CN101477199A - Rectangular optical wedge array telescope antenna of synthetic aperture laser imaging radar - Google Patents
Rectangular optical wedge array telescope antenna of synthetic aperture laser imaging radar Download PDFInfo
- Publication number
- CN101477199A CN101477199A CNA2009100456386A CN200910045638A CN101477199A CN 101477199 A CN101477199 A CN 101477199A CN A2009100456386 A CNA2009100456386 A CN A2009100456386A CN 200910045638 A CN200910045638 A CN 200910045638A CN 101477199 A CN101477199 A CN 101477199A
- Authority
- CN
- China
- Prior art keywords
- rectangular
- array
- wedge
- optical
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 90
- 238000003384 imaging method Methods 0.000 title claims abstract description 38
- 238000005286 illumination Methods 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 3
- 210000001747 pupil Anatomy 0.000 claims description 3
- 230000001427 coherent effect Effects 0.000 claims description 2
- 230000010355 oscillation Effects 0.000 claims description 2
- 230000007423 decrease Effects 0.000 claims 2
- 230000001174 ascending effect Effects 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000001514 detection method Methods 0.000 claims 1
- 210000003371 toe Anatomy 0.000 description 13
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
一种合成孔径激光成像雷达的矩形光楔阵列望远镜天线,其构成依次是矩形光楔阵列、物镜、目镜、分光镜、矩形孔径光电探测器阵列、矩形孔径激光发射器阵列和反射镜,所述的矩形光楔阵列位于所述的物镜的前焦面,所述的矩形孔径光电探测器阵列位于所述的目镜的后焦面,所述的矩形孔径激光发射器阵列位于所述的目镜的后焦面,所述的分光镜对来自所述的矩形孔径激光发射器阵列或来自物镜的光束和进入所述的矩形孔径光电探测器阵列的光束进行分束组合,所述的物镜的焦距为f1,所述的目镜的焦距为f2,所述的物镜和所述的目镜之间的距离为f1+f2。本发明用作光学接收和发射天线,可以产生大宽度的扫描条带和方位向高分辨率的成像。
A rectangular wedge array telescope antenna for synthetic aperture laser imaging radar, which is composed of a rectangular wedge array, an objective lens, an eyepiece, a spectroscope, a rectangular aperture photodetector array, a rectangular aperture laser emitter array and a reflector in sequence, wherein the rectangular wedge array is located at the front focal plane of the objective lens, the rectangular aperture photodetector array is located at the rear focal plane of the eyepiece, the rectangular aperture laser emitter array is located at the rear focal plane of the eyepiece, the spectroscope splits and combines the light beam from the rectangular aperture laser emitter array or from the objective lens and the light beam entering the rectangular aperture photodetector array, the focal length of the objective lens is f1 , the focal length of the eyepiece is f2 , and the distance between the objective lens and the eyepiece is f1 + f2 . The present invention is used as an optical receiving and transmitting antenna, and can produce a large-width scanning strip and high-resolution imaging in azimuth.
Description
技术领域 technical field
本发明涉及合成孔径激光成像雷达,是一种合成孔径激光成像雷达的矩形光楔阵列望远镜天线,用作光学接收和发射天线,可以产生大宽度的扫描条带和方位向高分辨率的成像。The invention relates to a synthetic aperture laser imaging radar, which is a rectangular wedge array telescope antenna of the synthetic aperture laser imaging radar, which is used as an optical receiving and transmitting antenna, and can produce large-width scanning strips and high-resolution imaging in azimuth.
