CN101501299A - 用于井下流体的元素分析的方法和设备 - Google Patents

用于井下流体的元素分析的方法和设备 Download PDF

Info

Publication number
CN101501299A
CN101501299A CNA2006800423160A CN200680042316A CN101501299A CN 101501299 A CN101501299 A CN 101501299A CN A2006800423160 A CNA2006800423160 A CN A2006800423160A CN 200680042316 A CN200680042316 A CN 200680042316A CN 101501299 A CN101501299 A CN 101501299A
Authority
CN
China
Prior art keywords
fluid
plasma
downhole fluid
downhole
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800423160A
Other languages
English (en)
Inventor
R·迪弗吉奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Publication of CN101501299A publication Critical patent/CN101501299A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/087Well testing, e.g. testing for reservoir productivity or formation parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/443Emission spectrometry
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/113Locating fluid leaks, intrusions or movements using electrical indications; using light radiations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Raw oil, drilling fluid or polyphasic mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • G01N2021/8528Immerged light conductor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • G01N2021/855Underground probe, e.g. with provision of a penetration tool
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/69Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence specially adapted for fluids, e.g. molten metal

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Geophysics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明提供一种用于进行井下地层流体的元素分析的方法和设备。本发明使用分解光谱学提供井下地层流体的元素分析。在本发明的一个方面中,提供一种用于对地层流体试样进行激光致分解的方法和设备。本发明的另一个方面,提供一种用于进行火花致分解光谱学的方法和设备。在被测试的井下的流体中诱发等离子体。分析等离子体的发射以确定被测流体的成分。所述的发射包括但不限于光谱中的紫外、可见以及近红外区中的光。提供一个光谱仪用于井下流体的元素分析。元素分析产生关于流体以及流体所在地层的信息。

