CN101501458A - 散装固体的质量流率的实时测量方法 - Google Patents

散装固体的质量流率的实时测量方法 Download PDF

Info

Publication number
CN101501458A
CN101501458A CNA2007800303074A CN200780030307A CN101501458A CN 101501458 A CN101501458 A CN 101501458A CN A2007800303074 A CNA2007800303074 A CN A2007800303074A CN 200780030307 A CN200780030307 A CN 200780030307A CN 101501458 A CN101501458 A CN 101501458A
Authority
CN
China
Prior art keywords
air
solid
bulk
flow rate
sus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800303074A
Other languages
English (en)
Other versions
CN101501458B (zh
Inventor
P·索伦
P·休斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kongsberg Maritime AS
Original Assignee
Rolls Royce Marine AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Marine AS filed Critical Rolls Royce Marine AS
Publication of CN101501458A publication Critical patent/CN101501458A/zh
Application granted granted Critical
Publication of CN101501458B publication Critical patent/CN101501458B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • G01F1/88Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure with differential-pressure measurement to determine the volume flow

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

散装固体质量流率的实时测量方法,其中所述散装固体通过气动输送系统加载或卸载,由以下步骤组成:将至少两个压力计(P1,P2)布置在输送系统的管道中作为测量装置;当空气和散装固体的气固流产生时测量所述压力计之间的压力下降ΔP;计算空气和散装固体的流动混合物的悬浮密度ρsus;且通过至少流动混合物的所述悬浮密度ρsus,估计在管道的给定长度在给定位置处的散装固体质量流率Ms

