CN101478287B - 直接变频调制中载波泄露的自适应消除系统 - Google Patents

直接变频调制中载波泄露的自适应消除系统 Download PDF

Info

Publication number
CN101478287B
CN101478287B CN2009100453814A CN200910045381A CN101478287B CN 101478287 B CN101478287 B CN 101478287B CN 2009100453814 A CN2009100453814 A CN 2009100453814A CN 200910045381 A CN200910045381 A CN 200910045381A CN 101478287 B CN101478287 B CN 101478287B
Authority
CN
China
Prior art keywords
output
module
digital
converter
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009100453814A
Other languages
English (en)
Other versions
CN101478287A (zh
Inventor
范莹莹
王泽颖
王先勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI QUANBO COMMUNICATION TECHNOLOGY Co Ltd
Anywave Communication Technologies Co Ltd
Original Assignee
SHANGHAI QUANBO COMMUNICATION TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI QUANBO COMMUNICATION TECHNOLOGY Co Ltd filed Critical SHANGHAI QUANBO COMMUNICATION TECHNOLOGY Co Ltd
Priority to CN2009100453814A priority Critical patent/CN101478287B/zh
Publication of CN101478287A publication Critical patent/CN101478287A/zh
Application granted granted Critical
Publication of CN101478287B publication Critical patent/CN101478287B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

一种数字信号处理技术领域的直接变频调制中载波泄露的自适应消除系统,包括:下变频模块、解调与频相恢复模块、直流检测模块和反馈模块,本发明在主信号不中断的情况下,能够自动监测、跟踪和补偿整个上变频链路中所有器件中因环境温度及湿度变化而引起的直流分量,同时自适应反馈结构精度高。