Description

用于井下流体的元素分析的方法和设备
技术领域
本发明涉及井下流体试样的成分分析。更具体地说。本发明涉及井下试样的元素分析,例如通过激光分解光谱学(LIBS)、火花分解光谱学(SIBS)或一些类似的等离子产生和光发射分析技术可以对它们的构成成分进行分析。
背景技术
具有许多这样的情况,其中需要或希望获得试样材料的基本上瞬时的与/或即刻的较多的或微量的成分分析。试样材料可以包括地质试样、土壤试样、粉末冶金、陶瓷、食物、药物以及许多其它材料。需要测试这些材料的组成成分的理由是很多的。碳氢化合物生产是昂贵的,并且已知,由于不希望的元素例如硫的含量而被认为是不能开采的地层,一个含有碳氢化合物的特定地层的生产是不可能的。区域划分也是在碳氢化合物生产期间遇到的问题,这种区域划分的存在是影响涉及数百万元的生产费用的生产决定的有价值的知识。
当前尚未知用于井下元素分析的方法和设备。进行地层流体的井下元素分析对于确定地层流体试样和所述流体所在的地层的特性是有用的。
发明内容
本发明提供一种用于进行井下地层流体的元素分析的方法和设备。本发明使用分解光谱学提供井下地层流体的元素分析。在井下测试流体中引入等离子体。分析等离子体的发射以确定被测流体的成分。所述的发射包括但不限于光谱中的紫外、可见以及近红外区中的光。提供一个光谱仪用于井下流体的元素和成分分析。成分分析产生关于流体以及流体所在地层的信息。在本发明的一个方面中,提供一种用于对地层流体试样进行激光致分解的方法和设备。在本发明的另一个方面,提供一种用于进行火花致分解光谱分析的方法和设备。在实验室中在室温下在空气中如何应用分解光谱学是本领域熟知的。不过,在井下应用这个技术面临着若干个挑战。首先,井下流体一般处于10-20kpsi的极高的压力下。因此,为了在井下应用这种技术,必须在足够短的时间间隔内在足够小的体积上施加足够的能量(例如通过使用足够强的激光或火花),从而使温度充分升高(大约10000℃),使得等离子体内的压力超过流体内的压力。用这种方式,使得能够在高压流体内形成等离子的小泡。第二,必须能够检测来自所述等离子小泡的光,即使这种小泡沉浸在强烈吸收等离子小泡发出的光的黑暗的流体内(例如原油)。
附图说明
通过参照附图阅读下面的详细说明,可以清楚地看出本发明的目的和优点,其中:
图1表示本发明的示例的实施例,其表示通过窗口和流体相互作用的激光致分解光谱设备;
图2表示本发明的示例的实施例,其表示被插入流体内并和流体相互作用的激光致分解光谱设备;
图3表示本发明的示例的实施例,其表示被插入流体内并和流体相互作用的火花致分解光谱设备;
图4表示本发明的示例的实施例,通过一个输送机构被在井下使用;
图5表示本发明的示例的实施例,其和分布导管相关联地被使用;
图6表示由本发明的示例的实施例执行的功能和操作;以及
图7更详细地示意地表示火花致分解光谱设备。
具体实施方式
本发明允许用不同形式的实施例来实施。附图中示出了本发明的特定实施例,现在对其进行详细说明。应当理解,这些实施例是用于说明本发明的原理的例子,本发明并不限于这些实施例。具体地说,本发明的不同实施例提供了若干个不同的结构和操作方法,不脱离本发明的教导和构思,本领域技术人员可以做出各种改变。应当充分认识到,下面讨论的实施例的不同的教导可被单独的使用,或者用任何合适的组合被使用,以产生所需的结果。
本发明通过使用火花或者通过把激光束施加于目标试样,并进行激光致分解光谱分析(LIBS)或者激光致等离子光谱分析(LIPS),进行井下的、在原地进行的主要成分和杂质分析,来提供一种用于产生等离子的方法和设备。本发明提供一种用于收集来自等离子泡的光的方法,其中或者在井下流体和光窗口之间的界面上产生等离子泡,或者在光纤的尖端产生等离子泡。分解光谱技术的灵敏度随元素而改变。对于Be,Mg,Cr,Fe,Ag,Hg,可以预计可检测的最小灵敏度小于1ppm,对于Li,B,Na,Cl,Ca,Ti,Mn,Ni,Cu,Zn,Sr,Ba,Pb,Th为1-10ppm;对于C,F,Al,Si,S,K,Co,Ga,Rb,Zr,Nb,Tc,Pd,Cd,Sn,Cs,Eu,Pt,Tl为10-100ppm;对于P,V,Ge,As,Mo,I,Au,Bi为100-500ppm;对于Y,In,Sb,Te,Hf,W为500ppm以上。分解光谱技术只定性地用于H,N,O,Ar,Sc,Ru,Rh,Gd,Er,Re,U,Pu,和Am。
LIBS是用于确定各种固体、液体和气体的元素成分的一种有用的方法。参见图1,在使用LIBS技术的本发明的示例的实施例100中,大功率的激光脉冲20聚焦在试样30上,从而在测试点或焦点区域产生等离子体或激光火花。在焦点区域中的火花产生高密度的等离子热柱(plume)26,其产生和激发各种原子的元素。利用准直透镜或光纤光学装置可以收集来自等离子的原子发射24,并用光谱仪和门控检测器进行分析。可以使用原子的光谱线来确定试样中的元素的浓度或元素成分。这种分析类似于用感应耦合的等离子(ICP)分析仪进行的分析,这对本领域技术人员是公知的。激光源28对探针22提供激光脉冲,分光仪/处理器电子电路32处理和分析从等离子收集的发射。探针22通过窗口32可以和流体导管42内部的流体3相互作用,或者探针22可以插入流体30内,如图2所示。激光脉冲通过光导管例如光缆34提供给探针22。光导管34也可以收集从等离子26发射的光,并把收集的光提供给分光仪处理器电子电路32。在电子电路32中进行预调节和门控。