Description

散装固体的质量流率的实时测量方法
技术领域
本发明涉及对散装固体的质量流率的实时测量方法,其中所述散装固体通过气动输送系统加载或卸载。
背景技术
该技术基于空气流率和在给定位置处压力下降的测量,该给定位置在散装材料的气动传输中遍及管道的给定长度。该技术也利用散装材料在传输时预先确定的压力下降系数。
因此目标是当从例如散装船加载或卸载所述材料时,提供估计散装材料例如水泥的累积质量流的简单、精确且经济的方法。
美国专利6,601,458B1公开多相流量计的原则,其测量流动混合物的流率和每一流体的比例。仪器需要测量:温度、压力、流体中声音的速度及散装速度。仪器基于上述测量使用模型计算流体混合物的流率。所述方法只能用于流体系统。该方法使用至少四个测量参数以做这样的计算,且在沿着管道的多个位置处需要传感器。进一步,没有指示它能测量粒子的流率。这与本发明形成对照,其只需要压力数据和空气流率数据。
美国专利4,506,541公开一种设备,其使用辐射源且通过探测散射辐射测量沿着管道残留在空气中的粉碎煤或其他相似材料的散装密度。辐射探测器测量被粒子散射的扩散辐射,该测量给出流动散装密度的测量。它使用煤粒流路径中两电极的电荷和互相关技术以计算管道内部粒子的速度。因此测量的该速度连同散装密度给出固体的质量流率。
美国专利4,506,541与本发明形成对照在所述专利使用辐射源、探测器和防护物,该防护物拦截直接辐射落到探测器上。辐射探测器测量被粒子散射的扩散辐射,该测量给出流动散装密度的测量。与一对电极相联系的以上所述用于速度的测量。进一步,该仪器在使用前需要在实验室规模装备上校准。在现场它将再次需要进一步校准。根据本发明,无需在现场或实验室规模装备上校准,且不使用辐射源。
EP974816A1公开测量粒状固体材料流的方法和装置,其中使用加压流在导管中循环的材料的质量流率通过在导管中产生的声学信号测量。基于所述声学信号强度计算此压力差。
进一步,美国专利6176647 B1公开粉末质量流率的装置,其中在两个地点测量压力且估计压差。
具有进一步知道的流量计,该流量计基于穿过文氏管的压差测量液体流。这只能用于流体流测量,且本发明在流场中不具有任何文氏管(venture)或任何其他类型障碍。
上述目标用限定在独立要求1中特征部分的方法完成,且进一步优选的实施例限定在从属要求2-6。
发明内容
本发明特别涉及散装固体的质量流率的估计方法。在本发明的优选实施例中,两个或更多的压力计放置在气动输送系统管道中的优选位置处。这样的输送系统能够用于例如从船的货舱加载散装材料,例如水泥或相似材料,或将散装材料卸载到船的货舱。
根据本发明的方法中,至少两个测量器件排列在输送系统的管道中,之后当空气和散装固体的气固流发生时,从所述至少两个测量器件读取测量值的差,且此后在流动混合物管道的给定长度上在给定位置处估计散装固体的质量流率Ms。
能够使用不同的测量器件,例如压力计、加速度计、声敏感器等。在下文中,使用压力计的公式显示为实现根据发明的方法的例子。但是,应注意到当使用加速度计、声敏感器等时,在下面例子中使用其他公式。
附图说明
将通过附图更详细地描述作为例子的本发明,其中附图示出了本发明的原理图表。
具体实施方式
在本发明的优选实施例中,两个或更多压力计分开大约2m放置在输送系统管道中的任意给定位置,且当气固流发生时测量压力下降。优选地使用的压力计是标准的库存设备且因此不进一步描述,因为它们应当被本领域技术人员认为是已知的。
在这样的气固流中压力下降由
ΔP = 1 2 K ρ sus LV 2 D - - - ( 1 )
给定,其中ΔP是压力计1和2之间的压力下降。
K是流经管道的散装固体的摩擦系数。这从测试中预先确定。
ρsus是流动混合物的悬浮密度。
悬浮密度定义为:
ρ sus = M s + M air Q s + Q air - - - ( 2 )
其中,Ms是固体质量流率。
      Mair是空气质量流率。
      Qs是在截面1处固体体积流率且Qs=Mss
      Qair是在截面1处空气体积流率。
D是管道直径。
L是压力计P1和P2之间管道截面的长度。
V是安装压力计P1的截面处的本地空气速度。
V的值能够通过使用空气流率Qair和压力计P1处的本地空气压力计算。
现在因为在任何时刻的V、L、D、K和ΔP已知,可以计算悬浮密度即ρsus的值。
现在因为Qair且因此Mair的值已知,可以计算固体的质量流率值写为:
V s = M s ρ s - - - ( 3 )
其中ρs是固体密度,其从之前的实验测量已知。
这可实时计算以获取散装固体的质量流,且由此获取经过优选截面的累积固体质量流。因此,输送系统中任意给定位置处,例如水泥的质量流能够被实时监控。能够在输送系统的不同位置放置一些系统以监控系统的关键部分,例如流入和流出口。测量的结果能够存储在电脑的存储盘,且实时和累积值的计算和估计也优选通过电脑实现。因此,基于此方法的结果可以实时控制空气流速度以控制散装材料的质量流率。

Claims (6)

