en) 2012-12-31 2018-04-24 Network Integrity Systems Inc. Alarm system for an optical network
US20150015398A1 (en) * 2012-12-31 2015-01-15 Network Integrity Systems, Inc. Alarm System for a Single Mode Optical Fiber Network
US20140353477A1 (en) * 2013-05-29 2014-12-04 The Cleveland Electric Laboratories Company Optical encoder
EP2860503A3 (en) * 2013-06-27 2015-06-03 Rüeger S.A. Method and apparatus for measuring the temperature of rotating machining tools
US10365167B2 (en) 2013-11-08 2019-07-30 United Technologies Corporation Fiber grating temperature sensor
EP3295140A1 (en) * 2015-05-08 2018-03-21 Fugro Technology B.V. Sensor system and method for monitoring a powertrain
TR201614048A2 (tr) * 2016-10-06 2018-04-24 Erhan Ilhan Konukseven Fi̇ber bragg izgara tabanli opti̇k sensörler i̇le kaynak proses kontrol si̇stemi̇
CN113654788B (zh) * 2021-09-18 2023-09-08 西华师范大学 一种用于转轴状态在线监测的光纤传感系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108196A (en) * 1980-01-30 1981-08-27 Tokyo Shibaura Electric Co Multichannel contactless optical sensing system
GB2311145B (en) * 1996-03-13 2000-04-19 Northern Telecom Ltd Tapered singlemode waveguides coupled to photodetector by multimode fibre
US5799029A (en) 1996-05-14 1998-08-25 Sdl, Inc. Laser system with reduced power fluctuations for employment in applications requiring continuous stable light intensity delivery
FR2757958B1 (fr) * 1996-12-30 1999-01-22 Alsthom Cge Alcatel Outil de raccordement d'une fibre a une autre fibre ou a un element de connectique optique par l'intermediaire d'un module de raccordement
JP2000088676A (ja) * 1998-09-11 2000-03-31 Sumitomo Electric Ind Ltd 温度センサ
WO1999009370A1 (en) * 1997-08-19 1999-02-25 University Of Maryland Large scale high speed multiplexed optical fiber sensor network
US6004639A (en) 1997-10-10 1999-12-21 Fiberspar Spoolable Products, Inc. Composite spoolable tube with sensor
JP3895868B2 (ja) * 1998-05-20 2007-03-22 松下電器産業株式会社 波長可変フィルタ装置
US6876785B1 (en) * 1999-06-30 2005-04-05 The Board Of Trustees Of The Leland Stanford Junior University Embedded sensor, method for producing, and temperature/strain fiber optic sensing system
JP2002267537A (ja) * 2001-03-12 2002-09-18 Hitachi Cable Ltd 回折格子反射波長計測方法及びその装置並びに物理量計測方法及びその装置
JP2003123178A (ja) * 2001-10-16 2003-04-25 Hitachi Ltd 光スリップリング
DE10241428A1 (de) * 2002-09-06 2004-03-25 Siemens Ag Überwachungseinrichtung für elektrische Schiffsantriebsanlagen, z. B. für POD-Schiffsantriebe
JP4308542B2 (ja) * 2003-01-31 2009-08-05 株式会社リコー 導波路型光結合素子、光配線及びその製造方法
US6923048B2 (en) * 2003-09-24 2005-08-02 Siemens Aktiengesellschaft Method and apparatus of monitoring temperature and strain by using fiber Bragg grating (FBG) sensors
JP2005308880A (ja) * 2004-04-19 2005-11-04 Fujikura Ltd 光コネクタおよびその製造方法
KR100845181B1 (ko) * 2004-05-14 2008-07-10 한국과학기술연구원 회전체의 이상감지장치
US7772940B2 (en) * 2008-05-16 2010-08-10 Optim Microwave, Inc. Rotatable polarizer device using a hollow dielectric tube and feed network using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975867A (zh) * 2010-11-03 2011-02-16 武汉理工大学 一种基于光纤光栅的转速检测系统及其检测方法
CN105004522A (zh) * 2015-07-15 2015-10-28 上海电机学院 基于光信号的风机轴系故障诊断和状态监测系统
CN105004522B (zh) * 2015-07-15 2017-10-27 上海电机学院 基于光信号的风机轴系故障诊断和状态监测系统

Also Published As

Publication number Publication date
PL2059765T3 (pl) 2012-03-30
JP5377311B2 (ja) 2013-12-25
EP2059765A2 (de) 2009-05-20
ATE528613T1 (de) 2011-10-15
JP2010502967A (ja) 2010-01-28
US7881567B2 (en) 2011-02-01
DE102006041865A1 (de) 2008-03-27
WO2008028813A3 (de) 2009-02-05
EP2059765B1 (de) 2011-10-12
WO2008028813A2 (de) 2008-03-13
US20100014072A1 (en) 2010-01-21
ES2373339T3 (es) 2012-02-02
CN101512288B (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
CN101512288B (zh) 用于监测具有定向轴线的可旋转轴的光学装置
US7157693B2 (en) Optical wavelength interrogator
US9810556B2 (en) Apparatus for measuring optical signals from multiple optical fiber sensors
CN101246026B (zh) 光传感器询问系统的方法和设备
US8348611B2 (en) Wind turbine having a sensor system for detecting deformation in a wind turbine rotor blade and corresponding method
CN103411550A (zh) 基于光纤光栅的内燃机主轴承内表面应力和温度监测方法
WO2007030427A2 (en) System and method for monitoring a well by means of an optical fiber
JP2013528794A5 (zh)
CN102003970A (zh) 光纤激光传感器动态信号解调方法
CN104215605A (zh) 一种快速的光纤光栅解调系统的动态定标方法
Orr et al. High-speed, solid state, interferometric interrogator and multiplexer for fiber Bragg grating sensors
CN105241482B (zh) 一种有源光纤光栅传感器波长解调系统及方法
EP0272466B1 (en) Distributed temperature sensor using an optical fibre as sensing element
CN100576049C (zh) 一种光纤光栅传感网络解调的方法和设备
CN100582658C (zh) 基于光纤激光器的弯曲半径测量仪
CN100406938C (zh) 光纤布拉格光栅传感器的相干复用方法及其设备
CN102135437B (zh) 用非平衡Mach-Zehnder干涉仪对多信号问讯的方法及装置
CN101794506A (zh) 用于分布式光纤温度传感系统中数据校准的方法及装置
JP4975519B2 (ja) 回転体の計測装置及び計測方法
CN101975867A (zh) 一种基于光纤光栅的转速检测系统及其检测方法
Fusiek et al. Temperature-independent high-speed distributed voltage measurement using intensiometric FBG interrogation
CN202631153U (zh) 带有自动补偿功能的单端口分布式光纤温度传感器
CN103630276A (zh) 基于宽边带和窄带光纤光栅匹配解调的应力传感系统
CN103090991A (zh) 一种应用于电力设备测温的光纤光栅解调仪
CN203083738U (zh) 一种应用于电力设备测温的光纤光栅解调仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110525

Termination date: 20160823