可以使用各种激光器施加LIBS,不过一般使用受激准分子激光器或脉冲Nd:Yag激光器。也可以使用气体管或二极管激光器。和试样30相互作用的高强度激光脉冲20产生等离子热柱26,其随时间从入射激光脉冲的撞击点22发展。该激光脉冲的持续时间通常小于20纳秒。来自等离子热柱26的发射24由检测系统收集和分析。一般在离开试样30一定距离处收集发射24,以便减少自吸收效应或表面效应对数据的影响。在理想情况下,产生的等离子全部分解试样的化学键,并电离许多组成元素。作为随后的组分受激的核素松驰的结果,发生光谱发射。
为了更详细地说明LIBS装置和技术,参见Singh等人的名称为Analytical Method using Laser Induced Breakdown Spectroscopy的美国专利US 5751416,通过引用其全部内容被包括在本说明中。
本发明对于从钻井中提取的地层流体的分析或者用于分析在钻井操作时被配置在钻柱或挠性油管中的被监视的流体。在本说明中使用的流体这个术语指的是气体、流体或气体、流体的多相混合物,以及悬浮在其中的凝聚物或颗粒。在另一个实施例中,本发明还可以被配置在管线中用于分析管线中输送的流体。在每种情况下,提供LIBS装置用于进行和配置环境相关联的流体的元素分析。类似地,可以使用火花致火花光谱学(SIBS)装置代替进行流体的元素分析的LIBS装置。元素分析使得本发明能够估计流体的成分,并估计流体所在的地层的特性。
火花致分解光谱学(SIBS)、激光致等离子光谱学(LIPS)或者更通常所说的激光致分解光谱学(LIBS),是原子发射光谱学的一种形式,其中使用脉冲激光作为激发源。脉冲激光器的输出例如Q转换的Nd:YAG被聚焦在要被分析的材料中或其表面上。关于激光脉冲的持续时间,其一般为10-20纳秒,仅仅使用小型激光装置和简单的聚焦透镜,在材料表面上的功率密度可以超过每平方厘米1千兆瓦。
在这极高的功率密度下,借助于被称为激光切除的处理,从表面喷出材料的微观图的一部分,并在材料表面形成短时但瞬时温度达10000℃的高亮度的等离子体。在热的等离子体内,被喷出的材料被分离成受激的离子和原子核素。在激光脉冲结束时,随着等离子体以超声的速度向外扩展而使其快速冷却。在此期间,当它们回复到较低的能量状态时,受激的离子和原子发射特征光辐射。可以利用敏感的光谱摄影进行光辐射的检测和光谱分析,从而产生关于材料的化学成分的信息。
在电子装置32中使用时间选通的检测器,其允许在激光脉冲之后以某个时间延迟记录激光等离子体的光发射。这是需要的,因为特征原子和离子的发射线只在等离子体膨胀和冷却之后开始出现。
通过光纤收集等离子热点发射,并通过包括分光仪的检测系统进行分析。通过产生的热的等离子体打断试样的化学键,并电离其构成元素。在组分的受激核素松驰之后,发生光谱发射。光谱发射线的定时随试样的种类而改变,但是也随到等离子体中心的距离而改变。入射激光的波长也是一个因素。等离子体的发展以及其内容的改变以微秒的时标进行。LIBS设备也可以用于激光致荧光光谱学(LIF)。
在LIBS中,小体积的目标流体被聚焦的脉冲激光束强烈地加热,因而呈现瞬变等离子状态,其中试样的成分基本上还原成单个原子。在高温等离子中,原子被电离,或者呈受激状态。这种状态的衰退由发射辐射表征,这在电磁频谱的紫外(UV)、可见和近红外区域(NIR)中被观察到。UV、可见以及NIR光发射的分光仪处理使得能够进井下行测试流体的组分和元素分析。
LIBS装置包括用于提供例如20纳秒或更短的持续时间的短脉冲的激光器。因为这个时间是如此之短,使得只需要施加小的能量,例如每个脉冲10微焦耳(mj),而达到非常高的功率水平(每单位时间的能量)。在本例中通过光缆提供光学装置。光缆(其可以在大部分长度上涂镀金属,以用于火花致分解光谱学)作为LIBS激光源,其具有开口端用于把激光脉冲提供给被研究的流体。还提供用于捕获在激光束入射的区域内由被研究的流体发射的光的光学装置。还提供分光仪用于检测和分离来自不同元素和离子的光。在撞击流体试样之后,形成等离子体,由等离子体发出的光产生在流体中包含的元素的痕迹。
在本例中LIBS激光源和LIBS光收集器被组合在一个光纤中,不过也可以被分成单独的光纤。LIBS激光源和LIBS光收集器中的任何一个或两者可被插入被研究的流体内,或者可以通过允许透过发出的与/或收集的光的窗口向流体发送光或者从流体收集光。