Description

直接变频调制中载波泄露的自适应消除系统
技术领域
本发明涉及的是一种数字信号处理技术领域的系统,具体是一种直接变频调制中载波泄露的自适应消除系统。
背景技术
在数字信号传输系统中,需要将基带信号上变频到射频。以数字电视传输系统为例,8MHz的基带信号需要被上变频到相应的射频频率,如48MHz到866MHz。传统的上变频有以下三种方式:三次变频、二次变频和直接变频。
三次变频,能比较好地滤除镜像频谱,各模拟滤波器的频点固定,系统在各频率点上性能一致。本振频率不在所需要的频带之内,可以和镜像频谱一起很好地滤除。但是这种变频方式需要2级变频,对系统和电路设计有相当高的要求,系统相当复杂,三级变频的相位噪声比二次变频和直接变频的相位噪声差;而二次变频的模拟带通滤波器既不能保证很好的带外抑制,也不能保证很好的带通特性,即带内的平坦度无法保证。为了解决以上三次变频和二次变频的不足,直接变频即一次变频的方式得到推崇。直接变频是将复数字基带信号I,Q两路通过两个DAC转换为复模拟基带信号;在零中频处将I,Q两路通过两个低通滤波器进行简单的模拟低通滤波,滤除DAC的高次频谱谐波;再将该模拟复零中频信号I,Q两路通过变频器直接正交调制到所需要的频带上。由于复数字基带信号和复模拟基带信号的I路和Q路均为零均值,在本振信号为理想的正弦波和余弦波时,本振信号被抵消。从而复模拟基带信号被直接变频到所需要的频点。直接变频的优势是明显的。首先,系统只有一次变频,相位噪声优于二次变频和三次变频;其次,基带的模拟滤波器是简单的低通滤波器,性能很容易保证,设计很简单;最后,因为零中频的结构,射频不需要任何模拟滤波器。但是,直接变频有一个很严格的要求,就是复模拟基带信号的I路和Q路必须满足零均值。现代数字通讯系统,在数字域是能保证这一点的,但是,基带的I和Q两路DAC一般因设计和制造的原因,都会有一定的直流偏置存在,在变频器中,因设计和制造的原因,也会有一定的直流偏置存在。这些直流偏置会导致载波的泄漏,使得最终输出的频谱中央有明显的载波存在。这些直流偏置还会随环境温度,湿度的变化而变化。
在很多用于零中频直接变频的两路DAC器件中,如AD9773,9775,9777,9779和DAC5686,5687等,在主输出DAC上还有辅助DAC存在,用于在输出信号中加入一个直流分量,用于抵消系统中的直流偏置,见图7。但是,没有任何文献提供了如何得到这个直流分量的方法。而且,这种方式往往只能抵消主DAC本身的直流偏置,不能完全抵消整个上变频链路中的直流偏置。
经过对现有技术的检索发现,中国专利申请号200810080906.3,公开号CN101262243A,记载了一种“具有自我载波泄露校正体制的混频器及载波泄露校正方法”,通过电流测量电路分别测试互导级第一处理单元和第二处理单元的电流差值并产生补偿电流,从而降低存在于混频器内的电流不匹配。但是该技术只能补偿由于双混频器器件特性导致的直流偏置,并不能抵消整个上变频链路中其它器件引入的直流偏置,而且是在模拟域进行检测和补偿,精度和准确度有限,因此并不能有效抵消直接变频调制中的载波泄漏。
又经检索发现,中国专利申请号00800924.4,公开号CN1306691A,记载了一种“具有载波泄漏补偿的正交调制器”,由一个同相和一个正交支路构成。在同相和正交支路中,实时数字信号被转换成模拟信号,对模拟信号滤波,滤波后的模拟信号分别与一个载波信号和该载波被移相90度后的信号一起被调制。调制后的同相和正交信号相加以形成一个正交调幅信号。在对正交调制器加电的同时,测量同相合正交支路中的载波泄漏,当测得载波泄漏在相应的同相合正交支路中为最小时,测出的载波泄漏被提供给来回切换的比较器。在对正交调制器加电的同时,状态机启动信号发生器,该信号发生器分别补偿信号输入到同相和正交支路从而实现直流减少降低载波泄漏。当比较器反复切换时,命令状态机停止对相应信号发生器的控制,从而输出信号被固定。但是该技术基于载波泄漏是一个缓慢的非时变的过程,不需要进行连续补偿的前提,同时进行补偿时候主信号需要中断,因此根本无法满足实时的自动的连续的消除载波泄漏的目的。
发明内容
本发明针对现有技术存在的上述不足,提供一种直接变频调制中载波泄露的自适应消除系统,在主信号不中断的情况下,能够自动监测、跟踪和补偿整个上变频链路中所有器件中因环境温度及湿度变化而引起的直流分量,同时自适应反馈结构精度高。
本发明是通过以下技术方案实现的,本发明包括:下变频模块、解调与频相恢复模块、直流检测模块和反馈模块,其中:下变频模块的输入端接收待处理射频信号并将基带信号传送至解调与频相恢复模块,解调与频相恢复模块将基带信号解调并恢复载波的频率与相位后传输至直流检测模块,直流检测模块将计算出的直流分量传输至反馈模块,反馈模块设置于调制系统的输出端并同时接收来自调制系统的基带数据和来自直流检测模块的直流分量,反馈模块的输出端连接至发射天线。
下变频模块包括:变频器、固定滤波器和模数转换器,其中:变频器接收待处理射频信号,变频器的输出端连接固定滤波器的输入端,固定滤波器的输出端连接模数转换器,模数转换器的输出端连接解调与频相恢复模块。
