CN101469666A - 多转子风力发动机及其运行方法 - Google Patents

多转子风力发动机及其运行方法 Download PDF

Info

Publication number
CN101469666A
CN101469666A CNA2008101847344A CN200810184734A CN101469666A CN 101469666 A CN101469666 A CN 101469666A CN A2008101847344 A CNA2008101847344 A CN A2008101847344A CN 200810184734 A CN200810184734 A CN 200810184734A CN 101469666 A CN101469666 A CN 101469666A
Authority
CN
China
Prior art keywords
rotor
horizontal axis
radial rotor
radial
admirable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008101847344A
Other languages
English (en)
Inventor
维亚切斯拉夫·斯捷潘诺维奇·克利莫夫
奥列格·维亚切斯拉沃维奇·克利莫夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN101469666A publication Critical patent/CN101469666A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0601Rotors using the Magnus effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2200/00Mathematical features
    • F05B2200/20Special functions
    • F05B2200/23Logarithm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/10Geometry two-dimensional
    • F05B2250/15Geometry two-dimensional spiral
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

水平轴的轮毂包含转子,所述转子通过它们自己的轴基于对数螺旋形承载元件在径向方向而被刚性地连接,上述承载元件根据冲压的力旋转,且当它在围绕它的风流中旋转时,产生侧向气动力,该侧向气动力由于马格努斯效应而产生;其总量形成水平轴的旋转力矩。

Description

多转子风力发动机及其运行方法
多转子风力发动机及其运转方法涉及风力工程,并意味着用于将风流动能转换成旋转机械能。
多转子风力发动机是风力驱动式水平轴轮,其中所述水平轴轮的轮毂包括转子风力发动机的径向上固定的轴,该固定轴具有对数螺旋形承载元件。
多转子风力发动机的工作原理基于同时使用风流搅动径向转子的冲压的力和侧向气动力,所述侧向气动力由于当各径向转子在包围它们的风流中旋转时的马格努斯效应(Magnus effect)而产生。这些力的联合作用产生水平轴的旋转力矩。
已知的是螺旋桨式水平轴风力发动机,所述螺旋桨式水平轴风力发动机包括固定的径向叶片,该叶片由风流的冲压的力和侧向气动力产生旋转能,当叶片周围有风流时,上述侧向气动力的小部分出来/参考文献1,78页-87页/。然而,通过螺旋桨式风力发动机传送到水平轴的旋转力矩的组合值有很多地方不能令人满意。
已知的是包括圆柱形径向转子的风力发动机,其中径向转子的旋转由湍流增进器提供,所述湍流增进器取安装在旋转缸体的外侧上的管件形式/参考文献2/。但由于其结构复杂性及其低效率,所以这些装置没有推广。
所提出的发明目的在于创造大功率风力发动机,所述大功率风力发动机能在各式各样风速下提供把动能转变成机械能的高效率。
为了达到这个目的,考虑使用的径向承载元件是转子,所述转子本身在竖直轴风力发动机中已被认可,其中其承载元件成形为像对数螺旋形弧一样,并能在工作的转子装置上在没有使用任何外部能量或任何其它辅助结构的情况下直接根据风流而使结构有效旋转/参考文献3/。
然而,如果在竖直结构中使用,则这些转子不能用于水平轴风力发动机,因为当转子绕水平轴连续地旋转时,只有一个排放喷嘴的存在不能提供径向转子的绕自己的轴线的旋转速度的一致性,所述一个排放喷嘴用以放出足以用于在竖直位置提供技术处理的使用过的气团。它们的角速度停止,因此所产生的侧向气动力下降。
为了弥补这种不足,将各转子的端平面装备有相同对称的排放喷嘴,这样形成本发明的精髓。
图1示出多转子风力发动机的视图,而在图2和3中示出径向转子的剖视图。
标号表示:
1 径向转子的轴线;
2 水平轴线的轮毂;
3 外部附件的边缘;
4 径向转子的承载元件;
5 径向转子的排放喷嘴;
6 径向转子的空气收集器;
7 径向转子的空气输送管道;
8 端板。
进入径向转子的空气收集器6的风流通过它们的压力的力影响承载元件4,并绕自己的轴1而传动径向转子,上述轴1刚性安装在水平轴的轮毂2和风轮3的外边缘中。随着径向转子在围绕它们的风流中旋转,由于马格努斯效应而出现侧向气动力/参考文献4,201页/,被旋转的径向转子的数量所限定的其总量,使风轮移动,从而产生水平轴的强大的旋转力矩。
来自空气收集器6的风流的风团进入空气输送管道7,并通过喷嘴5流出进入所述介质中。沿着各径向转子的端平面而存在的相同的对称的排放喷嘴不论它们在风轮旋转方式中的空间中的位置如何都能提供均匀的气团流;且产生的侧向气动力以及因此而产生的能力被永久保持。
利用便宜的材料和部件,作者发明了多转子风力发动机的有效模型并对其进行了试验。试验结果清楚地证明了将自然风流的动能转换成高功率旋转的机械能的高效率,在最低风速下的工作能力是所有类似用途的已知装置都达不到的。
参考文献:
1.Peter M.Moretti,Louis V.Divone.现代风力发动机,科学世界,1986/No.8。
(Peter M.Moretti,Louis V.Divone.Modern Windmills.In theWorld of Science.1986/No.8.)
2.俄罗斯联邦专利RU 2118699。
(Patent of the Russian Federation RU 2118699.)
3.白俄罗斯共和国专利8019。
(Patent of the Republic of Belarus BY 8019.)
4.苏联大百科全书,第15卷,第三版,莫斯科,1974。
(The Great Soviet Encyclopedia,V.15,3-rd Edition,M.,1974.)