LIBS设备基本上对于所有元素是敏感的,根据试样和相关的元素,敏感程度随一般把检测限制于每百万0.1-200份的数量级而不同。本发明使得能够进行若干个复杂的分析,包括但不限于在钻井操作期间确定成分、流体的来源、流体的产生和流体的分配。
如图1所示,LIBS激光源28包括光纤34,其向被研究的流体30的特定位置传送激光脉冲20,并收集在对流体施加激光脉冲之后在流体中形成的等离子体发射的光。等离子体26由高强度激光脉冲诱发或产生。对于火花致分解光谱学(SIBS),可以在大部分光纤上涂镀金属涂层21,使得除去尖端23之外,大部分长度是导电的。此外,光纤的尖端23也可以涂镀光学上透明的但导电的涂层(例如锡氧化物或铟锡氧化物)。在流体中在电场超过该流体的击穿场强的位置产生火花。为有助于火花的产生,对于任何给定的电压,可以通过减少电极的曲率半径来增加局部电场强度。导体周围的电场随该导体的曲率半径成反比地增加。因此,对于给定的电压,可以通过在这样一个光缆和金属板或金属针之间产生火花,可以增强火花的产生,该光缆的尖端被弄尖而成为一个点,并涂覆光学透明的但导电的涂层25。光纤23的端部是透光的,以便允许激光脉冲进入流体30。利用高强度激光脉冲20在流体中诱发等离子体26。然后光学探针的端部23收集等离子发出的光,并使收集的光经过光导管34到达分光仪/处理器电子电路分析系统32。
在图3所示的另一个实施例中,电极36诱发火花到流体30内。火花在流体中诱发或产生等离子体26。光学探针的端部23收集在流体中形成的等离子发出的光,并使收集的光经过光导管34到达光谱仪/处理器电子电路分析系统32。借助于高强度激光脉冲产生等离子体。在光纤的大部分上涂镀有金属,并且在其尖端可以具有导电的但是光学透明的涂层(例如锡的氧化物或铟锡氧化物)。光导管或光纤的端部23是透光的,以便收集火花致等离子的光,并把收集的光提供给分光仪进行分析。借助于高强度激光脉冲在流体中产生等离子体。图7示出了电极36的更详细的示意的表示。如图7所示,探针22可以具有尖端23,其上涂覆有透光材料25。除去尖端之外的探针22的部分涂覆有金属涂层21。如图7所示,电极可以具有被整形的或者尖的端部37,以增强其在地层流体中产生的电场,以便产生火花。
元素分析对于在勘探、生产、钻井和输送操作中用于确定流体的源是有用的。在勘探中,可以知道哪个碳氢化合物区对于生产最经济。含有高量的硫的碳氢化合物需要附加处理来除去硫,使得她们具有较小的价值。类似地,需要附加处理以除去汞,随着更严格的环境条例付诸实施,这将变得越来越重要,其中要求在精炼的石油产品中汞的浓度为十亿分之几。此外,具有高量的镍或钒的碳氢化合物具有较小的价值,因为这些元素可以破坏精炼厂用于处理原油的昂贵的催化剂(每个催化单元可以超过百万美元或更多)。此外,来自不同井的流体或者来自同一个井不同深度的流体可以进行比较,以确定油层的区域划分。在生产中,特定区域的化学成份随时间的改变可以表示油田的排泄已经开始扩展到一个新的油层区域,因此帮助我们理解油层的连通性。分析可以对盐(卤)水或碳氢化合物流体(液体或气体)进行。在钻井操作中,也可以对流体试样进行组分分析,以确定某种需要的和不需要的物质例如硫的含量。可能有这样的情况:含有不需要的物质的地层或地层内被井穿过的分区的层是不能生产的。通过分析流体的成分,以确定流体或地层中是否存在有只存在于特定的一个或多个注入井中的示踪元素或示踪物,可以确定注入井对地层的分布。一般不存在于这种技术对其具有高灵敏度的井下的元素示踪物可用于确定油层的连通性。
如图4所示,本发明100可被配置在钻入地层中的井孔404中的井下。本发明可以通过输送装置412被配置,输送装置包括但不限于钻柱或在生产或分配管中的盘形管。从地层402中提取流体,使流体经过流动管线410进入井下工具406。然后,包含在井下工具406中的本发明使用流体中诱发的等离子发射的光的分解光谱学分析流体,如上所述。因而,本发明可用于在钻井的同时、钻井之后、生产期间和流体分配期间分析流体。
参见图5,其中示出了本发明的另一个实施例。如图5所示,本发明100可被设置用于经过分配管路44的流体30的化学分析。因而,可以在流体的目的地,或者在分配管路44中进行分配期间,评定被分配的流体(石油和天然气)的来源和质量。
参见图6,其表示在本发明的一个示例的实施例中执行的功能和操作的流程图600。本发明在602在被测流体中诱发等离子体,并在604收集来自等离子的发射。在606使所述发射传至处理器/分光仪/电子电路进行用于估计成分的分析和元素分析。所述分析使得本发明能够估计流体的性能(成分等)或地层的性能(通过追踪来自注入井的被研究的流体的源,确定分区、注入井对地层的分布等)。
作为在井下环境中操作的方法和设备以优选实施例说明了本发明,不过,本发明也可以作为计算机可读介质上的一组指令来实施,所述可读介质包括ROM,RAM,CD ROM,闪存或现在已知或未知的任何其它计算机可读介质,当所述指令被执行时,则使计算机实现本发明的方法。虽然由上面的发明说明了本发明的优选实施例,但这些仅仅作为例子,并不用于限制由下面权利要求限定的本发明的范围。