所述的变频器为带有单口变化带通滤波器的单口变频器或带有双乘法电路的双口变频器,其中:单口变频器将射频信号变换到模拟低中频,该变频器接收单口变化带通滤波器输出的经过滤波的射频信号,该变频器输出中心频率36MHz~44MHz的模拟低中频信号,单口变频器中的单口变化带通滤波器用于滤除镜像频谱;双口变频器包括两个并联的乘法电路,该双口变频器接收射频信号和来自本振信号的正弦波信号和余弦波信号并分别输出基带信号的I分量和Q分量的模拟值。
所述的固定滤波器为双口固定低通滤波器或单口固定带通滤波器,其中:双口固定低通滤波器滤除模拟基带信号的高次频谱谐波,该双口固定低通滤波器输入为模拟基带信号,输出为经低通滤波后的模拟基带信号。
所述的模数转换器为双口模拟-数字转换器或单口模拟-数字转换器以及数字变频器,所述的双口模拟-数字转换器接收模拟基带信号,输出数字基带信号至解调与频相恢复模块;所述的单口模拟-数字转换器接收模拟低中频信号,输出数字低中频信号,所述的数字变频器接收数字低中频信号和数字本振信号并输出数字基带信号。
解调与频相恢复模块包括:半带滤波器,信道成形滤波器,内插器,相位反旋器和同步器,其中:半带滤波器与下变频模块的输出端相连接,半带滤波器的输出端连接信道成形滤波器的输入端,信道成形滤波器的输出端连接内插器的输入端,内插器的输出端分别连接相位反旋器的输入端和同步器的输出端,相位反旋器的输入端另外与同步器的输出端连接,相位反旋器的输出端同时连接同步器的输入端和直流检测模块。
所述的半带滤波器滤除模数转换后的高次频谱谐波,输出基带数字信号;信道成形滤波器与调制端信道成形滤波器结构一致,完成解调功能,输出解调后的基带数字信号;内插器用于恢复采样时钟相位,输出采样时钟相位纠正后的数据;相位反旋器用于恢复载波频率和相位,输出频相皆被纠正后的解调后的数据,送到直流检测模块。
直流检测模块包括:第一积分器、第二积分器、第一回路滤波器和第二回路滤波器,其中:第一积分器和第二积分器分别与解调与频相恢复模块的输出端连接,第一积分器和第二积分器分别与第一回路滤波器相连和第二回路滤波器相连后输出至反馈模块。
所述的第一积分器和第二积分器对基带数字信号的每个采样点求均值后将基带数字信号平均值分别输出至第一回路滤波器和第二回路滤波器,所述的第一回路滤波器和第二回路滤波器接收基带数字信号平均值并进一步求平均后将直流分量输出至反馈模块。
反馈模块包括:数模转换器、反馈滤波器和反馈变频器,其中:数模转换器的输入端分别与直流检测模块的输出端和调制系统的输出端连接,数模转换器的输出端依次连接反馈滤波器和反馈变频器并连接至发射天线的输入端。
本发明在数字信号传输中直接变频的调制中,通过对射频信号进行下变频和采样,对采样后的数据进载波频率和相位恢复后分出I、Q两路信号分别进行求均值运算后,再将该均值分别经回路滤波器进一步平均后得到I、Q两路准确直流分量反馈到调制端I、Q两路的基带信号实现直流分量抵消以获得射频信号中I、Q两路信号无载波泄露。
本发明能够自动的,准确的,有效的抑制载波泄露,采用本发明在输出的模拟射频频谱中载波泄露,相比现有技术中仅靠模拟器件特性出现的载波泄露要低超过40分贝,能够确保得到优越的输出模拟射频特性。
附图说明
图1为实施例1应用示意图;
图2为实施例1中下变频模块示意图;
图3为实施例1中解调与频相恢复模块示意图;
图4为实施例1中直流检测模块示意图;
图5为实施例1中反馈模块示意图;
图6为实施例2中下变频模块示意图;
图7为实施例2中反馈模块示意图;
图8为现有技术输出频谱;
图9为实施例2输出频谱。
具体实施方式
下面结合附图对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
如图1所示为本实施例1应用示意图,实施例1包括:下变频模块100、解调与频相恢复模块200、直流检测模块300、反馈模块400、调制系统500和发射天线600,其中:下变频模块100的输入端与发射天线600耦合后接收到待处理射频信号并输出基带信号至解调与频相恢复模块200,解调与频相恢复模块200将基带信号解调并恢复载波的频率与相位后传输至直流检测模块300,直流检测模块300将计算后的准确的直流分量传输至反馈模块400,反馈模块400同时接收来自调制系统500输出的基带信号,实现信号直流分量抵消并变频后输出射频信号传送至发射天线600。
如图2所示,实施例1中所述的下变频模块100包括:第一乘法电路101、第二乘法电路111、第一固定低通滤波器102、第二固定低通滤波器112、第一模数转换器103和第二模数转换器113,其中:第一乘法电路101接收待处理的发射天线600耦合下来的射频信号和来自本振信号产生的余弦波信号,第一乘法电路101的输出是送给第一固定低通滤波器102的I路模拟基带信号;第二乘法电路111接收待处理的发射天线600耦合下来的射频信号和来自本振信号产生的正弦波信号,第二乘法电路111的输出是送给第二固定低通滤波器112的Q路模拟基带信号,第一固定低通滤波器102的输入是第一乘法电路101输出的I路模拟基带信号,第一固定低通滤波器102将滤波后的I路模拟基带信号输出到第一模数转换器103;第二固定低通滤波器112的输入是第二乘法电路121输出的Q路模拟基带信号,第二固定低通滤波器112将滤波后的Q路模拟基带信号输出到第二模数转换器113,第一模数转换器103和第二模数转换器113分别将I路数字基带信号和Q路数字基带信号输出至解调与频相恢复模块200。
