CN101469015A - 一种二维毛细管电泳装置及其应用 - Google Patents

一种二维毛细管电泳装置及其应用 Download PDF

Info

Publication number
CN101469015A
CN101469015A CNA2007101592961A CN200710159296A CN101469015A CN 101469015 A CN101469015 A CN 101469015A CN A2007101592961 A CNA2007101592961 A CN A2007101592961A CN 200710159296 A CN200710159296 A CN 200710159296A CN 101469015 A CN101469015 A CN 101469015A
Authority
CN
China
Prior art keywords
interface
dimension
storage tank
separator column
capillary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101592961A
Other languages
English (en)
Other versions
CN101469015B (zh
Inventor
张丽华
王婷婷
朱贵杰
孙良亮
邓启良
梁振
张玉奎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN2007101592961A priority Critical patent/CN101469015B/zh
Publication of CN101469015A publication Critical patent/CN101469015A/zh
Application granted granted Critical
Publication of CN101469015B publication Critical patent/CN101469015B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

本发明涉及二维毛细管电泳装置,具体地说是一种新型二维毛细管电泳分离装置及其应用,可用于蛋白质样品的分离,包括一个2D-CE接口;一根固定化pH梯度毛细管整体柱作为2D-CE的第一维分离柱,其出口端通过连接管与2D-CE接口的一端相连,其进样端置于装有碱性缓冲液的入口贮槽中或与一个注射泵相连;一根毛细管作为2D-CE的第二维分离柱,其进样端通过连接管与2D-CE接口的另一端相连,其出口端置于装有缓冲液的贮槽中;2D-CE接口置于装有酸性缓冲液贮槽中。采用本发明可以显著提高系统的峰容量,从而满足复杂生物样品的分析需要。