Claims (2)

1.一种多转子水平轴风力发动机,其包括多个均匀的基于对数螺旋形的承载元件的径向转子,该承载元件均匀地分布在圆形平面中,其中转子的轴刚性固定在水平轴的轮毂中,其特征在于,每个径向转子沿着两个端平面装备有相同的对称排放喷嘴,以便当径向转子绕水平轴旋转时,能够在空间内恒定再定位的过程中使风流与径向转子的结构之间稳定地相互作用。
2.一种根据权利要求1所述的多转子风力发动机的运行方法,其特征在于,风力发动机被径向转子上的冲压的力起动,而水平轴的旋转力矩由侧向气动力的联合作用产生,所述侧向气动力是由当径向转子在围绕它们的风流中旋转时的马格努斯效应所产生的。
CNA2008101847344A 2007-12-29 2008-12-29 多转子风力发动机及其运行方法 Pending CN101469666A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BYA20071660 2007-12-29
BY20071660 2007-12-29

Publications (1)

Publication Number Publication Date
CN101469666A true CN101469666A (zh) 2009-07-01

Family

ID=40276191

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008101847344A Pending CN101469666A (zh) 2007-12-29 2008-12-29 多转子风力发动机及其运行方法

Country Status (7)

Country Link
US (1) US20090169388A1 (zh)
EP (1) EP2075459A3 (zh)
JP (1) JP2009228670A (zh)
KR (1) KR20090073034A (zh)
CN (1) CN101469666A (zh)
CA (1) CA2647648A1 (zh)
EA (1) EA015695B1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101930683A (zh) * 2010-09-07 2010-12-29 河海大学 无风洞马格努斯效应演示实验装置
CN103328817A (zh) * 2010-12-22 2013-09-25 伊德斯德国股份有限公司 风力转子和用于以此产生能量的方法
CN104500346A (zh) * 2014-12-25 2015-04-08 河海大学 一种组合型马格努斯风力发电机
CN107428404A (zh) * 2015-01-21 2017-12-01 阿尔基莫斯航运公司 用于弗莱特纳转子的驱动机构
CN112141308A (zh) * 2019-06-27 2020-12-29 周中奇 马格努斯转子

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9328717B1 (en) * 2009-04-27 2016-05-03 James A. Walker Golden ratio axial flow apparatus
AU2010219297A1 (en) * 2009-09-08 2011-03-24 Oleg Vyacheslavovich Klimov Rotor-type super windmill and method of increasing kinetic energy of air flow
EA201001783A3 (ru) * 2009-10-02 2011-12-30 Вячеслав Степанович Климов Роторная платформа аэродинамической силы и способ образования аэродинамической силы
CN101898635B (zh) * 2010-07-26 2013-03-27 哈尔滨工业大学 基于马格努斯效应的涵道单螺旋桨飞行器
DE102011113280B4 (de) * 2011-09-07 2016-06-09 Franz Popp Rotor zur Umwandlung von Strömungsenergie eines strömenden gasförmigen Fluids in Rotationsenergie und Anlage zur Erzeugung elektrischer Energie damit
EP3184425B1 (en) 2015-12-21 2018-09-12 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Multirotor aircraft
US10118696B1 (en) 2016-03-31 2018-11-06 Steven M. Hoffberg Steerable rotating projectile
US11712637B1 (en) 2018-03-23 2023-08-01 Steven M. Hoffberg Steerable disk or ball
RU207267U1 (ru) * 2021-06-10 2021-10-21 Роман Ефимович Либерзон Ветроагрегат

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2344515A (en) * 1941-01-17 1944-03-21 Henry P Massey Means and method for increasing the magnus effect
JPS5569768A (en) * 1978-11-17 1980-05-26 Taiji Kaiho Underwater suspended water turbine to maintain self- stability in the flow
US4366386A (en) * 1981-05-11 1982-12-28 Hanson Thomas F Magnus air turbine system
US4446379A (en) * 1983-02-17 1984-05-01 Borg John L Magnus effect power generator
RU2168060C1 (ru) * 1999-12-10 2001-05-27 Галимов Наиль Салихович Ветроустановка
RU2193687C2 (ru) * 2001-01-03 2002-11-27 Общество с ограниченной ответственностью Научно-производственное предприятие "Авиатехника" Ветродвигатель
EP1715181B1 (en) * 2004-02-09 2013-07-31 Mekaro Akita Co., Ltd. Magnus type wind power generator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101930683A (zh) * 2010-09-07 2010-12-29 河海大学 无风洞马格努斯效应演示实验装置
CN101930683B (zh) * 2010-09-07 2011-10-05 河海大学 无风洞马格努斯效应演示实验装置
CN103328817A (zh) * 2010-12-22 2013-09-25 伊德斯德国股份有限公司 风力转子和用于以此产生能量的方法
CN103328817B (zh) * 2010-12-22 2016-08-10 伊德斯德国股份有限公司 风力转子和用于以此产生能量的方法
CN104500346A (zh) * 2014-12-25 2015-04-08 河海大学 一种组合型马格努斯风力发电机
CN107428404A (zh) * 2015-01-21 2017-12-01 阿尔基莫斯航运公司 用于弗莱特纳转子的驱动机构
CN112141308A (zh) * 2019-06-27 2020-12-29 周中奇 马格努斯转子
US11143159B2 (en) 2019-06-27 2021-10-12 Chung-Chi Chou Magnus rotor
CN112141308B (zh) * 2019-06-27 2022-02-01 周中奇 马格努斯转子

Also Published As

Publication number Publication date
EP2075459A3 (en) 2010-11-24
EA015695B1 (ru) 2011-10-31
EA200900308A3 (ru) 2010-02-26
US20090169388A1 (en) 2009-07-02
KR20090073034A (ko) 2009-07-02
JP2009228670A (ja) 2009-10-08
CA2647648A1 (en) 2009-06-29
EP2075459A2 (en) 2009-07-01
EA200900308A2 (ru) 2009-10-30

Similar Documents

Publication Publication Date Title
CN101469666A (zh) 多转子风力发动机及其运行方法
US3228475A (en) Windmill
US20120074712A1 (en) Multi-rotor fluid turbine drive with speed converter
US20100111697A1 (en) Wind energy generation device
WO2009009350A4 (en) Flow stream momentum conversion device power rotor
US8162589B2 (en) Moving fluid energy recovery system
JPWO2018194105A1 (ja) 垂直軸型タービン
CN102889180A (zh) 垂直轴多叶轮风力发电机组
JP2018507973A (ja) 発電機用のロータ
CN105656236A (zh) 一种高效散热电力发动机
CN202250610U (zh) 聚能流体动力机
CN202811192U (zh) 层流式旋转翼风力发动机
CN112112754B (zh) 一种风力采集装置和风力发电装置
CN200985861Y (zh) 通过流体驱动的扇叶
Al-Abadi et al. Development of an experimental setup for double rotor HAWT investigation
EP1764503B1 (en) Wind turbine
CN112653264A (zh) 空心电动机
RU2463473C1 (ru) Крыльчато-парусная ветроэнергетическая установка
CN1963184A (zh) 一种通过流体驱动的扇叶
US6602054B1 (en) Fluid motor apparatus for amplifying thrust
CN203394693U (zh) 一种旋柱式清洁能源动力装置
CN102852711B (zh) 层流式旋转翼风力发动机
CN211082314U (zh) 高效离心风机
CN1963236A (zh) 通过流体驱动的扇叶
CN107084154A (zh) 轴流风机碳纤维叶轮

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20090701