如图3所示,实施例1中所述的解调与频相恢复模块200包括:半带滤波器201,信道成形滤波器202,内插器203,相位反旋器204,同步器205,其中:半带滤波器201接收来自下变频模块100输出的基带数字信号,半带滤波器201将滤波后的基带数字信号输出到信道成形滤波器202,信道成形滤波器202的输入是半带滤波器201滤波后的基带数字信号,信道成形滤波器202将解调后的基带数字信号输出到内插器203,内插器203的输入是信道成形滤波器202滤波后的基带数字信号以及同步器205输出的恢复采样相位的控制信号,内插器203将恢复采样相位的数据输出到相位反旋器204,相位反旋器204的输入是内插器203恢复采样相位后的数据以及同步器205输出的恢复载波频率和相位的控制信号,相位反旋器204将恢复了载波频率和相位的数据分别输出到直流检测模块300,以及同步器205,同步器205的输入是相位反旋器恢复了载波频率和相位的数据,输出的是恢复采样相位和载波频率与相位的控制信号,分别反馈到相位反旋器204和内插器203。
所述的信道成形滤波器202用于恢复出解调信号,该信道成形滤波器202和调制系统500中的信道成形滤波器在结构上完全一致,所述的内插器203用于恢复解调信号采样相位,由模拟-数字转换器采样时钟产生与调制端数据一致的频率的时钟,并通过内插器203恢复采样相位误差,所述的相位反旋器204用于恢复解调信号的载波频率和相位,所述的同步器205用于生成恢复载波频率与相位以及时钟采样相位的控制信号。
如图4所示,实施例1中所述的直流检测模块300包括:第一积分器301、第二积分器311、第一回路滤波器302和第二回路滤波器312,其中:第一积分器301和第二积分器311分别接收解调与频相恢复模块200的输出,第一回路滤波器302和第二回路滤波器312分别与第一积分器301相连和第二积分器311相连后分别输出I、Q两路直流分量至反馈模块400。
所述的第一积分器301和第二积分器311为求采样点平均值,并将基带数字信号的平均值分别传输至第一回路滤波器302和第二回路滤波器312,所述的第一回路滤波器302和第二回路滤波器312接收基带数字信号平均值进行进一步平均,并输出准确的直流分量至反馈模块400。
如图5所示,实施例1中所述的反馈模块400包括:第一减法器401、第二减法器411、第一数模转换器402、第二数模转换器412、第一反馈滤波器403、第二反馈滤波器413、第一反馈变频器404、第二反馈变频器405和加法器406,其中:第一减法器401接收直流检测模块300输出的I路直流分量和调制系统500输出的I路数字基带信号并输出至第一数模转换器402,第二减法器411接收直流检测模块300输出的Q路直流分量和调制系统500输出的Q路数字基带信号并输出至第二数模转换器412,第一数模转换器402、第一反馈滤波器403和第一反馈变频器404组成支路并与第二数模转换器412、第二反馈滤波器413、第二反馈变频器405组成的支路合并至加法器406并输出至发射天线600。
如图6所示,实施例2中的下变频模块100包括:单口变化带通滤波器121、单口变频器122、单口固定带通滤波器123、单口模拟-数字转换器124和数字变频器125,其中:单口变化带通滤波器121接收待处理的发射天线600耦合下来的射频信号并依次连接单口变频器122、单口固定带通滤波器123、单口模拟-数字转换器124和数字变频器125,单口变频器122和数字变频器125另外分别接收36MHz~44MHz的中心频率和来自本振信号产生的数字域的本振信号,数字变频器125的输出端与解调与频相恢复模块200的输入端连接。
如图7所示,实施例2中的反馈模块400包括:第一数模转换器402、第二数模转换器412、第一反馈滤波器403、第二反馈滤波器413、第一反馈变频器404、第二反馈变频器405和加法器406,其中:第一数模转换器402和第二数模转换器412分别接收调制系统500输出的I路数字基带信号和Q路数字基带信号,第一数模转换器402、第一反馈滤波器403和第一反馈变频器404组成支路并与第二数模转换器412、第二反馈滤波器413、第二反馈变频器405组成的支路合并至加法器406并输出至发射天线600。
所述的第一数模转换器402和第二数模转换器412上还分别设有第一辅助转换器422和第二辅助转换器432,第一辅助转换器422的输入端连接至直流检测模块300的输出的I路直流分量,第二辅助转换器432的输入端连接至直流检测模块300的输出的Q路直流分量,第一辅助转换器422和第二辅助转换器432的输出端分别连接至第一数模转换器402和第二数模转换器412的输入端。
如图8所示,其x轴表示频率,y轴表示增益,Marker位于1R位置表示现有技术中仅靠模拟器件特性保证下的射频图谱的载波泄露,可见载波泄露与底噪相差56分贝。如图9所示,其x轴表示频率,y轴表示增益,Marker位于1R位置表示本实施例2的频域图谱的载波泄露,可见采用本发明后,载波泄露与底噪之间相差仅13分贝,与现有技术中载波泄露相比相差超过43分贝,幅度上相当于原先的二万分之一。可见本实施例中载波泄露能得到有效的抑制。