背景技术 Background technique
合成孔径激光成像雷达(SAIL)的原理取之于射频领域的合成孔径雷达原理,是能够在远距离得到厘米量级分辨率的唯一的光学成像观察手段。由发射激光发散度和外差接收方向性所决定的在目标面上的光学足趾尺度为望远镜物镜的光学衍射极限,由于光频波长很小一般为微米数量级左右,光学足趾比较窄小,这是合成孔径激光成像雷达的固有问题。美国有人提出了一种改进方案(参考文献1),使用小口径激光发射系统产生大的目标照明区域,同时采用多孔径多探测器的小孔径多通道光学系统实现大面积回波信号接收,从而实现大宽度扫描条带,但是这种方法工程上几乎不可能实现。下面是现有的有关合成孔径激光成像雷达的参考文献:The principle of synthetic aperture laser imaging radar (SAIL) is taken from the principle of synthetic aperture radar in the radio frequency field, and it is the only optical imaging observation method that can obtain centimeter-level resolution at long distances. The optical toe scale on the target surface determined by the divergence of the emitted laser light and the directionality of heterodyne reception is the optical diffraction limit of the telescope objective lens. Since the optical frequency and wavelength are very small, generally on the order of microns, the optical toe is relatively narrow. This is an inherent problem with synthetic aperture lidar. Someone in the United States proposed an improved scheme (Reference 1), using a small-aperture laser emission system to generate a large target illumination area, and at the same time using a small-aperture multi-channel optical system with multi-aperture multi-detectors to achieve large-area echo signal reception, thereby Realize large-width scanning stripes, but this method is almost impossible to realize in engineering. The following are existing references on synthetic aperture imaging lidar:
(1)R.L.Lucke,M.Bashkansky,J.Reintjes,and F.Funk,“Synthetic aperture ladar(SAL):fundamental theory,design equations for a satellite system,and laboratorydemonstration,”NRL/FR/7218—02-10,051,Naval Research Laboratory,Dec.26,2002.(1) R.L.Lucke, M.Bashkansky, J.Reintjes, and F.Funk, "Synthetic aperture ladar (SAL): fundamental theory, design equations for a satellite system, and laboratory demonstration," NRL/FR/7218—02-10 , 051, Naval Research Laboratory, Dec.26, 2002.
(2)W.Buell,N.Marechal,J.Buck,R.Dickinson,D.Kozlowski,T.Wright,and S.Beck,“Demonstration of synthetic aperture imaging ladar,”Proc.of SPIE,Vol.5791,PP.152-166(2005).(2) W. Buell, N. Marechal, J. Buck, R. Dickinson, D. Kozlowski, T. Wright, and S. Beck, "Demonstration of synthetic aperture imaging ladar," Proc. of SPIE, Vol.5791, PP.152-166(2005).
(3)J.Ricklin,M.Dierking,S.Fuhrer,B.Schumm,and D.Tomlison,“Synthetic apertureladar for tactical imaging,”DARPA Strategic Technology Office.(3) J. Ricklin, M. Dierking, S. Fuhrer, B. Schumm, and D. Tommlison, "Synthetic aperture ladar for tactical imaging," DARPA Strategic Technology Office.
(4)刘立人,合成孔径激光成像雷达(I):离焦和相位偏置望远镜接收天线[J],光学学报,2008,28(5):997-1000.(4) Liren Liu, Synthetic Aperture LiDAR (I): Defocus and Phase Offset Telescope Receiver Antenna[J], Acta Optics Sinica, 2008, 28(5): 997-1000.
(5)刘立人,合成孔径激光成像雷达(II):空间相位偏置发射望远镜[J],光学学报,2008,28(6):1197-1200.(5) Liu Liren, Synthetic Aperture LiDAR (II): Spatial Phase Bias Transmitting Telescope [J], Acta Optics Sinica, 2008, 28(6): 1197-1200.
(6)刘立人,合成孔径激光成像雷达(III):双向环路发射接收望远镜[J],光学学报,2008,28(7):1405-1410.(6) Liren Liu, Synthetic Aperture LiDAR (III): Two-way Loop Transmitting and Receiving Telescope [J], Acta Optics Sinica, 2008, 28(7): 1405-1410.