Description

一种二维毛细管电泳装置及其应用
技术领域
本发明涉及二维毛细管电泳装置,具体地说是一种新型二维毛细管电泳(2D-CE)分离装置及其应用。
背景技术
毛细管电泳(CE)具有分离效率高、分析速度快和样品用量少等优点。但是常规的CE方法,由于受到应用电压的限制,所采用分离柱的长度有限,进而影响了实际柱效和可能达到的峰容量。此外,由于毛细管的光程短,所以CE的检测灵敏度较低。这些缺点都限制了CE在复杂生物样品分析中的应用。因此,通过选择正交的CE模式,发展具有高峰容量和高检测灵敏度的2D-CE具有重要意义。
目前,2D-CE在分离蛋白质方面已有诸多报道[文献1:Michels,D.A.;Hu,S.;Schoenherr,R.M.;Eggertson,M.J.;Dovichi,N.J.Mol.Cell.Proteomics 2002,1,69-74.文献2:S.Hu,D.Michels,M.A.Fazal,C.Ratisoontorn,M.L.Cunningham,N.J.Dovichi,Anal.Chem.,2004,76,4044-4049.文献3:Sheng,L.;Pawliszyn,J.Analyst 2002,127,1159-1163.]。由于CIEF具有较强的富集能力(Shen,Y.等[文献4:Shen,Y.;Berger,S.J.;Anderson,G.A.;Smith,R.D.Anal.Chem.2000,72,2154-2159.]报道CIEF的富集倍数高达540倍),是2D-CE的最佳第一维分离模式。目前已被用于CIEF-CZE分离核糖核酸酶[文献5:C.Yang,L.Zhang,H.Liu,W.Zhang,Y.Zhang,J.Chromatog.A,2003,1018,97-103.]和肌红蛋白、血红蛋白的混合物[文献6:H.Liu,L.Zhang,G.Zhu,W.Zhang,and Y.Zhang,Anal.Chem.2004,76,6506-6512.]、CIEF-CGE分离血红蛋白[文献7:C.Yang,H.Liu,Q.Yang,L.Zhang,W.Zhang,and Y.Zhang,Anal.Chem.2003,75,215-218.]、CIEF-CNGSE分离小鼠肺癌细胞的分泌蛋白提取物[文献8:H.Liu,C.Yang,Q.Yang,W.Zhang,Y.Zhang,J.Chromatogr.B,2005,817,119-126.]、CIEF-CITP/CZE分离细胞色素C、核糖核酸酶A和碳酸酐酶的酶解产物[文献9:Mohan,D.,Lee,C.S.,Electrophoresis 2002,23,3160-3167.]、CIEF-HFFlFFF分离人的尿蛋白[文献10:Dukjin Kang and Myeong Hee Moon,Anal.Chem.2006,78,5789-5798.]和CIEF-CEC分离去除白蛋白的人血清[文献11:M.Zhang and Rassi Z.E.,J.Proteome Res.,2006,5,2001-2008.]。CIEF使用的两性电解质不仅具有较高的缓冲能力,并且有助于建立稳定的pH梯度。然而,两性电解质在低紫外波长处吸收较强,会降低样品的检测灵敏度。尽管在上述构建的二维系统中均有去除两性电解质的接口,但是去除效果不是很完全,会影响后续的分离检测。Chun Yang等[文献12:C.Yang,G.Zhu,L.Zhang,W.Zhang,Y.Zhang,Electrophoresis 2004,25,1729-1734.]通过将两性电解质共价键合到毛细管整体柱中形成固定化pH梯度可以有效地解决上述问题,但尚未用于2D-CE的构建。
发明内容
本发明的目的在于提供一种可显著提高蛋白质分离能力的二维毛细管电泳(2D-CE)分离装置(图1)及其应用;利用该装置,第一维使用固定化pH梯度毛细管整体(M-IPG)柱不仅可以起到富集分离样品的作用,而且在缓冲液中不用添加两性电解质,避免了对第二维分离的干扰。此外,采用2D-CE的分离模式,可以显著提高系统的峰容量,从而满足复杂生物样品的分析需要。
为实现上述目的,本发明采用的技术方案为:
一种二维毛细管电泳装置,可用于蛋白质样品的分离,包括一个2D-CE接口;一根固定化pH梯度毛细管整体(M-IPG)柱作为2D-CE的第一维分离柱,其出口端通过连接管与2D-CE接口的一端相连,其进样端置于装有碱性缓冲液的入口贮槽中或与一个注射泵相连;一根毛细管作为2D-CE的第二维分离柱,其进样端通过连接管与2D-CE接口的另一端相连,其出口端置于装有酸性缓冲液的贮槽中;2D-CE接口置于装有酸性缓冲液贮槽中。
所述2D-CE接口为聚四氟乙烯接口、膜接口和毛细管刻蚀接口;固定化pH梯度整体柱的内径可以为100μm~250μm,长度为10~40cm;第二维分离柱毛细管的内径为50或75μm,长度为10~50cm;所述第二维分离柱毛细管为内壁涂层毛细管或者非涂层毛细管。
应用本发明时,在第一维毛细管等电聚焦(CIEF)分离完成后,生物大分子组分流经接口分段地进入第二维毛细管进行分离,实现2D-CE。由于该二维系统采用M-IPG柱作为第一维,不仅可以起到富集分离样品的作用,而且在缓冲液中不用添加两性电解质,避免了对第二维分离的干扰。此外,由于该柱可产生较大的反压,需要采用恒流泵为系统提供驱动力。当生物大分子组分流经接口时,在较大驱动力存在的情况下不会向接口外扩散,因此不会引起样品的损失和稀释。
具体的操作如下:
在聚焦前,首先将蛋白质样品溶液灌满第一维分离柱(D);
1)在聚焦时,第一维分离柱的进样端置于装有碱性缓冲液的入口贮槽中,2D-CE接口置于酸性缓冲液贮槽中,第二维分离柱出口端与一装有酸性缓冲液的出口贮槽相连接;一台工作高压直流电源的地线插入2D-CE接口处的贮槽中,负极插入第一维分离柱进样端入口贮槽中;入口贮槽中加负高压,2D-CE接口处接地,蛋白质样品在第一维分离柱中聚焦;
2)在分离时,将第一维分离柱从入口贮槽中取出,第一维分离柱的进样端与一个注射泵相连,其他连接方式不变;在不加电的情况下用注射泵将第一维聚焦的组分区带分段送入第二维分离柱中;
3)待样品组分进入第二维时,停止注射泵,一台工作高压直流电源的地线插入2D-CE接口处的酸性缓冲液贮槽中和注射泵处,负极插入第二维分离柱出口端缓冲液的出口贮槽中;出口贮槽加负高压,2D-CE接口和注射泵处接地,进行蛋白质样品的2D-CE分离。
所述第二维分离柱的分离模式可以为毛细管区带电泳、毛细管胶束电动色谱、毛细管凝胶电泳或者毛细管电色谱;恒流泵的流速可以为0.25~1.0μl/min;所述直流电源于第一维或第二维分离柱施加的电压为5~20kV。
所述碱性缓冲可以为:PH>10的氢氧化钠水溶液或者氨水;
酸性缓冲可以为:PH<3.5甲酸、磷酸或者谷氨酸水溶液;
本发明具有如下优点:
1、具有不同CE模式联用的特点。本发明可通过在2D-CE接口处向分离系统中添加小分子(包括酸、碱或盐)等,实现不同CE模式的组合,即构建多种2D-CE分离模式。
2、接口简单。本发明采用的M-IPG柱解决了在缓冲溶液中添加两性载体带来的干扰问题,降低了对接口置换能力的要求,使接口制作简单,容易实现。
3、检测灵敏度高。本发明采用M-IPG柱,可有效避免两性电解质对214nm波长下进行紫外检测的干扰;此外,M-IPG-CIEF本身具有样品富集作用。因此,该系统具有较高的检测灵敏度。
4、峰容量高。在分离模式正交的情况下,2D-CE系统的峰容量应该为每一维峰容量的乘积。因此,该系统具有较高的分离能力,可满足复杂样品的分离需要。
附图说明
图1为本发明的固定化pH梯度整体柱等电聚焦—毛细管区带电泳(2D-M-IPG-CIEF-CZE)分离平台结构示意图,(1)聚焦时,(2)分离时;
图2为本发明一个实施例中7个标准蛋白的一维分离谱图,A:CZE谱图;B:M-IPG-CIEF谱图;
图3为本发明一个实施例中7个标准蛋白的固2D-M-IPG-CIEF-CZE分离谱图;各图的标号为所处的组分数;
图4为本发明一个实施例中7个标准蛋白的二维投影图;
图5为本发明一个实施例中牛奶蛋白的一维分离谱图;
图6为本发明一个实施例中牛奶蛋白的2D-M-IPG-CIEF-CZE分离谱图;各图的标号为所处的组分数;
图7为本发明一个实施例中牛奶蛋白的二维投影图。
具体实施方式
一种二维毛细管电泳装置,可用于蛋白质样品的分离,包括一个2D-CE接口;
一根固定化pH梯度毛细管整体柱作为2D-CE的第一维分离柱,其出口端通过连接管与2D-CE接口的一端相连,其进样端置于装有碱性缓冲液的入口贮槽中或与一个注射泵相连;
一根毛细管作为2D-CE的第二维分离柱,其进样端通过连接管与2D-CE接口的另一端相连,其出口端置于装有酸性缓冲液的贮槽中;
2D-CE接口置于装有酸性缓冲液贮槽中。
所述2D-CE接口为聚四氟乙烯接口。
如图1所示,具体操作过程为:
在聚焦前,首先将蛋白质样品溶液灌满第一维分离柱(D);
1)在聚焦时,第一维分离柱D的进样端置于装有碱性缓冲液的入口贮槽A中,2D-CE接口B置于酸性缓冲液贮槽中,第二维分离柱G出口端与一装有酸性缓冲液的出口贮槽C相连接;一台工作高压直流电源I的地线插入2D-CE接口B处的贮槽中,负极插入第一维分离柱D进样端入口贮槽A中;在入口贮槽A处加负高压,2D-CE接口B处接地,蛋白质样品在第一维分离柱(D)中聚焦;
2)在分离时,将第一维分离柱D从入口贮槽A中取出,第一维分离柱D的进样端与一个注射泵J相连,其他连接方式不变;在不加电的情况下用注射泵J将第一维聚焦的组分区带分段送入第二维分离柱G中;
3)待样品组分进入第二维时,停止注射泵J,一台工作高压直流电源I的地线插入2D-CE接口B处的酸性缓冲液贮槽中和注射泵J处,负极插入第二维分离柱G出口端缓冲液的出口贮槽C中;出口贮槽C加负高压,注射泵J和2D-CE接口B处接地,进行蛋白质样品的2D-CE分离。
其中E为聚四氟乙烯连接管,F为连接毛细管,H为检测窗口;
实施例1
如图1所示,第一维采用M-IPG CIEF的方法,正极缓冲液为20mmol/L谷氨酸,负极缓冲液为20mmol/LNaOH。将样品充满整个M-IPG柱,整体柱长20cm(本发明中采用过的长度为15,20,30和40cm),内径100μm(可以为100,200和250μm)。第二维采用CZE分离,分离缓冲为20mmol/L谷氨酸,毛细管总长为30cm(本发明中采用的过长度为20和30cm),有效长为20cm(本发明中采用的过长度为10和20cm),内径50μm(可以为75μm)。
样品为7种标准蛋白的混合液分别为:胰蛋白酶抑制剂(trypsininhibitor,pI 4.5)、牛血清白蛋白(BSA,pI 4.8)、白蛋白(albumin,pI 4.9)、β-乳球蛋白(β-lactoglobulin,pI 5.0)、血红蛋白(Hemoglobin,pI 7.1)、尿素酶(urease,pI 9.0)和核糖核酸酶A(Ribonuclease A,pI 9.5)。样品溶于10mmol/L Tris-HCl(pH 8.0),各标准蛋白浓度相同,总浓度为0.033mg/mL。
在聚焦前,首先将蛋白质样品溶液灌满第一维分离柱(D);
在第一维M-IPG-CIEF分离时给第一维毛细管柱上施加14kV(本发明中采用的过的电压为12、14和16kV)电压。聚焦完成后,固定化pH梯度整体柱(D)从装有碱性缓冲液的入口贮槽(A)中取出,接上恒流泵(J),缓冲液贮槽(C)加负高压,恒流泵和二维毛细管电泳接口(B)中接地,恒流泵(J),将第一维聚焦的组分分段地送入第二维分离毛细管(G),此时不加电。待样品组分进入第二维时,停止恒流泵(J),第二维施加电压,进行二维分离,直到第一维组分输送完全。具体操作是恒流泵流速0.5μL/min(本发明采用过的流速为0.2,0.3,0.5和1.0μL/min),输送1.5min(本发明采用过的时间0.5,1,1.5和2min)。将第一维的一段样品区带送入第二维,这相当于进样过程,然后停泵,第二维施加电压14kV,分离时间为8min。如此循环,直到第一维组分输送完全,第二维不出峰为止,从而实现2D-M-IPG-CIEF-CZE分离。一共切换了22个组分,平均峰宽0.063min,分离时间8min,峰容量2794。
如图2A所示,采用CZE方式,7个标准蛋白只分成了两个峰,分离效果较差;如图2B所示,M-IPG-CIEF分离了大约7个小峰,但分离度较小,没有实现基线分离。如图3所示,采用2D-M-IPG-CIEF-CZE,蛋白质的分离结果得到了明显的改善。由图4可以看出,7个标准蛋白获得了较好的分离。
实施例2
与实施例1不同处在于所采用的样品为牛奶中提取的蛋白,实验操作与实施例1相同。
如图5所示,采用一维M-IPG-CIEF分离牛奶蛋白的效果很差,蛋白没有分开。如图6所示,采用2D-M-IPG-CIEF-CZE,牛奶中蛋白质的分离结果得到了明显的改善。由图7可以看出,牛奶蛋白获得了较好的分离。