Claims (24)

1.一种用于估计井下流体成分的方法,包括:
在井下流体中诱发等离子体;
收集等离子体的光发射;以及
分析所述光发射以估计井下流体的成分。
2.如权利要求1所述的方法,其中诱发等离子体进一步包括在流体中产生激光脉冲。
3.如权利要求1所述的方法,其中诱发等离子体进一步包括在流体中产生火花。
4.如权利要求1所述的方法,其中收集来自等离子体的光发射进一步包括接收光缆中的光。
5.如权利要求1所述的方法,其中分析所述光发射进一步包括进行所述光发射的元素分析。
6.如权利要求1所述的方法,进一步包括:
估计和流体关联的地层的特性。
7.如权利要求6所述的方法,其中所述特性是区域划分。
8.如权利要求1所述的方法,进一步包括:
在流体中注入示踪物。
9.如权利要求1所述的方法,其中在流体中诱发等离子体进一步包括通过窗口向流体发送能量。
10.如权利要求1所述的方法,其中光发射进一步包括可见光、近红外光和紫外光之一。
11.如权利要求4所述的方法,其中在流体中产生火花进一步包括:
通过涂镀有光学透明的且导电的覆层的基本上用金属涂镀的光纤尖端产生电场。
12.一种用于估计井下流体成分的设备,包括:
和井下流体连通的等离子发生器;
和井下流体中产生的等离子光学连通的光学传感器;以及
被配置用于处理来自光学传感器的输出以便估计井下流体成分的处理器。
13.如权利要求12所述的设备,其中等离子发生器进一步包括用于向井下流体提供激光脉冲的光导管。
14.如权利要求12所述的设备,其中等离子发生器进一步包括用于在井下流体中产生火花的电极。
15.如权利要求12所述的设备,进一步包括:
在井下流体中产生的等离子和光学传感器之间的窗口。
16.如权利要求12所述的设备,其中处理器被进一步配置用于进行所述光发射的元素分析。
17.如权利要求12所述的设备,其中处理器被进一步配置用于估计和井下流体相关联的地层的特性。
18.如权利要求16所述的设备,其中处理器被进一步配置用于确定地层的分区。
19.如权利要求16所述的设备,其中处理器被进一步配置用于由所述分析确定流体的来源。
20.如权利要求12所述的设备,其中等离子发生器进一步包括光纤尖端,其涂镀有光学透明的且导电的覆层,用于产生火花。
21.一种用于估计井下流体成分的井下工具,包括:
和井下流体连通的等离子发生器;
和等离子发生器在井下流体中产生的等离子光学连通的光学传感器;以及
被配置用于分析来自光学传感器的输出从而估计井下流体的成分的分光仪。
22.如权利要求19所述的井下工具,其中等离子发生器包括用于向井下流体提供激光脉冲的光导管和用于在井下流体中产生火花的电极中的至少一个。
23.如权利要求1所述的方法,其中估计成分包括估计以下至少之一的存在:Be,Mg,Cr,Fe,Ag,Hg,Li,B,Na,Cl,Ca,Ti,Mn,Ni,Cu,Zn,Sr,Ba,Pb,Th,C,F,Al,Si,S,K,Co,Ga,Rb,Zr,Nb,Tc,Pd,Cd,Sn,Cs,Eu,Pt,Tl,P,V,Ge,As,Mo,I,Au,Bi,Y,In,Sb,Te,Hf,W,H,N,O,Ar,Sc,Ru,Rh,Gd,Er,Re,U,Pu和Am。
24.如权利要求1所述的方法,其中利用井下分光仪分析光发射。
CNA2006800423160A 2005-09-26 2006-09-26 用于井下流体的元素分析的方法和设备 Pending CN101501299A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/235,570 US7530265B2 (en) 2005-09-26 2005-09-26 Method and apparatus for elemental analysis of a fluid downhole
US11/235,570 2005-09-26

Publications (1)

Publication Number Publication Date
CN101501299A true CN101501299A (zh) 2009-08-05

Family

ID=37892236

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800423160A Pending CN101501299A (zh) 2005-09-26 2006-09-26 用于井下流体的元素分析的方法和设备

Country Status (7)

Country Link
US (1) US7530265B2 (zh)
EP (1) EP1937937B1 (zh)
JP (1) JP2009510439A (zh)
CN (1) CN101501299A (zh)
CA (1) CA2623526A1 (zh)
EA (1) EA013889B1 (zh)
WO (1) WO2007038413A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106441564A (zh) * 2015-08-05 2017-02-22 唯亚威通讯技术有限公司 光学滤波器和分光仪
CN109312620A (zh) * 2016-06-27 2019-02-05 桑德克斯有线有限公司 光学传感器
CN112378897A (zh) * 2020-11-05 2021-02-19 石家庄职业技术学院(石家庄广播电视大学) 一种食品生产重金属检测装置

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8760657B2 (en) * 2001-04-11 2014-06-24 Gas Sensing Technology Corp In-situ detection and analysis of methane in coal bed methane formations with spectrometers
US7782460B2 (en) * 2003-05-06 2010-08-24 Baker Hughes Incorporated Laser diode array downhole spectrometer
US7614302B2 (en) * 2005-08-01 2009-11-10 Baker Hughes Incorporated Acoustic fluid analysis method
GB2433112B (en) * 2005-12-06 2008-07-09 Schlumberger Holdings Borehole telemetry system
US7687770B2 (en) * 2007-01-19 2010-03-30 Schlumberger Technology Corporation Methods and apparatus for multi dimension fluorescence spectrum measurement downhole
US7719676B2 (en) * 2007-02-15 2010-05-18 Baker Hughes Incorporated Downhole laser measurement system and method of use therefor
US8230916B2 (en) * 2007-11-16 2012-07-31 Schlumberger Technology Corporation Apparatus and methods to analyze downhole fluids using ionized fluid samples
US7733490B2 (en) * 2007-11-16 2010-06-08 Schlumberger Technology Corporation Apparatus and methods to analyze downhole fluids using ionized fluid samples
US7852468B2 (en) * 2007-12-14 2010-12-14 Baker Hughes Incorporated Fiber optic refractometer
WO2009109981A2 (en) * 2008-03-04 2009-09-11 Darshan Pant Priya Ultra-portable wireless atomic optical emission spectrometers for use in elemental analysis of various conducting metals and their alloys
US8032311B2 (en) 2008-05-22 2011-10-04 Baker Hughes Incorporated Estimating gas-oil ratio from other physical properties
US8082780B2 (en) 2008-08-28 2011-12-27 Schlumberger Technology Corporation Methods and apparatus for decreasing a density of a downhole fluid
US8379207B2 (en) * 2008-10-15 2013-02-19 Baker Hughes Incorporated Method and apparatus for estimating a fluid property
US7969571B2 (en) * 2009-01-15 2011-06-28 Baker Hughes Incorporated Evanescent wave downhole fiber optic spectrometer
JP5764131B2 (ja) 2009-09-23 2015-08-12 エアロジェット ロケットダイン オブ ディーイー,インコーポレイテッド 一過性プラズマを用いて連続爆轟波を維持するための燃焼システムおよびその方法
WO2011063086A1 (en) 2009-11-19 2011-05-26 Halliburton Energy Services, Inc. Downhole optical radiometry tool
US8508741B2 (en) * 2010-04-12 2013-08-13 Baker Hughes Incorporated Fluid sampling and analysis downhole using microconduit system
US9072169B1 (en) 2010-07-13 2015-06-30 Cascodium Inc. Pulse generator and systems and methods for using same
CN102183494B (zh) * 2011-02-18 2013-01-16 清华大学 一种利用等离子体空间限制作用提高元素测量精度的方法
GB2493080B (en) * 2011-07-15 2016-03-23 Schlumberger Holdings Formation fluid sample collection and processing tool
EP2759827A4 (en) * 2011-09-12 2015-07-01 Imagineering Inc ANALYZER AND ANALYSIS METHOD
US8970840B2 (en) 2011-12-09 2015-03-03 The United States of America, as represented by the Secretary of the Department of Health and Human Services, Centers for Disease Control and Prevention Method and apparatus for aerosol analysis using optical spectroscopy
US9091597B2 (en) 2012-05-29 2015-07-28 The United States of America, as represented by the Secretary of the Department of Health and Human Services, Centers for Disease Control and Prevention Electrode-assisted microwave-induced plasma spectroscopy
MY180249A (en) 2012-06-08 2020-11-26 Schlumberger Technology Bv Assessing reservoir connectivity in hydrocarbon reservoirs
US9267895B2 (en) 2012-09-13 2016-02-23 The University Of Tokyo Chemical analysis device
US9249656B2 (en) 2012-11-15 2016-02-02 Baker Hughes Incorporated High precision locked laser operating at elevated temperatures
CN102966349A (zh) * 2012-11-28 2013-03-13 褚万泉 一种井间电磁瞬变监测系统及其监测方法
US9074461B2 (en) 2013-06-06 2015-07-07 Schlumberger Technology Corporation Fluid analyzer with plasma emission unit and method of using same
FR3014333B1 (fr) * 2013-12-06 2016-01-08 Ifp Energies Now Procede de tri de catalyseur use en fonction des metaux du catalyseur
JP6490700B2 (ja) 2014-01-31 2019-03-27 ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. 光学フィルタおよび分光計
EP3091174A1 (en) 2015-05-04 2016-11-09 Openfield A downhole fluid properties analysis device and tools comprising such a device
CN107923781B (zh) 2015-06-22 2020-09-29 沙特阿拉伯石油公司 提供基于熵的多相流表征的系统、方法和计算机介质
US9857298B2 (en) * 2015-07-06 2018-01-02 Saudi Arabian Oil Company Systems and methods for near-infrared based water cut monitoring in multiphase fluid flow
US9945790B2 (en) 2015-08-05 2018-04-17 Viavi Solutions Inc. In-situ spectral process monitoring
GB2574738B (en) * 2017-02-03 2021-09-29 Resman As Targeted tracer injection with online sensor
TWI745392B (zh) * 2017-06-29 2021-11-11 瑞禾生物科技股份有限公司 生物感測元件及其製造方法以及生物分子檢測方法
CN109932355B (zh) * 2017-12-15 2024-01-26 中国石油化工集团有限公司 钻井液地层岩性-流体激光信息的分离方法
US11220893B2 (en) 2020-01-23 2022-01-11 Saudi Arabian Oil Company Laser array for heavy hydrocarbon heating
US11163091B2 (en) * 2020-01-23 2021-11-02 Saudi Arabian Oil Company In-situ hydrocarbon detection and monitoring
US11643912B2 (en) * 2020-02-20 2023-05-09 Gas Technology Institute Application of enzyme-based green solvents for the recovery of subsurface fluids
NO20221088A1 (zh) * 2020-03-24 2022-10-11
IT202000007039A1 (it) * 2020-04-02 2021-10-02 Istituto Naz Fisica Nucleare Metodo e apparato per l’analisi atomico molecolare di un fluido allo stato gassoso
US11867629B2 (en) 2021-03-30 2024-01-09 Saudi Arabian Oil Company 4D chemical fingerprint well monitoring
WO2023122371A1 (en) * 2021-12-20 2023-06-29 Massachusetts Institute Of Technology Continuous emissions monitor for directed-energy borehole drilling
CN116930155B (zh) * 2023-09-15 2023-12-08 华东交通大学 基于激光诱导击穿光谱的重金属污染检测方法及装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4561777A (en) 1982-09-07 1985-12-31 The United States Of America As Represented By The United States Department Of Energy Apparatus and method for quantitative determination of materials contained in fluids
JP2598285B2 (ja) 1987-12-21 1997-04-09 オリンパス光学工業株式会社 画像形成装置
ATE117081T1 (de) 1988-10-03 1995-01-15 Krupp Ag Hoesch Krupp Verfahren zur optischen ankopplung eines elementanalysesystems und eines lasers an flüssiges metall in einem schmelzgefäss.
US4986658B1 (en) 1989-04-21 1996-06-25 Univ Lehigh Transient spectroscopic method and apparatus for in-process analysis of molten metal
US5091652A (en) 1990-01-12 1992-02-25 The Regents Of The University Of California Laser excited confocal microscope fluorescence scanner and method
FR2667810B1 (fr) 1990-10-10 1995-02-17 Framatome Sa Procede et dispositif de travail au laser avec controle a distance.
DE4118518C2 (de) 1991-06-06 1994-03-17 Fraunhofer Ges Forschung Verfahren zur Durchführung der Laser-Emissionsspektroskopie und Vorrichtung zur Durchführung des Verfahrens
US5469255A (en) 1993-01-28 1995-11-21 Kamada; Kenji Method and apparatus for spectrometric measurement of particulate surfaces
US5379103A (en) * 1993-05-06 1995-01-03 Apti, Inc. Method and apparatus for in situ detection of minute amounts of trace elements
US5608519A (en) 1995-03-20 1997-03-04 Gourley; Paul L. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells
US5751416A (en) 1996-08-29 1998-05-12 Mississippi State University Analytical method using laser-induced breakdown spectroscopy
US5847825A (en) * 1996-09-25 1998-12-08 Board Of Regents University Of Nebraska Lincoln Apparatus and method for detection and concentration measurement of trace metals using laser induced breakdown spectroscopy
US5859430A (en) * 1997-04-10 1999-01-12 Schlumberger Technology Corporation Method and apparatus for the downhole compositional analysis of formation gases
US6034768A (en) * 1997-09-26 2000-03-07 Physical Sciences Inc. Induced breakdown spectroscopy detector system with controllable delay time
NO20002137A (no) * 2000-04-26 2001-04-09 Sinvent As Reservoarovervåkning ved bruk av kjemisk intelligent frigjøring av tracere
US6741345B2 (en) * 2001-02-08 2004-05-25 National Research Council Of Canada Method and apparatus for in-process liquid analysis by laser induced plasma spectroscopy
US7362422B2 (en) * 2003-11-10 2008-04-22 Baker Hughes Incorporated Method and apparatus for a downhole spectrometer based on electronically tunable optical filters
US7277796B2 (en) * 2005-04-26 2007-10-02 Schlumberger Technology Corporation System and methods of characterizing a hydrocarbon reservoir

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106441564A (zh) * 2015-08-05 2017-02-22 唯亚威通讯技术有限公司 光学滤波器和分光仪
CN106441564B (zh) * 2015-08-05 2019-01-11 唯亚威通讯技术有限公司 光学滤波器和分光仪
CN109312620A (zh) * 2016-06-27 2019-02-05 桑德克斯有线有限公司 光学传感器
CN112378897A (zh) * 2020-11-05 2021-02-19 石家庄职业技术学院(石家庄广播电视大学) 一种食品生产重金属检测装置
CN112378897B (zh) * 2020-11-05 2023-03-10 石家庄职业技术学院(石家庄广播电视大学) 一种食品生产重金属检测装置

Also Published As

Publication number Publication date
US20070068242A1 (en) 2007-03-29
WO2007038413A2 (en) 2007-04-05
WO2007038413A3 (en) 2009-04-09
EP1937937A2 (en) 2008-07-02
CA2623526A1 (en) 2007-04-05
US7530265B2 (en) 2009-05-12
JP2009510439A (ja) 2009-03-12
EP1937937B1 (en) 2017-09-06
EA013889B1 (ru) 2010-08-30
EP1937937A4 (en) 2015-04-01
EA200800901A1 (ru) 2008-10-30

Similar Documents

Publication Publication Date Title
CN101501299A (zh) 用于井下流体的元素分析的方法和设备
US5757484A (en) Standoff laser induced-breakdown spectroscopy penetrometer system
US5902939A (en) Penetrometer sampler system for subsurface spectral analysis of contaminated media
US8134122B2 (en) Multi-modal particle detector
CN103076310B (zh) 用于物质成份分析的光谱探测系统及其探测方法
US6771368B1 (en) Laser-induced ionisation spectroscopy, particularly for coal
US20110257887A1 (en) Utilization of tracers in hydrocarbon wells
Martin et al. Quantification of rare earth elements using laser-induced breakdown spectroscopy
CA2574867A1 (en) Analysis of rock formations by means of laser induced plasma spectroscopy
CN101984344A (zh) 地层岩性实时在线识别装置及其识别方法
Volk et al. First on-line analysis of petroleum from single inclusion using ultrafast laser ablation
CN107290322A (zh) 一种基于时间分辨荧光光谱确定石油包裹体成藏关键时刻的装置及方法
Hafeez et al. Calibration-free laser-induced breakdown spectroscopic analysis of copper-rich mineral collected from the Gilgit-Baltistan region of Pakistan
Miles et al. Subsurface heavy‐metal detection with the use of a laser‐induced breakdown spectroscopy (LIBS) penetrometer system
CN203224448U (zh) 用于物质成分分析的光谱探测系统
WO2014202618A2 (en) Method for determining the configuration of a structure
Bumberger et al. Carry‐over effects of the membrane interface probe
Nan et al. Sensitive determination of rare earth elements in liquid samples by spatial confinement assisted surface enhanced laser-induced breakdown spectroscopy
Aldstadt et al. Analytical chemistry and the cone penetrometer: In situ chemical characterization of the subsurface
Huang et al. Rapid detection and identification of rocks and minerals by laser‐induced breakdown spectroscopy
US9874655B2 (en) Fluid analyzer using absorption spectroscopy
Parvin et al. LIF/LIB Spectroscopy of crude oil-saturated carbonate bedrock
Mazalan et al. Development of automated system for real-time LIBS analysis
Hbeeb et al. Investigation of the effect of laser-parameters on the improvement of the signal of spectral analysis lines of heavy metals in the crude oil by using LIPS-System
AU747362B2 (en) Apparatus and method for analyzing material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20090805