发明内容 Contents of the invention
本发明的目的在于提供一种合成孔径激光成像雷达的矩形光楔阵列望远镜天线。矩形孔径望远镜用作光学接收和发射天线能够产生符合合成孔径激光成像雷达扫描方式的矩形光学足趾,能够得到均匀的方位向成像分辨率,特别是可以分别控制激光雷达光学足趾在方位向及其垂直方向上的尺度,从而控制光学足趾尺度和成像分辨率。矩形光楔阵列排列的光学望远镜天线,能够以合理的方式排布各个子孔径产生的光学足趾得到大宽度的扫描条带。因此合成孔径激光成像雷达的矩形光楔阵列望远镜天线用作光学接收和发射天线,可以产生大宽度的扫描条带和方位向高分辨率的成像。The object of the present invention is to provide a rectangular wedge array telescope antenna for synthetic aperture laser imaging radar. The rectangular aperture telescope is used as an optical receiving and transmitting antenna to produce a rectangular optical toe that conforms to the scanning method of the synthetic aperture lidar imaging radar, and can obtain uniform azimuth imaging resolution, especially to control the laser radar optical toe in the azimuth and Its vertical scale controls the optical toe scale and imaging resolution. The optical telescope antenna arranged in a rectangular optical wedge array can arrange the optical toes generated by each sub-aperture in a reasonable manner to obtain a large-width scanning strip. Therefore, the rectangular wedge array telescope antenna of the synthetic aperture lidar is used as the optical receiving and transmitting antenna, which can produce large-width scanning strips and high-resolution imaging in azimuth.
本发明的技术解决方案如下:Technical solution of the present invention is as follows:
一种合成孔径激光成像雷达的矩形光楔阵列望远镜天线,其特点是:所述的矩形光楔阵列望远镜的构成包括矩形光楔阵列、物镜、目镜、分光镜、矩形孔径光电探测器阵列、矩形孔径激光发射器阵列和反射镜,所述的矩形光楔阵列、物镜、目镜、分光镜、矩形孔径激光发射器阵列依次地位于一条光路上,所述的矩形光楔阵列位于所述的物镜的前焦面,所述的矩形孔径光电探测器阵列位于所述的目镜的后焦面,所述的矩形孔径激光发射器阵列位于所述的目镜的后焦面,所述的矩形孔径光电探测器阵列和所述的反射镜分别位于所述的分光镜的两面的反射光路上,所述的物镜的焦距为f1,所述的目镜的焦距为f2,所述的物镜和所述的目镜之间的距离为f1+f2,该望远镜的放大倍数为
所述的矩形光楔阵列望远镜作为接收光学天线时,所述的矩形光楔阵列和物镜面对目标,所述的矩形光楔阵列为接收望远镜入瞳,所述的分光镜把回波光束反射到所述的矩形孔径光电探测器阵列,所述的矩形光楔阵列上的各单元矩形光楔和所述的矩形孔径光电探测器阵列上的单元矩形探测器一一对应成像:所述的矩形光楔阵列中的各个单元矩形光楔的边长分别为lx,ly,单元矩形光楔之间的周期为Ly,满足条件Ly≥ly,所述的矩形孔径光电探测器阵列上的单元矩形探测器的尺度为lx,r,ly,r,满足
所述的矩形光楔阵列望远镜作为发射光学天线时,所述的矩形孔径激光发射器阵列通过所述的矩形光楔阵列将激光发射出去,所述的矩形孔径激光发射器阵列上的单元矩形光源与所述的矩形光楔阵列上各单元矩形光楔一一对应成像:所述的矩形光楔阵列中的各个单元矩形光楔的边长分别为lx,ly,单元矩形光楔之间的周期为Ly,满足条件Ly≥ly,所述的矩形孔径激光发射器阵列上的单元矩形光源的尺度为lx,t,ly,t,满足
所述的矩形光楔阵列由2K+1个单元矩形光楔构成,其中K=0、±1、±2、±3、……±K,K=0的单元矩形光楔为平板光楔,第K块单元矩形光楔的顶角为基本顶角的K倍,所述的单元矩形光楔的边长分别为lx,ly,单元矩形光楔之间的周期为Ly,基本顶角为:
所述的矩形光楔阵列由K=0、±1、±2、±3、……、+(K-2)、+(K—1)、+k的不对称的多个单元矩形光楔构成。The rectangular optical wedge array is composed of K=0, ±1, ±2, ±3, ..., +(K-2), +(K-1), +k asymmetric multiple unit rectangular optical wedges constitute.
所述的矩形光楔阵列直接放在所述的物镜前面,但同时在所述的物镜后焦面上放置场镜,补偿由于所述的矩形光楔阵列离开所述的物镜的前焦面的距离而产生的附加相位二次项。The rectangular optical wedge array is directly placed in front of the objective lens, but at the same time, a field lens is placed on the rear focal plane of the objective lens to compensate for the distance between the rectangular optical wedge array and the front focal plane of the objective lens. Additional phase quadratic term due to distance.