Claims (10)

1.一种直接变频调制中载波泄露的自适应消除系统,其特征在于,包括:下变频模块、解调与频相恢复模块、直流检测模块和反馈模块,其中:下变频模块的输入端接收待处理射频信号并将基带信号传送至解调与频相恢复模块,解调与频相恢复模块将基带信号解调并恢复载波的频率与相位后传输至直流检测模块,直流检测模块将计算出的直流分量传输至反馈模块,反馈模块设置于调制系统的输出端并同时接收来自调制系统的基带数据和来自直流检测模块的直流分量,反馈模块的输出端连接至发射天线,其中的直流检测模块包括:第一积分器、第二积分器、第一回路滤波器和第二回路滤波器,其中:第一积分器和第二积分器分别与解调与频相恢复模块的输出端连接,第一积分器和第二积分器分别与第一回路滤波器相连和第二回路滤波器相连后输出至反馈模块。
2.根据权利要求1所述的直接变频调制中载波泄露的自适应消除系统,其特征是,所述的下变频模块包括:变频器、固定滤波器和模数转换器,其中:变频器接收待处理射频信号,变频器的输出端连接固定滤波器的输入端,固定滤波器的输出端连接模数转换器,模数转换器的输出端连接解调与频相恢复模块。
3.根据权利要求2所述的直接变频调制中载波泄露的自适应消除系统,其特征是,所述的变频器为带有单口变化带通滤波器的单口变频器或带有双乘法电路的双口变频器。
4.根据权利要求2所述的直接变频调制中载波泄露的自适应消除系统,其特征是,所述的固定滤波器为双口固定低通滤波器或单口固定带通滤波器。
5.根据权利要求2所述的直接变频调制中载波泄露的自适应消除系统,其特征是,所述的模数转换器为双口模拟-数字转换器或单口模拟-数字转换器以及数字变频器。
6.根据权利要求1所述的直接变频调制中载波泄露的自适应消除系统,其特征是,所述的解调与频相恢复模块包括:半带滤波器,信道成形滤波器,内插器,相位反旋器和同步器,其中:半带滤波器与下变频模块的输出端相连接,半带滤波器的输出端连接信道成形滤波器的输入端,信道成形滤波器的输出端连接内插器的输入端,内插器的输出端分别连接相位反旋器的输入端和同步器的输出端,相位反旋器的输入端另外与同步器的输出端连接,相位反旋器的输出端同时连接同步器的输入端和直流检测模块。
7.根据权利要求1所述的直接变频调制中载波泄露的自适应消除系统,其特征是,所述的第一积分器和第二积分器将基带数字信号的每个采样点求均值后将基带数字信号平均值分别输出至第一回路滤波器和第二回路滤波器。
8.根据权利要求7所述的直接变频调制中载波泄露的自适应消除系统,其特征是,所述的第一回路滤波器和第二回路滤波器接收基带数字信号平均值并进一步求平均后将直流分量输出至反馈模块。
9.根据权利要求1所述的直接变频调制中载波泄露的自适应消除系统,其 特征是,所述的反馈模块包括:数模转换器、反馈滤波器和反馈变频器,其中:数模转换器的输入端分别与直流检测模块的输出端和调制系统的输出端连接,数模转换器的输出端依次连接反馈滤波器和反馈变频器并连接至发射天线的输入端。
10.根据权利要求9所述的直接变频调制中载波泄露的自适应消除系统,其特征是,所述的数模转换器上设有辅助转换器和控制信号转换器,其中:控制信号转换器的输入端连接至平均器模块的输出端,控制信号转换器的输出端连接辅助转换器的输入端,辅助转换器的输出端与数模转换器的输入端相连接。
CN2009100453814A 2009-01-15 2009-01-15 直接变频调制中载波泄露的自适应消除系统 Active CN101478287B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100453814A CN101478287B (zh) 2009-01-15 2009-01-15 直接变频调制中载波泄露的自适应消除系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100453814A CN101478287B (zh) 2009-01-15 2009-01-15 直接变频调制中载波泄露的自适应消除系统