1.散装固体的质量流率的实时测量方法,其中所述散装固体通过气动输送系统加载或卸载,其特征在于,该方法包括以下步骤:
将至少两个压力计(P1,P2)布置在输送系统的管道中作为测量装置,
当空气和散装固体的气固流产生时,测量所述压力计之间的压力下降ΔP,
计算空气和散装固体的流动混合物的悬浮密度ρsus,且
通过至少流动混合物的所述悬浮密度ρsus,估计在管道的给定长度在给定位置处的散装固体质量流率Ms
2.根据权利要求1所述的方法,其特征在于,流动混合物的所述悬浮密度ρsus使用以下公式计算:
ΔP = 1 2 K ρ sus L V 2 D - - - ( 1 )
其中,K是流经管道的散装固体的摩擦系数,
D是管道直径,L是压力计(P1,P2)之间管道的长度,
V是布置第一压力计(P1)的截面处的本地空气速度。
3.根据权利要求2所述的方法,其特征在于,所述悬浮密度ρsus限定为:
ρ sus = M s + M air Q s + Q air - - - ( 2 )
其中,Ms是固体质量流率,
Mair是空气质量流率,
Qs是在截面1处的固体体积流率且Qs=Ms/Pt
Qair是在截面1处的空气体积流率,
其中散装固体的质量流率由
V s = M s ρ s - - - ( 3 )
估计,其中ρs是固体密度,其从之前的实验测量已知。
4.根据权利要求1-3所述的方法,其特征在于,散装固体的质量流被实时估计,且由此估计气动输送系统中经过优选的管道截面的累积固体质量流。
5.根据权利要求4所述的方法,其特征在于,所述散装固体是干燥的水泥或类似材料。
6.根据权利要求1-5所述的方法,其特征在于,基于测量值控制空气流率以控制散装材料的质量流率。
CN2007800303074A 2006-08-17 2007-08-16 散装固体的质量流率的实时测量方法 Expired - Fee Related CN101501458B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20063698A NO327159B1 (no) 2006-08-17 2006-08-17 Fremgangsmåte for nåtidsmåling av strømningsrate av tørrlast
NO20063698 2006-08-17
PCT/NO2007/000283 WO2008020762A1 (en) 2006-08-17 2007-08-16 Method for real time measurement of mass flow rate of bulk solids

Publications (2)

Publication Number Publication Date
CN101501458A true CN101501458A (zh) 2009-08-05
CN101501458B CN101501458B (zh) 2011-06-22

Family

ID=39082250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800303074A Expired - Fee Related CN101501458B (zh) 2006-08-17 2007-08-16 散装固体的质量流率的实时测量方法

Country Status (6)

Country Link
US (1) US8423303B2 (zh)
CN (1) CN101501458B (zh)
BR (1) BRPI0716672B1 (zh)
GB (1) GB2453696B (zh)
NO (1) NO327159B1 (zh)
WO (1) WO2008020762A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197996A (zh) * 2014-09-28 2014-12-10 济南大学 一种串联式双压钻井液密度和质量流量检测系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102141423B (zh) * 2010-01-29 2014-08-06 通用电气公司 实时测定固气混合物中固体质量流量的系统及方法
US9267831B2 (en) 2010-01-29 2016-02-23 General Electric Company Systems and methods for determining a real time solid flow rate in a solid-gas mixture
RU2475707C1 (ru) * 2011-08-04 2013-02-20 Государственное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Устройство для измерения расхода сыпучего материала
US10317261B2 (en) 2015-06-30 2019-06-11 Johnson Controls Technology Company Systems and methods for controlling flow rate using differential pressure measurements
RU2694464C1 (ru) * 2018-10-11 2019-07-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный архитектурно-строительный университет" (ННГАСУ) Способ экспрессного измерения влажности диэлектрического материала, перемещаемого воздухом по трубопроводу
US11143540B2 (en) 2019-10-28 2021-10-12 Halliburton Energy Services, Inc. Real time flow rate meter

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0074365A1 (en) * 1981-03-16 1983-03-23 Mount Isa Mines Limited Measurement of bulk density of particulate materials
JPH0641861B2 (ja) 1988-06-17 1994-06-01 通商産業大臣 粒子輪送流量の計測方法
CN1021083C (zh) * 1989-01-03 1993-06-02 浙江大学 气固液固两相流的测量方法
US5132917A (en) * 1990-04-23 1992-07-21 Shell Oil Company Method and apparatus for the combined use of dual density measurements to achieve a fast and accurate density measurement in pneumatically transported solids
CN2110210U (zh) * 1991-02-08 1992-07-15 浙江省瓯海自动化仪表厂 气固二相流量计
CN1026354C (zh) * 1992-01-30 1994-10-26 武汉空军雷达学院科技开发部 气固二相粉体流量装置
JP3867176B2 (ja) * 1996-09-24 2007-01-10 アール・アイ・ディー株式会社 粉体質量流量測定装置、およびこれを適用した静電粉体塗装装置
FR2780500B1 (fr) * 1998-06-25 2000-09-08 Lorraine Laminage Procede et dispositif de mesure d'un debit de matiere solide a l'etat divise, et application a un haut fourneau siderurgique
DE19833312A1 (de) * 1998-07-24 2000-02-03 Deutsche Telekom Ag Vorrichtung zum Regeln der Polarisation einfallenden Lichtes und Polarisations-Stellvorrichtung für eine solche Regelvorrichtung
US6601458B1 (en) * 2000-03-07 2003-08-05 Weatherford/Lamb, Inc. Distributed sound speed measurements for multiphase flow measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197996A (zh) * 2014-09-28 2014-12-10 济南大学 一种串联式双压钻井液密度和质量流量检测系统
CN104197996B (zh) * 2014-09-28 2016-08-24 中石化胜利石油工程有限公司钻井工艺研究院 一种串联式双压钻井液密度和质量流量检测系统