所述的矩形光楔阵列的单元矩形光楔的横截面为具有倒角的直角三角形、梯形、或正三角形。The cross-section of the unit rectangular wedges of the rectangular wedge array is a right triangle, trapezoid, or regular triangle with chamfered corners.
所述的矩形孔径激光发射器阵列各个单元矩形光源是相干阵列激光光源,或非相干阵列激光光源。The rectangular light source of each unit of the rectangular aperture laser emitter array is a coherent array laser light source, or an incoherent array laser light source.
所述的矩形孔径激光发射器阵列各个单元矩形光源发射的激光是平面波,或椭圆高斯光束。The laser emitted by each unit rectangular light source of the rectangular aperture laser emitter array is a plane wave or an elliptical Gaussian beam.
本发明的技术效果:Technical effect of the present invention:
采用本发明的矩形光楔阵列望远镜天线作为合成孔径激光成像雷达的天线,具有如下特点:Using the rectangular wedge array telescope antenna of the present invention as the antenna of the synthetic aperture laser imaging radar has the following characteristics:
(1)单个矩形孔径的光学望远镜用作合成孔径激光成像雷达中的光学接收和发射天线可以产生矩形光学足趾,任何目标点都经历相等的扫描路径,因此本发明的矩形孔径的光学望远镜是符合合成孔径激光成像雷达扫描方式的。(1) the optical telescope of single rectangular aperture is used as the optical receiving and transmitting antenna in the synthetic aperture laser imaging radar and can produce rectangular optical toe, and any target point all experiences equal scanning path, so the optical telescope of rectangular aperture of the present invention is Conforms to the scanning method of synthetic aperture lidar imaging.
(2)矩形孔径天线的发射光束发散度和光学外差接收方向性函数都是方位向及其垂直方向上的分离变量函数,可以设计最佳的矩形孔径的两个边长的尺度分别控制激光雷达光学足趾在方位向及其垂直方向上的尺度,得到大扫描宽度和方位向高分辨率。(2) The transmit beam divergence of the rectangular aperture antenna and the optical heterodyne receiving directivity function are separate variable functions in the azimuth direction and the vertical direction, and the two side lengths of the optimal rectangular aperture can be designed to control the laser respectively. The scale of the radar optical toe in the azimuth direction and its vertical direction, resulting in a large scan width and high resolution in the azimuth direction.
(3)矩形光楔阵列排列的光学望远镜天线,能够以合理的方式排布各个子孔径,产生的光学足趾得到大宽度的扫描条带。因此合成孔径激光成像雷达的矩形光楔阵列望远镜天线用作光学接收和发射天线,可以产生大宽度的扫描条带和方位向高分辨率的成像。(3) The optical telescope antenna arranged in a rectangular optical wedge array can arrange each sub-aperture in a reasonable manner, and the resulting optical toe can obtain a large-width scanning strip. Therefore, the rectangular wedge array telescope antenna of the synthetic aperture lidar is used as the optical receiving and transmitting antenna, which can produce large-width scanning strips and high-resolution imaging in azimuth.
附图说明 Description of drawings
图1是本发明合成孔径激光成像雷达的矩形孔径望远镜天线的系统示意图。Fig. 1 is a schematic diagram of the system of the rectangular aperture telescope antenna of the synthetic aperture laser imaging radar of the present invention.
具体实施方式 Detailed ways
下面结合附图和实施例对本发明作进一步详细说明:Below in conjunction with accompanying drawing and embodiment the present invention is described in further detail:
先请参阅图1,图1是本发明合成孔径激光成像雷达的矩形光楔阵列望远镜天线的系统示意图。图1也是本发明的一个实施例的系统示意图。由图可见,本发明合成孔径激光成像雷达的矩形光楔阵列望远镜天线的构成依次是矩形光楔阵列1、物镜2、目镜3、分光镜4、矩形孔径光电探测器阵列5、矩形孔径激光发射器阵列6和反射镜7,Please refer to FIG. 1 first. FIG. 1 is a system schematic diagram of the rectangular wedge array telescope antenna of the synthetic aperture imaging lidar of the present invention. Fig. 1 is also a system schematic diagram of an embodiment of the present invention. As can be seen from the figure, the composition of the rectangular wedge array telescope antenna of the synthetic aperture laser imaging radar of the present invention is successively a rectangular wedge array 1, an
所述的矩形光楔阵列1位于所述的物镜2的前焦面,所述的矩形孔径光电探测器阵列5位于所述的目镜的后焦面,所述的矩形孔径激光发射器阵列6位于所述的目镜的后焦面,所述的分光镜4位于所述的目镜3的后面,所述的分光镜4位于矩形孔径光电探测器阵列5的前面,所述的分光镜4位于矩形孔径激光发射器阵列6的前面,所述的物镜2的焦距为f1,所述的目镜3的焦距为f2,所述的物镜2和所述的目镜3之间的距离为f1+f2,该望远镜的放大倍数为
望远镜作为接收光学天线时,所述的矩形光楔阵列1和物镜2面对目标,所述的矩形光楔阵列1为接收望远镜入瞳,所述的分光镜4把回波光束反射到所述的矩形孔径光电探测器阵列5,所述的矩形光楔阵列1上的单元矩形光楔和所述的矩形孔径光电探测器阵列5上的单元矩形探测器一一对应成像。When the telescope is used as a receiving optical antenna, the rectangular wedge array 1 and the
望远镜作为发射光学天线时,所述的矩形孔径激光发射器阵列6所发出的激光通过所述的矩形光楔阵列1发射出去,所述的矩形孔径激光发射器阵列6上的单元矩形激光源与所述的矩形光楔阵列1上单元矩形光楔一一对应成像,所述的分光镜4把所述的矩形孔径激光发射器阵列6的部分光强反射到所述的反射镜7,返回再通过所述的分光镜4到达所述的矩形孔径光电探测器阵列5,作为光学外差接收的本机振荡光源阵列,这时所述的矩形孔径激光发射器阵列6的单元矩形激光源与所述的矩形孔径光电探测器阵列5上的单元矩形探测器一一对应。When the telescope is used as a transmitting optical antenna, the laser emitted by the rectangular aperture laser emitter array 6 is emitted through the rectangular wedge array 1, and the unit rectangular laser source on the rectangular aperture laser emitter array 6 is connected to the The unit rectangular light wedges on the rectangular light wedge array 1 are imaged one by one, and the beam splitter 4 reflects part of the light intensity of the rectangular aperture laser emitter array 6 to the
事实上,望远镜作为接收光学天线时需要进行空间二次项相位的补偿(参考文献4),望远镜作为发射光学天线时可以进行控制以产生合适的相位二次项历程(参考文献5),而望远镜同时作为接收天线和发射天线时需要采用双向环路结构分别实施相位补偿和偏置(参考文献6)。本发明设定的望远镜可以符合上述的使用条件。因此,最终的方位向相位二次项历程的等效曲率半径fft可以表达为:In fact, when the telescope is used as a receiving optical antenna, it is necessary to compensate the phase of the quadratic term in space (Reference 4), and when the telescope is used as a transmitting optical antenna, it can be controlled to generate a suitable phase quadratic term history (Reference 5), and the telescope When it is used as a receiving antenna and a transmitting antenna at the same time, it is necessary to adopt a bidirectional loop structure to implement phase compensation and offset respectively (Reference 6). The telescope set by the present invention can meet the above-mentioned conditions of use. Therefore, the equivalent radius of curvature f ft of the final azimuth phase quadratic term history can be expressed as:
其中:fr为回波接收时产生的相位历程分量的曲率半径,ft为发射光束产生的相位历程分量的曲率半径,fadd是发射望远镜空间相位偏置产生的附加相位历程分量的曲率半径。例如在夫琅和费衍射区域并且不考虑附加偏置时有fft=ft=z(参考文献5)。为了简便起见,采用常数N来表达fft和z之间的关系:Among them: f r is the radius of curvature of the phase history component generated when the echo is received, f t is the radius of curvature of the phase history component generated by the transmitting beam, f add is the radius of curvature of the additional phase history component generated by the space phase offset of the transmitting telescope . For example f ft = f t = z in the region of Fraunhofer diffraction and no additional bias is considered (ref. 5). For simplicity, a constant N is used to express the relationship between f ft and z:
方位向成像分辨率一般可以采用如下公式进行估计The azimuth imaging resolution can generally be estimated by the following formula
其中:D为光学天线直径。Where: D is the diameter of the optical antenna.
下面以本实施例为例对本发明作详细分析说明:The present invention is described in detail below by taking the present embodiment as an example:
令目标点到激光雷达的方向为z方向,天线中心沿雷达运动方位方向为x方向,其垂直方向为y方向,因此全局坐标系为(x,y,z)。矩形光楔阵列1中的各个单元矩形光楔的边长分别为lx,ly,边长之比定义为
望远镜作为发射光学天线的功能可以简述如下:The function of the telescope as a transmitting optical antenna can be briefly described as follows:
望远镜作为发射光学天线时,在矩形光楔阵列1的输出面上的第k个矩形孔径光楔光源产生的归一化发射激光的光场可表达为When the telescope is used as a transmitting optical antenna, the light field of the normalized emitting laser light generated by the kth rectangular aperture wedge light source on the output surface of the rectangular wedge array 1 can be expressed as
其中:n为光楔玻璃的折射率,Δθy为单元矩形光楔的基本顶角,λ为激光波长。该发射场强产生发射光束的发散度方向性函数为Where: n is the refractive index of the optical wedge glass, Δθ y is the basic apex angle of the unit rectangular optical wedge, and λ is the laser wavelength. The emission field strength produces the divergence directionality function of the emission beam as
其中:θx,k和θy,k分别为第k个局域坐标系xk方向和yk方向上的方向角,*表示卷积积分。Among them: θ x, k and θ y, k are the orientation angles in the x k direction and y k direction of the k-th local coordinate system, respectively, and * represents the convolution integral.
望远镜作为接收光学天线的功能可以简述如下:The function of the telescope as a receiving optical antenna can be briefly described as follows:
望远镜作为接收光学天线时,在矩形光楔阵列1的第k个单元矩形光楔的接收孔径函数为When the telescope is used as a receiving optical antenna, the receiving aperture function of the rectangular wedge in the kth unit of the rectangular wedge array 1 is
该孔径函数产生光学外差接收方向性方向性函数为The aperture function produces optical heterodyne receiving directivity The directivity function is
定义:光学足趾为在目标面上发射光斑和外差有效接收面积的共同作用范围,因此望远镜同时作为发射和接收天线时的第k个单元矩形光楔孔径产生光学足趾的综合方向性函数为Definition: The optical toe is the joint action range of the emission spot and the heterodyne effective receiving area on the target surface, so when the telescope is used as the transmitting and receiving antenna at the same time, the k-th unit rectangular wedge aperture produces the comprehensive directional function of the optical toe for
可见方向性函数中心位于(θx,k(0)=0,θy,k(0)=(n-1)kΔθy),方向性函数在x方向的第一零点的位置在
方向性函数在y方向的第一零点的位置在
目标面上的全局坐标系可以用(α,β)表达,α平行于x,β平行于y,中心在z轴上。第k个单元矩形光楔产生的光学足趾在目标面上的局域坐标系设定为(αk,βk),满足坐标关系(αk=x,βk=β-k(n-1)Δθyz),The global coordinate system on the target surface can be expressed by (α, β), α is parallel to x, β is parallel to y, and the center is on the z axis. The local coordinate system of the optical toe produced by the kth unit rectangular optical wedge on the target surface is set as (α k , β k ), which satisfies the coordinate relationship (α k =x, β k =β-k(n- 1) Δθ y z),
因此其坐标原点在(α=0,β=k(n-1)Δθyz)。可知αk方向的距离宽度为Therefore, the origin of its coordinates is at (α=0, β=k(n-1)Δθ y z). It can be seen that the distance width in the α k direction is
βk方向的距离宽度为The distance width in the direction of β k is
因此,单个单元矩形光楔方向性函数的宽度比即为Therefore, the width ratio of the directionality function of a single rectangular optical wedge is
在y方向两个单元矩形光楔的孔径足趾方向性函数的间隔为(n-1)Δθy,使各个单个方向性函数在y方向组合起来,形成重叠加长扫描条带。设单个函数的重叠因子为P(P≤1),则要求The distance between the aperture toe directional functions of the two unit rectangular optical wedges in the y direction is (n-1)Δθ y , so that each single directional function is combined in the y direction to form an overlapping and elongated scanning strip. Let the overlap factor of a single function be P(P≤1), then require
或者单元矩形光楔的基本顶角为:Or the basic vertex angle of the rectangular optical wedge of the unit is:
这时由2K+1个单元矩形光楔组成的望远镜所产生的y方向总的方向性宽度Σθy为At this time, the total directional width Σθ y in the y direction produced by the telescope composed of 2K+1 unit rectangular light wedges is
Σθy=((K-1)P+1)δθy,Σθ y = ((K-1)P+1)δθ y ,
因此由2K+1个单元矩形光楔组成的望远镜的方向性函数的方向性宽度比为Therefore, the directivity width ratio of the directivity function of the telescope composed of 2K+1 unit rectangular light wedges is
SK=((K-1)P+1)S1°S K =((K-1)P+1)S 1 °
同样可以折算到目标面上表达,α方向的距离宽度为It can also be converted to the target surface, and the distance width in the α direction is
β方向的重叠距离宽度为The overlapping distance width in the β direction is
本实施例的矩形光楔阵列1由2K+1(K=0、±1、±2、±3、……±K)个单元矩形光楔构成,以K=0的平板光楔为基准分上下按K的顺序排列,向上K>1正方向依次增加光楔角度,向下K<1反方向依次增加光楔角度排列,其实相反按向上K>1正方向依次递减光楔角度,向下K<1反方向依次递减光楔角度排列,甚至单元矩形光楔镜在孔径上可以不按照k的次序任一排列,实验分析表明,在远场的技术效果是一样的。The rectangular optical wedge array 1 of this embodiment is composed of 2K+1 (K=0, ±1, ±2, ±3, ...±K) unit rectangular optical wedges, and the flat optical wedge with K=0 as the reference The top and bottom are arranged in the order of K, the upward K>1 positive direction increases the optical wedge angle sequentially, and the downward K<1 reverse direction increases the optical wedge angle sequentially. If K<1, the wedge angles are arranged in descending order in the opposite direction, and even the unit rectangular wedge mirrors can be arranged in any order not according to the order of k on the aperture. Experimental analysis shows that the technical effect in the far field is the same.
下面是一个具体实施例的设计:Below is the design of a specific embodiment:
合成孔径激光成像雷达要求成像观察距离Z为500km,波长1.55um,要求分辨率直径δd小于100mm,扫描条带宽度140m,条幅宽度与分辨率比大于103。采用矩形光楔阵列望远镜同时作为光学外差接收天线和平面波发射天线的方式,由分辨率要求
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100456386A CN101477199B (en) | 2009-01-21 | 2009-01-21 | Rectangular optical wedge array telescope antenna of synthetic aperture laser imaging radar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100456386A CN101477199B (en) | 2009-01-21 | 2009-01-21 | Rectangular optical wedge array telescope antenna of synthetic aperture laser imaging radar |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101477199A true CN101477199A (en) | 2009-07-08 |
CN101477199B CN101477199B (en) | 2012-06-13 |
Family
ID=40837945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100456386A Expired - Fee Related CN101477199B (en) | 2009-01-21 | 2009-01-21 | Rectangular optical wedge array telescope antenna of synthetic aperture laser imaging radar |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101477199B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102062942A (en) * | 2010-12-15 | 2011-05-18 | 同济大学 | Deflecting optical wedge scanning device |
CN102215062A (en) * | 2011-03-25 | 2011-10-12 | 中国科学院上海光学精密机械研究所 | Multi-channel optical receiver system of synthetic aperture laser imaging radar |
CN104763959A (en) * | 2014-01-08 | 2015-07-08 | 中强光电股份有限公司 | Vehicle headlight device |
CN109470236A (en) * | 2018-11-26 | 2019-03-15 | 中国科学院长春光学精密机械与物理研究所 | a star sensor |
CN109683304A (en) * | 2019-01-02 | 2019-04-26 | 中国科学院上海光学精密机械研究所 | Based on light field high order spatial auto correlation without lens wiener-Xin Qin telescopic system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100559229C (en) * | 2008-03-05 | 2009-11-11 | 中国科学院上海光学精密机械研究所 | Spatial Phase Bias Transmitting Telescope for Synthetic Aperture LiDAR |
CN101256233B (en) * | 2008-03-05 | 2010-12-08 | 中国科学院上海光学精密机械研究所 | Two-way Loop Transmitting and Receiving Telescope for Synthetic Aperture LiDAR |