Publications (2)

Publication Number Publication Date
CN101478287A CN101478287A (zh) 2009-07-08
CN101478287B true CN101478287B (zh) 2011-03-16

Family

ID=40838929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100453814A Active CN101478287B (zh) 2009-01-15 2009-01-15 直接变频调制中载波泄露的自适应消除系统

Country Status (1)

Country Link
CN (1) CN101478287B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045133B (zh) * 2009-10-23 2013-04-03 中国科学院计算技术研究所 用于无线传感器网络节点的芯片及芯片上的数字基带系统
CN101895266B (zh) * 2010-07-20 2013-01-16 上海文络电子科技有限公司 数模混合自动增益控制系统及其控制方法
CN103634261B (zh) * 2012-08-21 2016-12-21 北京同方吉兆科技有限公司 一种数字电视发射系统解决直接变频i、q数据失真的方法
CN104486273B (zh) * 2014-12-11 2018-01-09 中国传媒大学 一种自适应直接正交变频调制误差校正方法
CN105610762B (zh) * 2015-12-17 2019-06-04 中国电子科技集团公司第四十一研究所 一种可校准的宽载波正交调制装置
CN106339732A (zh) * 2016-08-23 2017-01-18 池州睿成微电子有限公司 一种uhf rfid读写器接收机
JP6946037B2 (ja) * 2017-04-05 2021-10-06 ルネサスエレクトロニクス株式会社 無線受信機
TWI685669B (zh) * 2018-10-29 2020-02-21 立積電子股份有限公司 雷達裝置及其洩漏修正方法
CN114593754B (zh) * 2020-12-04 2024-01-19 小华半导体有限公司 数据的分析/校正/方法及系统、存储介质、磁性编码器

Also Published As

Publication number Publication date
CN101478287A (zh) 2009-07-08

Similar Documents

Publication Publication Date Title
CN101478287B (zh) 直接变频调制中载波泄露的自适应消除系统
KR100735366B1 (ko) 무선 송수신장치에서 자가 보상장치 및 방법
KR100860670B1 (ko) 무선 송수신장치에서 자가 보상방법
US8094054B2 (en) Transmitter with delay mismatch compensation
US7822389B2 (en) Methods and apparatus to provide an auxiliary receive path to support transmitter functions
US20020015450A1 (en) Correction of phase and amplitude imbalance of I/Q modulator
CN101373980B (zh) 无线接收机及直流失调电压的消除方法
JP5896392B2 (ja) 通信補正のための装置及び方法
US7190932B2 (en) Circuit arrangement for a predistorted feedback coupling from a transmitter to a receiver in a multi-mode mobile telephone
CN101931765B (zh) 一种基于带通∑-△调制的宽带调谐器及其方法
US11206163B2 (en) Radio frequency (RF) to digital polar data converter and time-to-digital converter based time domain signal processing receiver
CN101478317B (zh) 直接变频调制中iq幅度的自适应平衡系统
CN115085822B (zh) 空间激光链路ook调制相干接收装置和方法
CN202374291U (zh) 一种直流偏置校准装置
KR100950649B1 (ko) 무선 송수신장치에서 자가 보상방법 및 장치
CN101777875B (zh) 基于直角坐标系统的自适应非线性补偿装置
CN102986181B (zh) 一种微波信号的校正方法、装置和系统
CN109525268B (zh) 一种对零中频接收信号的校正方法
CN103067323A (zh) 一种应用于对讲机的中频解调装置
CN115766363A (zh) 基于多路选择的频偏估计方法、空间相干激光通信系统
US10862728B1 (en) Systems and methods for digital correction in low intermediate frequency (IF) receivers
CN101795252A (zh) 直接变频调制方法及其调制装置
Nezami Performance assessment of baseband algorithms for direct conversion tactical software defined receivers: I/Q imbalance correction, image rejection, DC removal, and channelization
KR101573321B1 (ko) 광대역 위성통신용 제로-아이.에프(if) 변복조 장치
CN111355501B (zh) 一种tdd系统宽带发射器正交误差校正系统及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant