CN101477199A - Rectangular optical wedge array telescope antenna of synthetic aperture laser imaging radar - Google Patents

Rectangular optical wedge array telescope antenna of synthetic aperture laser imaging radar Download PDF

Info

Publication number
CN101477199A
CN101477199A CNA2009100456386A CN200910045638A CN101477199A CN 101477199 A CN101477199 A CN 101477199A CN A2009100456386 A CNA2009100456386 A CN A2009100456386A CN 200910045638 A CN200910045638 A CN 200910045638A CN 101477199 A CN101477199 A CN 101477199A
Authority
CN
China
Prior art keywords
rectangular
array
wedge
optical
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2009100456386A
Other languages
Chinese (zh)
Other versions
CN101477199B (en
Inventor
刘立人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN2009100456386A priority Critical patent/CN101477199B/en
Publication of CN101477199A publication Critical patent/CN101477199A/en
Application granted granted Critical
Publication of CN101477199B publication Critical patent/CN101477199B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种合成孔径激光成像雷达的矩形光楔阵列望远镜天线,其构成依次是矩形光楔阵列、物镜、目镜、分光镜、矩形孔径光电探测器阵列、矩形孔径激光发射器阵列和反射镜,所述的矩形光楔阵列位于所述的物镜的前焦面,所述的矩形孔径光电探测器阵列位于所述的目镜的后焦面,所述的矩形孔径激光发射器阵列位于所述的目镜的后焦面,所述的分光镜对来自所述的矩形孔径激光发射器阵列或来自物镜的光束和进入所述的矩形孔径光电探测器阵列的光束进行分束组合,所述的物镜的焦距为f1,所述的目镜的焦距为f2,所述的物镜和所述的目镜之间的距离为f1+f2。本发明用作光学接收和发射天线,可以产生大宽度的扫描条带和方位向高分辨率的成像。

Figure 200910045638

A rectangular wedge array telescope antenna for synthetic aperture laser imaging radar, which is composed of a rectangular wedge array, an objective lens, an eyepiece, a spectroscope, a rectangular aperture photodetector array, a rectangular aperture laser emitter array and a reflector in sequence, wherein the rectangular wedge array is located at the front focal plane of the objective lens, the rectangular aperture photodetector array is located at the rear focal plane of the eyepiece, the rectangular aperture laser emitter array is located at the rear focal plane of the eyepiece, the spectroscope splits and combines the light beam from the rectangular aperture laser emitter array or from the objective lens and the light beam entering the rectangular aperture photodetector array, the focal length of the objective lens is f1 , the focal length of the eyepiece is f2 , and the distance between the objective lens and the eyepiece is f1 + f2 . The present invention is used as an optical receiving and transmitting antenna, and can produce a large-width scanning strip and high-resolution imaging in azimuth.

Figure 200910045638

Description

合成孔径激光成像雷达的矩形光楔阵列望远镜天线 Rectangular Wedge Array Telescope Antenna for Synthetic Aperture LiDAR

技术领域 technical field

本发明涉及合成孔径激光成像雷达,是一种合成孔径激光成像雷达的矩形光楔阵列望远镜天线,用作光学接收和发射天线,可以产生大宽度的扫描条带和方位向高分辨率的成像。The invention relates to a synthetic aperture laser imaging radar, which is a rectangular wedge array telescope antenna of the synthetic aperture laser imaging radar, which is used as an optical receiving and transmitting antenna, and can produce large-width scanning strips and high-resolution imaging in azimuth.

背景技术 Background technique

合成孔径激光成像雷达(SAIL)的原理取之于射频领域的合成孔径雷达原理,是能够在远距离得到厘米量级分辨率的唯一的光学成像观察手段。由发射激光发散度和外差接收方向性所决定的在目标面上的光学足趾尺度为望远镜物镜的光学衍射极限,由于光频波长很小一般为微米数量级左右,光学足趾比较窄小,这是合成孔径激光成像雷达的固有问题。美国有人提出了一种改进方案(参考文献1),使用小口径激光发射系统产生大的目标照明区域,同时采用多孔径多探测器的小孔径多通道光学系统实现大面积回波信号接收,从而实现大宽度扫描条带,但是这种方法工程上几乎不可能实现。下面是现有的有关合成孔径激光成像雷达的参考文献:The principle of synthetic aperture laser imaging radar (SAIL) is taken from the principle of synthetic aperture radar in the radio frequency field, and it is the only optical imaging observation method that can obtain centimeter-level resolution at long distances. The optical toe scale on the target surface determined by the divergence of the emitted laser light and the directionality of heterodyne reception is the optical diffraction limit of the telescope objective lens. Since the optical frequency and wavelength are very small, generally on the order of microns, the optical toe is relatively narrow. This is an inherent problem with synthetic aperture lidar. Someone in the United States proposed an improved scheme (Reference 1), using a small-aperture laser emission system to generate a large target illumination area, and at the same time using a small-aperture multi-channel optical system with multi-aperture multi-detectors to achieve large-area echo signal reception, thereby Realize large-width scanning stripes, but this method is almost impossible to realize in engineering. The following are existing references on synthetic aperture imaging lidar:

(1)R.L.Lucke,M.Bashkansky,J.Reintjes,and F.Funk,“Synthetic aperture ladar(SAL):fundamental theory,design equations for a satellite system,and laboratorydemonstration,”NRL/FR/7218—02-10,051,Naval Research Laboratory,Dec.26,2002.(1) R.L.Lucke, M.Bashkansky, J.Reintjes, and F.Funk, "Synthetic aperture ladar (SAL): fundamental theory, design equations for a satellite system, and laboratory demonstration," NRL/FR/7218—02-10 , 051, Naval Research Laboratory, Dec.26, 2002.

(2)W.Buell,N.Marechal,J.Buck,R.Dickinson,D.Kozlowski,T.Wright,and S.Beck,“Demonstration of synthetic aperture imaging ladar,”Proc.of SPIE,Vol.5791,PP.152-166(2005).(2) W. Buell, N. Marechal, J. Buck, R. Dickinson, D. Kozlowski, T. Wright, and S. Beck, "Demonstration of synthetic aperture imaging ladar," Proc. of SPIE, Vol.5791, PP.152-166(2005).

(3)J.Ricklin,M.Dierking,S.Fuhrer,B.Schumm,and D.Tomlison,“Synthetic apertureladar for tactical imaging,”DARPA Strategic Technology Office.(3) J. Ricklin, M. Dierking, S. Fuhrer, B. Schumm, and D. Tommlison, "Synthetic aperture ladar for tactical imaging," DARPA Strategic Technology Office.

(4)刘立人,合成孔径激光成像雷达(I):离焦和相位偏置望远镜接收天线[J],光学学报,2008,28(5):997-1000.(4) Liren Liu, Synthetic Aperture LiDAR (I): Defocus and Phase Offset Telescope Receiver Antenna[J], Acta Optics Sinica, 2008, 28(5): 997-1000.

(5)刘立人,合成孔径激光成像雷达(II):空间相位偏置发射望远镜[J],光学学报,2008,28(6):1197-1200.(5) Liu Liren, Synthetic Aperture LiDAR (II): Spatial Phase Bias Transmitting Telescope [J], Acta Optics Sinica, 2008, 28(6): 1197-1200.

(6)刘立人,合成孔径激光成像雷达(III):双向环路发射接收望远镜[J],光学学报,2008,28(7):1405-1410.(6) Liren Liu, Synthetic Aperture LiDAR (III): Two-way Loop Transmitting and Receiving Telescope [J], Acta Optics Sinica, 2008, 28(7): 1405-1410.

发明内容 Contents of the invention

本发明的目的在于提供一种合成孔径激光成像雷达的矩形光楔阵列望远镜天线。矩形孔径望远镜用作光学接收和发射天线能够产生符合合成孔径激光成像雷达扫描方式的矩形光学足趾,能够得到均匀的方位向成像分辨率,特别是可以分别控制激光雷达光学足趾在方位向及其垂直方向上的尺度,从而控制光学足趾尺度和成像分辨率。矩形光楔阵列排列的光学望远镜天线,能够以合理的方式排布各个子孔径产生的光学足趾得到大宽度的扫描条带。因此合成孔径激光成像雷达的矩形光楔阵列望远镜天线用作光学接收和发射天线,可以产生大宽度的扫描条带和方位向高分辨率的成像。The object of the present invention is to provide a rectangular wedge array telescope antenna for synthetic aperture laser imaging radar. The rectangular aperture telescope is used as an optical receiving and transmitting antenna to produce a rectangular optical toe that conforms to the scanning method of the synthetic aperture lidar imaging radar, and can obtain uniform azimuth imaging resolution, especially to control the laser radar optical toe in the azimuth and Its vertical scale controls the optical toe scale and imaging resolution. The optical telescope antenna arranged in a rectangular optical wedge array can arrange the optical toes generated by each sub-aperture in a reasonable manner to obtain a large-width scanning strip. Therefore, the rectangular wedge array telescope antenna of the synthetic aperture lidar is used as the optical receiving and transmitting antenna, which can produce large-width scanning strips and high-resolution imaging in azimuth.

本发明的技术解决方案如下:Technical solution of the present invention is as follows:

一种合成孔径激光成像雷达的矩形光楔阵列望远镜天线,其特点是:所述的矩形光楔阵列望远镜的构成包括矩形光楔阵列、物镜、目镜、分光镜、矩形孔径光电探测器阵列、矩形孔径激光发射器阵列和反射镜,所述的矩形光楔阵列、物镜、目镜、分光镜、矩形孔径激光发射器阵列依次地位于一条光路上,所述的矩形光楔阵列位于所述的物镜的前焦面,所述的矩形孔径光电探测器阵列位于所述的目镜的后焦面,所述的矩形孔径激光发射器阵列位于所述的目镜的后焦面,所述的矩形孔径光电探测器阵列和所述的反射镜分别位于所述的分光镜的两面的反射光路上,所述的物镜的焦距为f1,所述的目镜的焦距为f2,所述的物镜和所述的目镜之间的距离为f1+f2,该望远镜的放大倍数为 M = f 1 f 2 , 所述的分光镜对来自所述的矩形孔径激光发射器阵列的光束、来自物镜的光束和进入所述的矩形孔径光电探测器阵列的光束进行分束组合。A rectangular wedge array telescope antenna for synthetic aperture laser imaging radar, characterized in that: the rectangular wedge array telescope consists of a rectangular wedge array, an objective lens, an eyepiece, a beam splitter, a rectangular aperture photodetector array, a rectangular Aperture laser emitter array and reflector, described rectangular light wedge array, objective lens, eyepiece, beam splitter, rectangular aperture laser emitter array are located on an optical path in sequence, and described rectangular light wedge array is positioned at the described objective lens Front focal plane, the rectangular aperture photodetector array is located at the rear focal plane of the eyepiece, the rectangular aperture laser emitter array is located at the rear focal plane of the eyepiece, and the rectangular aperture photodetector array is located at the rear focal plane of the eyepiece The array and the mirrors are respectively located on the reflected light paths of the two sides of the beam splitter, the focal length of the objective lens is f 1 , the focal length of the eyepiece is f 2 , the objective lens and the eyepiece The distance between is f 1 +f 2 , and the magnification of the telescope is m = f 1 f 2 , The beam splitter splits and combines the light beams from the rectangular aperture laser emitter array, the light beams from the objective lens and the light beams entering the rectangular aperture photodetector array.

所述的矩形光楔阵列望远镜作为接收光学天线时,所述的矩形光楔阵列和物镜面对目标,所述的矩形光楔阵列为接收望远镜入瞳,所述的分光镜把回波光束反射到所述的矩形孔径光电探测器阵列,所述的矩形光楔阵列上的各单元矩形光楔和所述的矩形孔径光电探测器阵列上的单元矩形探测器一一对应成像:所述的矩形光楔阵列中的各个单元矩形光楔的边长分别为lx,ly,单元矩形光楔之间的周期为Ly,满足条件Ly≥ly,所述的矩形孔径光电探测器阵列上的单元矩形探测器的尺度为lx,r,ly,r,满足 l x l x , r = l y l y , r = M . When the rectangular wedge array telescope is used as a receiving optical antenna, the rectangular wedge array and the objective mirror face the target, the rectangular wedge array is the entrance pupil of the receiving telescope, and the beam splitter reflects the echo beam To the rectangular aperture photodetector array, each unit rectangular optical wedge on the rectangular optical wedge array and the unit rectangular detectors on the rectangular aperture photodetector array correspond to imaging one by one: the rectangular optical wedge The side lengths of each unit rectangular light wedge in the light wedge array are l x , ly y , the period between the unit rectangular light wedges is L y , and the condition L y ≥ ly y is satisfied, the rectangular aperture photodetector array The scale of the unit rectangular detector on is l x, r , l y, r , satisfying l x l x , r = l the y l the y , r = m .

所述的矩形光楔阵列望远镜作为发射光学天线时,所述的矩形孔径激光发射器阵列通过所述的矩形光楔阵列将激光发射出去,所述的矩形孔径激光发射器阵列上的单元矩形光源与所述的矩形光楔阵列上各单元矩形光楔一一对应成像:所述的矩形光楔阵列中的各个单元矩形光楔的边长分别为lx,ly,单元矩形光楔之间的周期为Ly,满足条件Ly≥ly,所述的矩形孔径激光发射器阵列上的单元矩形光源的尺度为lx,t,ly,t,满足 l x l x , t = l y l y , t = M ; 所述的分光镜把所述的矩形孔径激光发射器阵列的部分光强反射到所述的反射镜,返回再通过所述的分光镜到达所述的矩形孔径光电探测器阵列,作为光学外差接收的本机振荡光源阵列,这时所述的矩形孔径激光发射器阵列的各个单元矩形光源与所述的矩形孔径光电探测器阵列上的单元矩形探测器一一对应:所述的矩形孔径激光发射器阵列上的单元矩形光源的尺度lx,t,ly,t分别与所述的矩形孔径光电探测器阵列上的单元矩形探测器的尺度lx,r,ly,r相等。When the rectangular wedge array telescope is used as a transmitting optical antenna, the rectangular aperture laser transmitter array emits laser light through the rectangular wedge array, and the unit rectangular light source on the rectangular aperture laser transmitter array Imaging in one-to-one correspondence with each unit rectangular light wedge on the rectangular light wedge array: the side lengths of each unit rectangular light wedge in the rectangular light wedge array are respectively l x , ly y , between the unit rectangular light wedges The period is L y , satisfying the condition L yly , the scale of the unit rectangular light source on the rectangular aperture laser emitter array is l x, t , ly , t , satisfying l x l x , t = l the y l the y , t = m ; The beam splitter reflects part of the light intensity of the rectangular aperture laser emitter array to the reflector, returns to the rectangular aperture photodetector array through the beam splitter, and acts as an optical heterodyne Received local oscillating light source array, at this time each unit rectangular light source of the described rectangular aperture laser emitter array corresponds one-to-one to the unit rectangular detectors on the described rectangular aperture photodetector array: the described rectangular aperture laser The scales lx , t , ly , t of the unit rectangular light sources on the emitter array are respectively equal to the scales lx , r , ly , r of the unit rectangular detectors on the rectangular aperture photodetector array.

所述的矩形光楔阵列由2K+1个单元矩形光楔构成,其中K=0、±1、±2、±3、……±K,K=0的单元矩形光楔为平板光楔,第K块单元矩形光楔的顶角为基本顶角的K倍,所述的单元矩形光楔的边长分别为lx,ly,单元矩形光楔之间的周期为Ly,基本顶角为: Δθ y = P 2 λ ( n - 1 ) l y , 所述的lx由物面照明宽度 δα = 2 λz l x 决定,ly由扫描条带宽度 δβ k = 2 λz l y 决定,并且扫描条带宽度 δβ k = 2 λz l y 与分辨率直径 δd = D N 之比的取值范围一般为102~103,物面照明的重叠距离宽度为: Δβ = ( ( K - 1 ) P + 1 ) 2 λz l y , 式中:D为本发明望远镜的直径,N是表达最终的方位向相位二次项历程的等效曲率半径fft和目标距离z之间关系的常数,P为重叠因子,K为孔径数,λ为波长,n为玻璃矩形光楔的折射率,所述的矩形光楔阵列(1)的单元矩形光楔排列顺序任意。The rectangular optical wedge array is composed of 2K+1 unit rectangular optical wedges, wherein K=0, ±1, ±2, ±3, ... ±K, and the unit rectangular optical wedges with K=0 are flat optical wedges, The vertex angle of the unit rectangular light wedge of the K block is K times of the basic vertex angle, the side lengths of the unit rectangular light wedges are l x , ly y respectively, and the period between the unit rectangular light wedges is L y , the basic vertex Angle is: Δθ the y = P 2 λ ( no - 1 ) l the y , The l x width of the illumination by the object plane δα = 2 λz l x Determined, l y is determined by the scanning stripe width δβ k = 2 λz l the y determined, and the scan strip width δβ k = 2 λz l the y and resolution diameter δd = D. N The value range of the ratio is generally 10 2 to 10 3 , and the overlapping distance width of the object surface illumination is: Δβ = ( ( K - 1 ) P + 1 ) 2 λz l the y , In the formula: D is the diameter of the telescope of the present invention, N is the constant of the relationship between the equivalent radius of curvature f ft and the target distance z expressing the final azimuth phase quadratic term history, P is the overlapping factor, and K is the aperture number, λ is the wavelength, n is the refractive index of the glass rectangular light wedge, and the arrangement order of the unit rectangular light wedges in the rectangular light wedge array (1) is arbitrary.

所述的矩形光楔阵列由K=0、±1、±2、±3、……、+(K-2)、+(K—1)、+k的不对称的多个单元矩形光楔构成。The rectangular optical wedge array is composed of K=0, ±1, ±2, ±3, ..., +(K-2), +(K-1), +k asymmetric multiple unit rectangular optical wedges constitute.

所述的矩形光楔阵列直接放在所述的物镜前面,但同时在所述的物镜后焦面上放置场镜,补偿由于所述的矩形光楔阵列离开所述的物镜的前焦面的距离而产生的附加相位二次项。The rectangular optical wedge array is directly placed in front of the objective lens, but at the same time, a field lens is placed on the rear focal plane of the objective lens to compensate for the distance between the rectangular optical wedge array and the front focal plane of the objective lens. Additional phase quadratic term due to distance.

所述的矩形光楔阵列的单元矩形光楔的横截面为具有倒角的直角三角形、梯形、或正三角形。The cross-section of the unit rectangular wedges of the rectangular wedge array is a right triangle, trapezoid, or regular triangle with chamfered corners.

所述的矩形孔径激光发射器阵列各个单元矩形光源是相干阵列激光光源,或非相干阵列激光光源。The rectangular light source of each unit of the rectangular aperture laser emitter array is a coherent array laser light source, or an incoherent array laser light source.

所述的矩形孔径激光发射器阵列各个单元矩形光源发射的激光是平面波,或椭圆高斯光束。The laser emitted by each unit rectangular light source of the rectangular aperture laser emitter array is a plane wave or an elliptical Gaussian beam.

本发明的技术效果:Technical effect of the present invention:

采用本发明的矩形光楔阵列望远镜天线作为合成孔径激光成像雷达的天线,具有如下特点:Using the rectangular wedge array telescope antenna of the present invention as the antenna of the synthetic aperture laser imaging radar has the following characteristics:

(1)单个矩形孔径的光学望远镜用作合成孔径激光成像雷达中的光学接收和发射天线可以产生矩形光学足趾,任何目标点都经历相等的扫描路径,因此本发明的矩形孔径的光学望远镜是符合合成孔径激光成像雷达扫描方式的。(1) the optical telescope of single rectangular aperture is used as the optical receiving and transmitting antenna in the synthetic aperture laser imaging radar and can produce rectangular optical toe, and any target point all experiences equal scanning path, so the optical telescope of rectangular aperture of the present invention is Conforms to the scanning method of synthetic aperture lidar imaging.

(2)矩形孔径天线的发射光束发散度和光学外差接收方向性函数都是方位向及其垂直方向上的分离变量函数,可以设计最佳的矩形孔径的两个边长的尺度分别控制激光雷达光学足趾在方位向及其垂直方向上的尺度,得到大扫描宽度和方位向高分辨率。(2) The transmit beam divergence of the rectangular aperture antenna and the optical heterodyne receiving directivity function are separate variable functions in the azimuth direction and the vertical direction, and the two side lengths of the optimal rectangular aperture can be designed to control the laser respectively. The scale of the radar optical toe in the azimuth direction and its vertical direction, resulting in a large scan width and high resolution in the azimuth direction.

(3)矩形光楔阵列排列的光学望远镜天线,能够以合理的方式排布各个子孔径,产生的光学足趾得到大宽度的扫描条带。因此合成孔径激光成像雷达的矩形光楔阵列望远镜天线用作光学接收和发射天线,可以产生大宽度的扫描条带和方位向高分辨率的成像。(3) The optical telescope antenna arranged in a rectangular optical wedge array can arrange each sub-aperture in a reasonable manner, and the resulting optical toe can obtain a large-width scanning strip. Therefore, the rectangular wedge array telescope antenna of the synthetic aperture lidar is used as the optical receiving and transmitting antenna, which can produce large-width scanning strips and high-resolution imaging in azimuth.

附图说明 Description of drawings

图1是本发明合成孔径激光成像雷达的矩形孔径望远镜天线的系统示意图。Fig. 1 is a schematic diagram of the system of the rectangular aperture telescope antenna of the synthetic aperture laser imaging radar of the present invention.

具体实施方式 Detailed ways

下面结合附图和实施例对本发明作进一步详细说明:Below in conjunction with accompanying drawing and embodiment the present invention is described in further detail:

先请参阅图1,图1是本发明合成孔径激光成像雷达的矩形光楔阵列望远镜天线的系统示意图。图1也是本发明的一个实施例的系统示意图。由图可见,本发明合成孔径激光成像雷达的矩形光楔阵列望远镜天线的构成依次是矩形光楔阵列1、物镜2、目镜3、分光镜4、矩形孔径光电探测器阵列5、矩形孔径激光发射器阵列6和反射镜7,Please refer to FIG. 1 first. FIG. 1 is a system schematic diagram of the rectangular wedge array telescope antenna of the synthetic aperture imaging lidar of the present invention. Fig. 1 is also a system schematic diagram of an embodiment of the present invention. As can be seen from the figure, the composition of the rectangular wedge array telescope antenna of the synthetic aperture laser imaging radar of the present invention is successively a rectangular wedge array 1, an objective lens 2, an eyepiece 3, a beam splitter 4, a rectangular aperture photodetector array 5, and a rectangular aperture laser emitting array 6 and mirror 7,

所述的矩形光楔阵列1位于所述的物镜2的前焦面,所述的矩形孔径光电探测器阵列5位于所述的目镜的后焦面,所述的矩形孔径激光发射器阵列6位于所述的目镜的后焦面,所述的分光镜4位于所述的目镜3的后面,所述的分光镜4位于矩形孔径光电探测器阵列5的前面,所述的分光镜4位于矩形孔径激光发射器阵列6的前面,所述的物镜2的焦距为f1,所述的目镜3的焦距为f2,所述的物镜2和所述的目镜3之间的距离为f1+f2,该望远镜的放大倍数为 M = f 1 f 2 . 该实施例的矩形光楔阵列1的单元矩形光楔排列顺序是以K=0的平板光楔为基准,分上下按K递增顺序排列,向上K>1正方向依次增加光楔角度,向下K<1反方向依次增加光楔角度排列的。The rectangular wedge array 1 is located at the front focal plane of the objective lens 2, the rectangular aperture photodetector array 5 is located at the rear focal plane of the eyepiece, and the rectangular aperture laser emitter array 6 is located at the The rear focal plane of the eyepiece, the beam splitter 4 is positioned behind the eyepiece 3, the beam splitter 4 is positioned in front of the rectangular aperture photodetector array 5, and the beam splitter 4 is positioned at the rectangular aperture In front of the laser emitter array 6, the focal length of the objective lens 2 is f 1 , the focal length of the eyepiece 3 is f 2 , and the distance between the objective lens 2 and the eyepiece 3 is f 1 +f 2 , the magnification of the telescope is m = f 1 f 2 . The arrangement order of the unit rectangular wedges of the rectangular wedge array 1 in this embodiment is based on the flat wedge with K=0, and is arranged in the order of increasing K in the upper and lower parts, and the wedge angles are sequentially increased in the upward K>1 positive direction, and downward If K<1, the opposite direction increases the wedge angle arrangement in turn.

望远镜作为接收光学天线时,所述的矩形光楔阵列1和物镜2面对目标,所述的矩形光楔阵列1为接收望远镜入瞳,所述的分光镜4把回波光束反射到所述的矩形孔径光电探测器阵列5,所述的矩形光楔阵列1上的单元矩形光楔和所述的矩形孔径光电探测器阵列5上的单元矩形探测器一一对应成像。When the telescope is used as a receiving optical antenna, the rectangular wedge array 1 and the objective lens 2 face the target, the rectangular wedge array 1 is the entrance pupil of the receiving telescope, and the beam splitter 4 reflects the echo beam to the The rectangular aperture photodetector array 5, the unit rectangular optical wedges on the rectangular optical wedge array 1 and the unit rectangular detectors on the rectangular aperture photodetector array 5 are imaged in one-to-one correspondence.

望远镜作为发射光学天线时,所述的矩形孔径激光发射器阵列6所发出的激光通过所述的矩形光楔阵列1发射出去,所述的矩形孔径激光发射器阵列6上的单元矩形激光源与所述的矩形光楔阵列1上单元矩形光楔一一对应成像,所述的分光镜4把所述的矩形孔径激光发射器阵列6的部分光强反射到所述的反射镜7,返回再通过所述的分光镜4到达所述的矩形孔径光电探测器阵列5,作为光学外差接收的本机振荡光源阵列,这时所述的矩形孔径激光发射器阵列6的单元矩形激光源与所述的矩形孔径光电探测器阵列5上的单元矩形探测器一一对应。When the telescope is used as a transmitting optical antenna, the laser emitted by the rectangular aperture laser emitter array 6 is emitted through the rectangular wedge array 1, and the unit rectangular laser source on the rectangular aperture laser emitter array 6 is connected to the The unit rectangular light wedges on the rectangular light wedge array 1 are imaged one by one, and the beam splitter 4 reflects part of the light intensity of the rectangular aperture laser emitter array 6 to the reflector 7, and returns to the Arrive at described rectangular aperture photodetector array 5 through described spectroscope 4, as the local oscillation light source array of optical heterodyne reception, at this moment the unit rectangular laser source of described rectangular aperture laser emitter array 6 and described The unit rectangular detectors on the aforementioned rectangular aperture photodetector array 5 correspond one-to-one.

事实上,望远镜作为接收光学天线时需要进行空间二次项相位的补偿(参考文献4),望远镜作为发射光学天线时可以进行控制以产生合适的相位二次项历程(参考文献5),而望远镜同时作为接收天线和发射天线时需要采用双向环路结构分别实施相位补偿和偏置(参考文献6)。本发明设定的望远镜可以符合上述的使用条件。因此,最终的方位向相位二次项历程的等效曲率半径fft可以表达为:In fact, when the telescope is used as a receiving optical antenna, it is necessary to compensate the phase of the quadratic term in space (Reference 4), and when the telescope is used as a transmitting optical antenna, it can be controlled to generate a suitable phase quadratic term history (Reference 5), and the telescope When it is used as a receiving antenna and a transmitting antenna at the same time, it is necessary to adopt a bidirectional loop structure to implement phase compensation and offset respectively (Reference 6). The telescope set by the present invention can meet the above-mentioned conditions of use. Therefore, the equivalent radius of curvature f ft of the final azimuth phase quadratic term history can be expressed as:

11 ff ftft == 11 ff rr ++ 11 ff tt ++ 11 ff addadd ,,

其中:fr为回波接收时产生的相位历程分量的曲率半径,ft为发射光束产生的相位历程分量的曲率半径,fadd是发射望远镜空间相位偏置产生的附加相位历程分量的曲率半径。例如在夫琅和费衍射区域并且不考虑附加偏置时有fft=ft=z(参考文献5)。为了简便起见,采用常数N来表达fft和z之间的关系:Among them: f r is the radius of curvature of the phase history component generated when the echo is received, f t is the radius of curvature of the phase history component generated by the transmitting beam, f add is the radius of curvature of the additional phase history component generated by the space phase offset of the transmitting telescope . For example f ft = f t = z in the region of Fraunhofer diffraction and no additional bias is considered (ref. 5). For simplicity, a constant N is used to express the relationship between f ft and z:

NN == zz ff ftft == zz ff rr ++ zz ff tt ++ zz ff addadd ..

方位向成像分辨率一般可以采用如下公式进行估计The azimuth imaging resolution can generally be estimated by the following formula

&delta;d&delta;d == DD. NN ,,

其中:D为光学天线直径。Where: D is the diameter of the optical antenna.

下面以本实施例为例对本发明作详细分析说明:The present invention is described in detail below by taking the present embodiment as an example:

令目标点到激光雷达的方向为z方向,天线中心沿雷达运动方位方向为x方向,其垂直方向为y方向,因此全局坐标系为(x,y,z)。矩形光楔阵列1中的各个单元矩形光楔的边长分别为lx,ly,边长之比定义为 S 1 = l x l y , 光楔之间的周期为Ly,因此第k个光楔的中心位置在(x=0,y=kLy),其中必须满足条件Ly≥ly°第k个光楔的局域坐标系设定为(xk,yk,zk),满足坐标系变换关系(xk=x,yk=y-kLy,zk=z),因此其坐标原点在(x=0,y=kLy,z=0)。矩形孔径激光发射器阵列6上的单元矩形光源的尺度为lx,t,ly,t,则必须满足 l x l x , t = l y l y , t = M . 矩形孔径光电探测器阵列5上的单元矩形探测器的尺度为lx,r,ly,r,则必须满足 l x l x , r = l y l y , r = M . Let the direction from the target point to the lidar be the z direction, the antenna center along the radar movement azimuth direction be the x direction, and its vertical direction be the y direction, so the global coordinate system is (x, y, z). The side lengths of each unit rectangular wedge in the rectangular wedge array 1 are l x , ly y respectively, and the ratio of the side lengths is defined as S 1 = l x l the y , The period between the wedges is L y , so the center position of the kth wedge is at (x=0, y=kL y ), where the condition L y ≥ ly ° The local coordinates of the kth wedge The system is set as (x k , y k , z k ), which satisfies the coordinate system transformation relationship (x k = x, y k = y-kL y , z k = z), so its coordinate origin is at (x = 0, y=kL y , z=0). The dimensions of the unit rectangular light source on the rectangular aperture laser emitter array 6 are l x, t , ly y, t , then must satisfy l x l x , t = l the y l the y , t = m . The dimensions of the unit rectangular detectors on the rectangular aperture photodetector array 5 are l x, r , l y, r , then must satisfy l x l x , r = l the y l the y , r = m .

望远镜作为发射光学天线的功能可以简述如下:The function of the telescope as a transmitting optical antenna can be briefly described as follows:

望远镜作为发射光学天线时,在矩形光楔阵列1的输出面上的第k个矩形孔径光楔光源产生的归一化发射激光的光场可表达为When the telescope is used as a transmitting optical antenna, the light field of the normalized emitting laser light generated by the kth rectangular aperture wedge light source on the output surface of the rectangular wedge array 1 can be expressed as

ee 11 (( xx kk ,, ythe y kk )) == rectrect (( xx kk ll xx )) (( expexp (( jj 22 &pi;&pi; &lambda;&lambda; (( nno -- 11 )) k&Delta;k&Delta; &theta;&theta; ythe y ythe y kk )) rectrect (( ythe y kk ll ythe y )) )) ,,

其中:n为光楔玻璃的折射率,Δθy为单元矩形光楔的基本顶角,λ为激光波长。该发射场强产生发射光束的发散度方向性函数为Where: n is the refractive index of the optical wedge glass, Δθ y is the basic apex angle of the unit rectangular optical wedge, and λ is the laser wavelength. The emission field strength produces the divergence directionality function of the emission beam as

&Theta;&Theta; tt (( &theta;&theta; xx ,, kk ,, &theta;&theta; ythe y ,, kk )) == sinsin cc (( ll xx &lambda;&lambda; &theta;&theta; xx ,, kk )) (( sinsin cc (( ll ythe y &lambda;&lambda; &theta;&theta; ythe y ,, kk )) ** &delta;&delta; (( &theta;&theta; ythe y ,, kk -- (( nno -- 11 )) k&Delta;k&Delta; &theta;&theta; ythe y )) )) ..

其中:θx,k和θy,k分别为第k个局域坐标系xk方向和yk方向上的方向角,*表示卷积积分。Among them: θ x, k and θ y, k are the orientation angles in the x k direction and y k direction of the k-th local coordinate system, respectively, and * represents the convolution integral.

望远镜作为接收光学天线的功能可以简述如下:The function of the telescope as a receiving optical antenna can be briefly described as follows:

望远镜作为接收光学天线时,在矩形光楔阵列1的第k个单元矩形光楔的接收孔径函数为When the telescope is used as a receiving optical antenna, the receiving aperture function of the rectangular wedge in the kth unit of the rectangular wedge array 1 is

pp (( xx kk ,, ythe y kk )) == rectrect (( xx kk ll xx )) (( expexp (( jj 22 &pi;&pi; &lambda;&lambda; (( nno -- 11 )) k&Delta;k&Delta; &theta;&theta; ythe y ythe y kk )) rectrect (( ythe y kk ll ythe y )) )) ,,

该孔径函数产生光学外差接收方向性方向性函数为The aperture function produces optical heterodyne receiving directivity The directivity function is

&Theta;&Theta; rr (( &theta;&theta; xx ,, kk ,, &theta;&theta; ythe y ,, kk )) == sinsin cc (( ll xx &lambda;&lambda; &theta;&theta; xx ,, kk )) (( sinsin cc (( ll ythe y &lambda;&lambda; &theta;&theta; ythe y ,, kk )) ** &delta;&delta; (( &theta;&theta; ythe y ,, kk -- (( nno -- 11 )) k&Delta;k&Delta; &theta;&theta; ythe y )) )) ..

定义:光学足趾为在目标面上发射光斑和外差有效接收面积的共同作用范围,因此望远镜同时作为发射和接收天线时的第k个单元矩形光楔孔径产生光学足趾的综合方向性函数为Definition: The optical toe is the joint action range of the emission spot and the heterodyne effective receiving area on the target surface, so when the telescope is used as the transmitting and receiving antenna at the same time, the k-th unit rectangular wedge aperture produces the comprehensive directional function of the optical toe for

&Theta;&Theta; (( &theta;&theta; xx ,, kk ,, &theta;&theta; ythe y ,, kk )) == &Theta;&Theta; kk (( &theta;&theta; xx ,, kk ,, &theta;&theta; ythe y ,, kk )) &Theta;&Theta; rr (( &theta;&theta; xx ,, kk ,, &theta;&theta; ythe y ,, kk ))

== [[ sinsin cc (( ll xx &lambda;&lambda; &theta;&theta; xx ,, kk )) (( sinsin cc (( ll ythe y &lambda;&lambda; &theta;&theta; ythe y ,, kk )) ** &delta;&delta; (( &theta;&theta; ythe y ,, kk -- (( nno -- 11 )) kk &Delta;&theta;&Delta;&theta; ythe y )) )) ]] 22

可见方向性函数中心位于(θx,k(0)=0,θy,k(0)=(n-1)kΔθy),方向性函数在x方向的第一零点的位置在 &theta; x , k = &PlusMinus; &lambda; l x , 即x方向的方向性宽度为:It can be seen that the center of the directional function is located at (θ x, k (0) = 0, θ y, k (0) = (n-1)kΔθ y ), and the position of the first zero point of the directional function in the x direction is at &theta; x , k = &PlusMinus; &lambda; l x , That is, the directional width in the x direction is:

&delta;&theta;&delta;&theta; xx == 22 &lambda;&lambda; ll xx ,,

方向性函数在y方向的第一零点的位置在 &theta; y , k = &PlusMinus; &lambda; l x + ( n - 1 ) k &Delta;&theta; y , 即y方向的方向性宽度为:The position of the first zero point of the directional function in the y direction is at &theta; the y , k = &PlusMinus; &lambda; l x + ( no - 1 ) k &Delta;&theta; the y , That is, the directional width in the y direction is:

&delta;&theta;&delta;&theta; ythe y == 22 &lambda;&lambda; ll ythe y ..

目标面上的全局坐标系可以用(α,β)表达,α平行于x,β平行于y,中心在z轴上。第k个单元矩形光楔产生的光学足趾在目标面上的局域坐标系设定为(αk,βk),满足坐标关系(αk=x,βk=β-k(n-1)Δθyz),The global coordinate system on the target surface can be expressed by (α, β), α is parallel to x, β is parallel to y, and the center is on the z axis. The local coordinate system of the optical toe produced by the kth unit rectangular optical wedge on the target surface is set as (α k , β k ), which satisfies the coordinate relationship (α k =x, β k =β-k(n- 1) Δθ y z),

因此其坐标原点在(α=0,β=k(n-1)Δθyz)。可知αk方向的距离宽度为Therefore, the origin of its coordinates is at (α=0, β=k(n-1)Δθ y z). It can be seen that the distance width in the α k direction is

&delta;&alpha;&delta;&alpha; kk == 22 &lambda;z&lambda;z ll xx ..

βk方向的距离宽度为The distance width in the direction of β k is

&delta;&beta;&delta;&beta; kk == 22 &lambda;z&lambda;z ll ythe y ,,

因此,单个单元矩形光楔方向性函数的宽度比即为Therefore, the width ratio of the directionality function of a single rectangular optical wedge is

&delta;&theta;&delta;&theta; ythe y &delta;&theta;&delta;&theta; xx == &delta;&beta;&delta;&beta; kk &delta;&alpha;&delta;&alpha; kk == SS 11 ..

在y方向两个单元矩形光楔的孔径足趾方向性函数的间隔为(n-1)Δθy,使各个单个方向性函数在y方向组合起来,形成重叠加长扫描条带。设单个函数的重叠因子为P(P≤1),则要求The distance between the aperture toe directional functions of the two unit rectangular optical wedges in the y direction is (n-1)Δθ y , so that each single directional function is combined in the y direction to form an overlapping and elongated scanning strip. Let the overlap factor of a single function be P(P≤1), then require

PP 22 &lambda;&lambda; ll ythe y == (( nno -- 11 )) &Delta;&theta;&Delta;&theta; ythe y ,,

或者单元矩形光楔的基本顶角为:Or the basic vertex angle of the rectangular optical wedge of the unit is:

&Delta;&theta;&Delta;&theta; ythe y == PP 22 &lambda;&lambda; (( nno -- 11 )) ll ythe y ..

这时由2K+1个单元矩形光楔组成的望远镜所产生的y方向总的方向性宽度ΣθyAt this time, the total directional width Σθ y in the y direction produced by the telescope composed of 2K+1 unit rectangular light wedges is

Σθy=((K-1)P+1)δθyΣθ y = ((K-1)P+1)δθ y ,

因此由2K+1个单元矩形光楔组成的望远镜的方向性函数的方向性宽度比为Therefore, the directivity width ratio of the directivity function of the telescope composed of 2K+1 unit rectangular light wedges is

SK=((K-1)P+1)S1°S K =((K-1)P+1)S 1 °

同样可以折算到目标面上表达,α方向的距离宽度为It can also be converted to the target surface, and the distance width in the α direction is

&delta;&alpha;&delta;&alpha; == 22 &lambda;z&lambda;z ll xx ,,

β方向的重叠距离宽度为The overlapping distance width in the β direction is

&Delta;&beta;&Delta;&beta; == (( (( KK -- 11 )) PP ++ 11 )) 22 &lambda;z&lambda;z ll ythe y ..

本实施例的矩形光楔阵列1由2K+1(K=0、±1、±2、±3、……±K)个单元矩形光楔构成,以K=0的平板光楔为基准分上下按K的顺序排列,向上K>1正方向依次增加光楔角度,向下K<1反方向依次增加光楔角度排列,其实相反按向上K>1正方向依次递减光楔角度,向下K<1反方向依次递减光楔角度排列,甚至单元矩形光楔镜在孔径上可以不按照k的次序任一排列,实验分析表明,在远场的技术效果是一样的。The rectangular optical wedge array 1 of this embodiment is composed of 2K+1 (K=0, ±1, ±2, ±3, ...±K) unit rectangular optical wedges, and the flat optical wedge with K=0 as the reference The top and bottom are arranged in the order of K, the upward K>1 positive direction increases the optical wedge angle sequentially, and the downward K<1 reverse direction increases the optical wedge angle sequentially. If K<1, the wedge angles are arranged in descending order in the opposite direction, and even the unit rectangular wedge mirrors can be arranged in any order not according to the order of k on the aperture. Experimental analysis shows that the technical effect in the far field is the same.

下面是一个具体实施例的设计:Below is the design of a specific embodiment:

合成孔径激光成像雷达要求成像观察距离Z为500km,波长1.55um,要求分辨率直径δd小于100mm,扫描条带宽度140m,条幅宽度与分辨率比大于103。采用矩形光楔阵列望远镜同时作为光学外差接收天线和平面波发射天线的方式,由分辨率要求 &delta;d = D N 单个矩形孔径设计取N=2,因此lx=200mm,而根据矩孔衍射定理α方向的 &delta;&alpha; = 2 &lambda;z l x 物面照明宽度为7.75m。取ly=100mm,根据矩孔衍射 &delta;&beta; k = 2 &lambda;z l y 得到单孔照明扫描条带宽度为15.5m。采用孔径数K=11和重叠因子P=0.8,则重叠距离宽度 &Delta;&beta; = ( ( K - 1 ) P + 1 ) 2 &lambda;z l y 最终为139.5m,这时要求光楔的基本顶角 &Delta;&theta; y = P 2 &lambda; ( n - 1 ) l y 为Δθy=12.4μrad。Synthetic aperture lidar imaging requires an imaging observation distance Z of 500km, a wavelength of 1.55um, a resolution diameter δd of less than 100mm, a scanning swath width of 140m, and a ratio of swath width to resolution greater than 10 3 . The rectangular wedge array telescope is used as the optical heterodyne receiving antenna and the plane wave transmitting antenna at the same time, depending on the resolution requirements &delta;d = D. N A single rectangular aperture is designed to take N=2, so l x =200mm, and according to the rectangular hole diffraction theorem, the &delta;&alpha; = 2 &lambda;z l x The object plane lighting width is 7.75m. Take l y =100mm, according to the rectangular hole diffraction &delta;&beta; k = 2 &lambda;z l the y The obtained single-hole illumination scanning strip width is 15.5m. Adopt aperture number K=11 and overlap factor P=0.8, then overlap distance width &Delta;&beta; = ( ( K - 1 ) P + 1 ) 2 &lambda;z l the y The final value is 139.5m, and the basic apex angle of the optical wedge is required at this time &Delta;&theta; the y = P 2 &lambda; ( no - 1 ) l the y Δθ y =12.4 μrad.

Claims (10)

1、一种合成孔径激光成像雷达的矩形光楔阵列望远镜天线,其特征在于:所述的矩形光楔阵列望远镜的构成包括矩形光楔阵列(1)、物镜(2)、目镜(3)、分光镜(4)、矩形孔径光电探测器阵列(5)、矩形孔径激光发射器阵列(6)和反射镜(7),所述的矩形光楔阵列(1)、物镜(2)、目镜(3)、分光镜(4)、矩形孔径激光发射器阵列(6)依次地位于一条光路上,所述的矩形光楔阵列(1)位于所述的物镜(2)的前焦面,所述的矩形孔径光电探测器阵列(5)位于所述的目镜(3)的后焦面,所述的矩形孔径激光发射器阵列(6)位于所述的目镜(3)的后焦面,所述的矩形孔径光电探测器阵列(5)和所述的反射镜(7)分别位于所述的分光镜(4)的两面的反射光路上,所述的物镜(2)的焦距为f1,所述的目镜(3)的焦距为f2,所述的物镜(2)和所述的目镜(3)之间的距离为f1+f2,该望远镜的放大倍数为 M = f 1 f 2 , 所述的分光镜(4)对来自所述的矩形孔径激光发射器阵列(6)或来自物镜(2)的光束和进入所述的矩形孔径光电探测器阵列(5)的光束进行分束组合。1. A rectangular wedge array telescope antenna of a synthetic aperture laser imaging radar, characterized in that: the formation of the rectangular wedge array telescope includes a rectangular wedge array (1), an objective lens (2), an eyepiece (3), Spectroscope (4), rectangular aperture photodetector array (5), rectangular aperture laser emitter array (6) and mirror (7), described rectangular wedge array (1), objective lens (2), eyepiece ( 3), beam splitter (4), rectangular aperture laser emitter array (6) are positioned on an optical path successively, and described rectangular optical wedge array (1) is positioned at the front focal plane of described objective lens (2), described The rectangular aperture photodetector array (5) is located at the rear focal plane of the eyepiece (3), and the described rectangular aperture laser emitter array (6) is located at the rear focal plane of the eyepiece (3), and the The rectangular aperture photodetector array (5) and the reflector (7) are respectively located on the reflective light paths on both sides of the beam splitter (4), and the focal length of the objective lens (2) is f 1 , so The focal length of the eyepiece (3) is f2 , the distance between the objective lens (2) and the eyepiece (3) is f1 + f2 , and the magnification of the telescope is m = f 1 f 2 , The beam splitter (4) splits and combines the light beams from the rectangular aperture laser emitter array (6) or from the objective lens (2) and the light beams entering the rectangular aperture photodetector array (5) . 2、根据权利要求1所述的合成孔径激光成像雷达的矩形光楔阵列望远镜天线,其特征在于所述的矩形光楔阵列望远镜作为接收光学天线时,所述的矩形光楔阵列(1)和物镜(2)面对目标,所述的矩形光楔阵列(1)为接收望远镜入瞳,所述的分光镜(4)把回波光束反射到所述的矩形孔径光电探测器阵列(5),所述的矩形光楔阵列(1)上的各单元矩形光楔和所述的矩形孔径光电探测器阵列(5)上的单元矩形探测器一一对应成像:所述的矩形光楔阵列(1)中的各个单元矩形光楔的边长分别为lx,ly,单元矩形光楔之间的周期为Ly,满足条件Ly≥ly,所述的矩形孔径光电探测器阵列(5)上的单元矩形探测器的尺度为lx,r,ly,r,满足 l x l x , r = l y l y , r = M . 2. The rectangular wedge array telescope antenna of synthetic aperture laser imaging radar according to claim 1, characterized in that when the rectangular wedge array telescope is used as a receiving optical antenna, the rectangular wedge array (1) and The objective lens (2) faces the target, the rectangular wedge array (1) is the entrance pupil of the receiving telescope, and the beam splitter (4) reflects the echo beam to the rectangular aperture photodetector array (5) Each unit rectangular optical wedge on the described rectangular optical wedge array (1) and the unit rectangular detectors on the described rectangular aperture photodetector array (5) correspond to one-to-one imaging: the rectangular optical wedge array ( The side lengths of each unit rectangular optical wedge in 1) are l x , ly y respectively, the period between the unit rectangular optical wedges is L y , and the condition L yly is satisfied, the rectangular aperture photodetector array ( 5) The scales of the unit rectangular detectors are l x, r , l y, r , satisfying l x l x , r = l the y l the y , r = m . 3、根据权利要求1所述的合成孔径激光成像雷达的矩形光楔阵列望远镜天线,其特征在于所述的矩形光楔阵列望远镜作为发射光学天线时,所述的矩形孔径激光发射器阵列(6)通过所述的矩形光楔阵列(1)将激光发射出去,所述的矩形孔径激光发射器阵列(6)上的单元矩形光源与所述的矩形光楔阵列(1)上各单元矩形光楔一一对应成像:所述的矩形光楔阵列(1)中的各个单元矩形光楔的边长分别为lx,ly,单元矩形光楔之间的周期为Ly,满足条件Ly≥ly,所述的矩形孔径激光发射器阵列(6)上的单元矩形光源的尺度为lx,t,ly,t,满足 l x l x , t = l y l y , t = M ; 所述的分光镜(4)把所述的矩形孔径激光发射器阵列(6)的部分光强反射到所述的反射镜(7),返回再通过所述的分光镜(4)到达所述的矩形孔径光电探测器阵列(5),作为光学外差接收的本机振荡光源阵列,这时所述的矩形孔径激光发射器阵列(6)的各个单元矩形光源与所述的矩形孔径光电探测器阵列(5)上的单元矩形探测器一一对应:所述的矩形孔径激光发射器阵列(6)上的单元矩形光源的尺度lx,t,ly,t分别与所述的矩形孔径光电探测器阵列(5)上的单元矩形探测器的尺度lx,r,ly,r相等。3. The rectangular wedge array telescope antenna of the synthetic aperture laser imaging radar according to claim 1, wherein when the rectangular wedge array telescope is used as a transmitting optical antenna, the rectangular aperture laser emitter array (6 ) emit the laser light through the rectangular optical wedge array (1), the unit rectangular light source on the described rectangular aperture laser emitter array (6) and each unit rectangular light source on the described rectangular optical wedge array (1) One-to-one wedge imaging: the side lengths of each unit rectangular wedge in the rectangular wedge array (1) are l x , ly y respectively, and the period between the unit rectangular wedges is L y , satisfying the condition L y ≥l y , the scale of the unit rectangular light source on the rectangular aperture laser emitter array (6) is l x, t , l y, t , satisfying l x l x , t = l the y l the y , t = m ; Described beam splitter (4) reflects part of the light intensity of described rectangular aperture laser emitter array (6) to described reflector (7), returns and reaches the described beam splitter (4) again The rectangular aperture photodetector array (5), as the local oscillation light source array of optical heterodyne reception, at this moment each unit rectangular light source of described rectangular aperture laser emitter array (6) and described rectangular aperture photoelectric detection Unit rectangular detectors on the device array (5) correspond one-to-one: the scale l x of the unit rectangular light source on the described rectangular aperture laser emitter array (6), t , l y, t are respectively with the described rectangular aperture The unit rectangular detectors on the photodetector array (5) have the same dimensions lx , r , ly , r . 4、根据权利要求1所述的合成孔径激光成像雷达的矩形光楔阵列望远镜天线,其特征在于所述的矩形光楔阵列(1)由2K+1个单元矩形光楔构成,其中K=0、±1、±2、±3、……±K,K=0的单元矩形光楔为平板光楔,第K块单元矩形光楔的顶角为基本顶角的K倍,所述的单元矩形光楔的边长分别为lx,ly,单元矩形光楔之间的周期为Ly,基本顶角为: &Delta; &theta; y = P 2 &lambda; ( n - 1 ) l y , 所述的lx由物面照明宽度 &delta;&alpha; = 2 &lambda;z l x 决定,ly由扫描条带宽度 &delta;&beta; k = 2 &lambda;z l y 决定,并且扫描条带宽度 &delta;&beta; k = 2 &lambda;z l y 与分辨率直径 &delta;d = D N 之比的取值范围为102~103,物面照明的重叠距离宽度为: &Delta;&beta; = ( ( K - 1 ) P + 1 ) 2 &lambda;z l y , 式中:D为本发明望远镜的直径,N是表达最终的方位向相位二次项历程的等效曲率半径fft和目标距离z之间关系的常数,P为重叠因子,K为孔径数,λ为波长,n为玻璃矩形光楔的折射率,所述的矩形光楔阵列(1)的单元矩形光楔排列顺序任意。4. The rectangular wedge array telescope antenna for synthetic aperture laser imaging radar according to claim 1, characterized in that said rectangular wedge array (1) is composed of 2K+1 unit rectangular wedges, wherein K=0 , ±1, ±2, ±3, ... ±K, the unit rectangular optical wedge of K=0 is a flat optical wedge, the apex angle of the Kth unit rectangular optical wedge is K times the basic apex angle, and the unit The side lengths of the rectangular light wedges are l x , ly y , the period between the unit rectangular light wedges is L y , and the basic vertex angle is: &Delta; &theta; the y = P 2 &lambda; ( no - 1 ) l the y , The l x width of the illumination by the object plane &delta;&alpha; = 2 &lambda;z l x Determined, l y is determined by the scanning stripe width &delta;&beta; k = 2 &lambda;z l the y determined, and the scan strip width &delta;&beta; k = 2 &lambda;z l the y and resolution diameter &delta;d = D. N The value range of the ratio is 10 2 to 10 3 , and the overlapping distance width of the object plane illumination is: &Delta;&beta; = ( ( K - 1 ) P + 1 ) 2 &lambda;z l the y , In the formula: D is the diameter of the telescope of the present invention, N is the constant of the relationship between the equivalent radius of curvature f ft and the target distance z expressing the final azimuth phase quadratic term history, P is the overlapping factor, and K is the aperture number, λ is the wavelength, n is the refractive index of the glass rectangular light wedge, and the arrangement order of the unit rectangular light wedges in the rectangular light wedge array (1) is arbitrary. 5、根据权利要求4所述的合成孔径激光成像雷达的矩形光楔阵列望远镜天线,其特征在于所述的矩形光楔阵列(1)由K=0、±1、±2、±3、……、+(K-2)、+(K—1)、+k的不对称的多个单元矩形光楔构成。5. The rectangular wedge array telescope antenna for synthetic aperture laser imaging radar according to claim 4, characterized in that the rectangular wedge array (1) consists of K=0, ±1, ±2, ±3, ... ..., +(K-2), +(K-1), +k asymmetric multiple unit rectangular optical wedges. 6、根据权利要求4或5所述的合成孔径激光成像雷达的矩形光楔阵列望远镜天线,其特征在于所述的矩形光楔阵列(1)的单元矩形光楔排列顺序是以K=0的平板光楔为基准,分上下按K递增顺序排列,向上K>1正方向依次增加光楔角度,向下K<1反方向依次增加光楔角度排列,或相反按K递减顺序排列,向上K>1正方向依次递减光楔角度,向下K<1反方向依次递减光楔角度排列。6. The rectangular wedge array telescope antenna for synthetic aperture laser imaging radar according to claim 4 or 5, characterized in that the arrangement order of the unit rectangular wedges of the rectangular wedge array (1) is K=0 Flat optical wedges are used as the reference, and they are arranged in ascending order of K, upwards K>1 positive direction increases the optical wedge angle, downwards K<1 reverse direction increases the optical wedge angles sequentially, or on the contrary arranges in K decreasing order, upwards K The positive direction of >1 decreases the wedge angle sequentially, and the downward K<1 reverse direction decreases the wedge angle sequentially. 7、根据权利要求1所述的合成孔径激光成像雷达的矩形光楔阵列望远镜天线,其特征在于所述的矩形光楔阵列(1)直接放在所述的物镜前面,但同时在所述的物镜后焦面上放置场镜,补偿由于所述的矩形光楔阵列(1)离开所述的物镜的前焦面的距离而产生的附加相位二次项。7. The rectangular wedge array telescope antenna for synthetic aperture laser imaging radar according to claim 1, characterized in that the rectangular wedge array (1) is placed directly in front of the objective lens, but at the same time A field lens is placed on the rear focal plane of the objective lens to compensate for the additional phase quadratic term generated due to the distance between the rectangular optical wedge array (1) and the front focal plane of the objective lens. 8、根据权利要求1所述的合成孔径激光成像雷达的矩形光楔阵列望远镜天线,其特征在于所述的矩形光楔阵列(1)的单元矩形光楔的横截面为具有倒角的直角三角形、梯形、或正三角形。8. The rectangular wedge array telescope antenna for synthetic aperture laser imaging radar according to claim 1, characterized in that the cross section of the unit rectangular wedge of the rectangular wedge array (1) is a right triangle with chamfered corners , trapezoid, or equilateral triangle. 9、根据权利要求1所述的合成孔径激光成像雷达的矩形光楔阵列望远镜天线,其特征在于所述的矩形孔径激光发射器阵列(6)各个单元矩形光源是相干阵列激光光源,或非相干阵列激光光源。9. The rectangular wedge array telescope antenna of the synthetic aperture laser imaging radar according to claim 1, characterized in that each unit rectangular light source of the described rectangular aperture laser transmitter array (6) is a coherent array laser light source, or an incoherent Array laser light source. 10、根据权利要求1所述的合成孔径激光成像雷达的矩形光楔阵列望远镜天线,其特征在于所述的矩形孔径激光发射器阵列(6)各个单元矩形光源发射的激光是平面波,或椭圆高斯光束。10. The rectangular wedge array telescope antenna of synthetic aperture laser imaging radar according to claim 1, characterized in that the laser emitted by each unit rectangular light source of the rectangular aperture laser transmitter array (6) is a plane wave, or an elliptical Gaussian beam.
CN2009100456386A 2009-01-21 2009-01-21 Rectangular optical wedge array telescope antenna of synthetic aperture laser imaging radar Expired - Fee Related CN101477199B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100456386A CN101477199B (en) 2009-01-21 2009-01-21 Rectangular optical wedge array telescope antenna of synthetic aperture laser imaging radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100456386A CN101477199B (en) 2009-01-21 2009-01-21 Rectangular optical wedge array telescope antenna of synthetic aperture laser imaging radar

Publications (2)

Publication Number Publication Date
CN101477199A true CN101477199A (en) 2009-07-08
CN101477199B CN101477199B (en) 2012-06-13

Family

ID=40837945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100456386A Expired - Fee Related CN101477199B (en) 2009-01-21 2009-01-21 Rectangular optical wedge array telescope antenna of synthetic aperture laser imaging radar

Country Status (1)

Country Link
CN (1) CN101477199B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062942A (en) * 2010-12-15 2011-05-18 同济大学 Deflecting optical wedge scanning device
CN102215062A (en) * 2011-03-25 2011-10-12 中国科学院上海光学精密机械研究所 Multi-channel optical receiver system of synthetic aperture laser imaging radar
CN104763959A (en) * 2014-01-08 2015-07-08 中强光电股份有限公司 Vehicle headlight device
CN109470236A (en) * 2018-11-26 2019-03-15 中国科学院长春光学精密机械与物理研究所 a star sensor
CN109683304A (en) * 2019-01-02 2019-04-26 中国科学院上海光学精密机械研究所 Based on light field high order spatial auto correlation without lens wiener-Xin Qin telescopic system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100559229C (en) * 2008-03-05 2009-11-11 中国科学院上海光学精密机械研究所 Spatial Phase Bias Transmitting Telescope for Synthetic Aperture LiDAR
CN101256233B (en) * 2008-03-05 2010-12-08 中国科学院上海光学精密机械研究所 Two-way Loop Transmitting and Receiving Telescope for Synthetic Aperture LiDAR
CN201166704Y (en) * 2008-03-05 2008-12-17 中国科学院上海光学精密机械研究所 Out-of-focus receiving telescope for synthetic aperture imaging lidar
CN201348660Y (en) * 2009-01-21 2009-11-18 中国科学院上海光学精密机械研究所 Rectangular Wedge Array Telescope Antenna for Synthetic Aperture LiDAR

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062942A (en) * 2010-12-15 2011-05-18 同济大学 Deflecting optical wedge scanning device
CN102062942B (en) * 2010-12-15 2012-02-29 同济大学 deflection wedge scanning device
CN102215062A (en) * 2011-03-25 2011-10-12 中国科学院上海光学精密机械研究所 Multi-channel optical receiver system of synthetic aperture laser imaging radar
CN102215062B (en) * 2011-03-25 2014-06-25 中国科学院上海光学精密机械研究所 Multi-channel optical receiver system of synthetic aperture laser imaging radar
CN104763959A (en) * 2014-01-08 2015-07-08 中强光电股份有限公司 Vehicle headlight device
CN109470236A (en) * 2018-11-26 2019-03-15 中国科学院长春光学精密机械与物理研究所 a star sensor
CN109683304A (en) * 2019-01-02 2019-04-26 中国科学院上海光学精密机械研究所 Based on light field high order spatial auto correlation without lens wiener-Xin Qin telescopic system

Also Published As

Publication number Publication date
CN101477199B (en) 2012-06-13

Similar Documents

Publication Publication Date Title
US11796680B2 (en) Lens and integrated beam transceiver based lidar detection device
US20230146495A1 (en) Large Scale Steerable Coherent Optical Switched Arrays
JP7322037B2 (en) LASER RADAR AND METHOD OF OPERATION THEREOF
US10684358B2 (en) Situational awareness sensor using a fixed configuration of optical phased arrays (OPAs)
US10788574B2 (en) LIDAR device and LIDAR system including the same
CN106291509A (en) Laser radar optical system
US10775485B2 (en) LIDAR device and system comprising the same
US11137483B2 (en) Light scanner
US11054524B2 (en) Optimizing a lidar system using sub-sweep sampling
CN101477199B (en) Rectangular optical wedge array telescope antenna of synthetic aperture laser imaging radar
WO2021168832A1 (en) Laser detection system and vehicle
CN101344592B (en) Beam bunching synthetic aperture laser imaging radar
JP2023545373A (en) Generation of coaxial local oscillators in the conjugate focal plane of FMCW-LIDAR systems
CN111263898A (en) Light beam scanning system, distance detection device and electronic equipment
KR20230155523A (en) laser radar
CN201348660Y (en) Rectangular Wedge Array Telescope Antenna for Synthetic Aperture LiDAR
CN115639567B (en) Laser radar
JP7325691B2 (en) Space object trajectory changer
CN201331584Y (en) Rectangular Aperture Telescope Antenna for Synthetic Aperture LiDAR
JP2014098668A (en) Measurement instrument
Kawazoe et al. Development of receiver optics for simplified 3D laser scanner composition
CN110109139A (en) A kind of high-resolution imaging system and method based on heterodyne detection of laser
CN201173972Y (en) Two-way Loop Transmitting and Receiving Telescope for Synthetic Aperture LiDAR
CN101464516B (en) Rectangular aperture telescope antenna of synthetic aperture laser imaging radar
US20230243932A1 (en) Optical waveguide device used in laser detection and ranging system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120613