Also Published As

Publication number Publication date
NO327159B1 (no) 2009-05-04
US20100241368A1 (en) 2010-09-23
NO20063698L (no) 2008-02-18
CN101501458B (zh) 2011-06-22
BRPI0716672A2 (pt) 2013-09-17
GB0902142D0 (en) 2009-03-25
WO2008020762A1 (en) 2008-02-21
US8423303B2 (en) 2013-04-16
GB2453696A (en) 2009-04-15
GB2453696B (en) 2012-02-15
BRPI0716672B1 (pt) 2018-07-31

Similar Documents

Publication Publication Date Title
CN101501458B (zh) 散装固体的质量流率的实时测量方法
Pan et al. Pressure drop and slug velocity in low-velocity pneumatic conveying of bulk solids
US20150338254A1 (en) Velocity Based Method for Determining Air-Fuel Ratio of a Fluid Flow
CN102625905A (zh) 多相流体测量装置和方法
Mehta et al. Pressure drop in air-solid flow systems
EP0178104B1 (en) Flowmeter
Lecreps et al. Application of the principles of gas permeability and stochastic particle agitation to predict the pressure loss in slug flow pneumatic conveying systems
WO2018083453A1 (en) Improvements in or relating to the monitoring of fluid flow
EP2391873B1 (en) Applications for real-time mass ratio, mass flow and particle size measurement of particle laden flows
Lech Mass flow rate measurement in vertical pneumatic conveying of solid
Mason et al. A novel experimental technique for the investigation of gas–solids flow in pipes
Rawat et al. Detachment velocity: A borderline between different types of particulate plugs
Hyder et al. An investigation into the effect of particle size on straight-pipe pressure gradients in lean-phase conveying
Green et al. Sensor systems for lightly loaded pneumatic conveyors
CN101657700B (zh) 粉尘质量流测量系统的校准
US10071352B2 (en) Techniques for agglomerating mature fine tailing by injecting a polymer in a process flow
Kramer et al. Experimentally determined mean flow characteristics of gas-solid suspensions
Hubert et al. Measurements and comparison of saltation and pickup velocities in wind tunnel
Niederreiter et al. Modeling and experimental validation of pressure drop for pneumatic plug conveying
Irons et al. Dispersed powder flow through vertical pipes
Cairns et al. Three-dimensional effects of wave-like flow in horizontal pipelines
Venkatasubramanian et al. Flow rate measurements of a fibrous material using a pressure drop technique
Mason A study of the modes of gas-solids flow in pipelines
Coulthard et al. Online pulverised-fuel monitoring at Methil power station
Davies et al. Pressure fluctuations in a fluidized bed: A potential route to the continuous estimation of particle size

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Bratwag, Norway

Patentee after: Kongsberg Marine Co.,Ltd.

Address before: Bratwag, Norway

Patentee before: ROLLS-ROYCE MARINE A/S

CP01 Change in the name or title of a patent holder
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110622

CF01 Termination of patent right due to non-payment of annual fee