CN201166704Y (en) * | 2008-03-05 | 2008-12-17 | 中国科学院上海光学精密机械研究所 | Out-of-focus receiving telescope for synthetic aperture imaging lidar |
CN201348660Y (en) * | 2009-01-21 | 2009-11-18 | 中国科学院上海光学精密机械研究所 | Rectangular Wedge Array Telescope Antenna for Synthetic Aperture LiDAR |
-
2009
- 2009-01-21 CN CN2009100456386A patent/CN101477199B/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102062942A (en) * | 2010-12-15 | 2011-05-18 | 同济大学 | Deflecting optical wedge scanning device |
CN102062942B (en) * | 2010-12-15 | 2012-02-29 | 同济大学 | deflection wedge scanning device |
CN102215062A (en) * | 2011-03-25 | 2011-10-12 | 中国科学院上海光学精密机械研究所 | Multi-channel optical receiver system of synthetic aperture laser imaging radar |
CN102215062B (en) * | 2011-03-25 | 2014-06-25 | 中国科学院上海光学精密机械研究所 | Multi-channel optical receiver system of synthetic aperture laser imaging radar |
CN104763959A (en) * | 2014-01-08 | 2015-07-08 | 中强光电股份有限公司 | Vehicle headlight device |
CN109470236A (en) * | 2018-11-26 | 2019-03-15 | 中国科学院长春光学精密机械与物理研究所 | a star sensor |
CN109683304A (en) * | 2019-01-02 | 2019-04-26 | 中国科学院上海光学精密机械研究所 | Based on light field high order spatial auto correlation without lens wiener-Xin Qin telescopic system |
Also Published As
Publication number | Publication date |
---|---|
CN101477199B (en) | 2012-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11796680B2 (en) | Lens and integrated beam transceiver based lidar detection device | |
US20230146495A1 (en) | Large Scale Steerable Coherent Optical Switched Arrays | |
JP7322037B2 (en) | LASER RADAR AND METHOD OF OPERATION THEREOF | |
US10684358B2 (en) | Situational awareness sensor using a fixed configuration of optical phased arrays (OPAs) | |
US10788574B2 (en) | LIDAR device and LIDAR system including the same | |
CN106291509A (en) | Laser radar optical system | |
US10775485B2 (en) | LIDAR device and system comprising the same | |
US11137483B2 (en) | Light scanner | |
US11054524B2 (en) | Optimizing a lidar system using sub-sweep sampling | |
CN101477199B (en) | Rectangular optical wedge array telescope antenna of synthetic aperture laser imaging radar | |
WO2021168832A1 (en) | Laser detection system and vehicle | |
CN101344592B (en) | Beam bunching synthetic aperture laser imaging radar | |
JP2023545373A (en) | Generation of coaxial local oscillators in the conjugate focal plane of FMCW-LIDAR systems | |
CN111263898A (en) | Light beam scanning system, distance detection device and electronic equipment | |
KR20230155523A (en) | laser radar | |
CN201348660Y (en) | Rectangular Wedge Array Telescope Antenna for Synthetic Aperture LiDAR | |
CN115639567B (en) | Laser radar | |
JP7325691B2 (en) | Space object trajectory changer | |
CN201331584Y (en) | Rectangular Aperture Telescope Antenna for Synthetic Aperture LiDAR | |
JP2014098668A (en) | Measurement instrument | |
Kawazoe et al. | Development of receiver optics for simplified 3D laser scanner composition | |
CN110109139A (en) | A kind of high-resolution imaging system and method based on heterodyne detection of laser | |
CN201173972Y (en) | Two-way Loop Transmitting and Receiving Telescope for Synthetic Aperture LiDAR | |
CN101464516B (en) | Rectangular aperture telescope antenna of synthetic aperture laser imaging radar | |
US20230243932A1 (en) | Optical waveguide device used in laser detection and ranging system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120613 |