Claims (10)

1.一种二维毛细管电泳装置,可用于蛋白质样品的分离,包括一个2D-CE接口;其特征在于:
一根固定化pH梯度毛细管整体柱作为2D-CE的第一维分离柱,其出口端通过连接管与2D-CE接口的一端相连,其进样端置于装有碱性缓冲液的入口贮槽中或与一个注射泵相连;
一根毛细管作为2D-CE的第二维分离柱,其进样端通过连接管与2D-CE接口的另一端相连,其出口端置于装有酸性缓冲液的贮槽中;
2D-CE接口置于装有酸性缓冲液贮槽中。
2.按照权利要求1所述二维毛细管电泳装置,其特征在于:所述的2D-CE接口为聚四氟乙烯接口、膜接口和毛细管刻蚀接口。
3.按照权利要求1所述二维毛细管电泳装置,其特征在于:所述的固定化pH梯度整体柱的内径可以为100μm~250μm,长度为10~40cm。
4.按照权利要求1所述二维毛细管电泳装置,其特征在于:所述第二维分离柱毛细管的内径为50或者75μm,长度为10~50cm。
5.按照权利要求1所述二维毛细管电泳装置,其特征在于:所述第二维分离柱毛细管为内壁涂层毛细管或者非涂层毛细管。
6.一种权利要求1所述二维毛细管电泳装置的应用,其特征在于:
在聚焦前,首先将蛋白质样品溶液灌满第一维分离柱(D);
1)在聚焦时,第一维分离柱(D)的进样端置于装有碱性缓冲液的入口贮槽(A)中,2D-CE接口(B)贮槽中装有酸性缓冲液,第二维分离柱(G)出口端与一装有酸性缓冲液的出口贮槽(C)相连接;一台工作高压直流电源(I)的地线插入2D-CE接口(B)处的贮槽中,负极插入第一维分离柱(D)进样端入口贮槽(A)中;在入口贮槽(A)处加负高压,2D-CE接口(B)处接地,蛋白质样品在第一维分离柱(D)中聚焦;
2)在分离时,将第一维分离柱(D)从入口贮槽(A)中取出,第一维分离柱(D)的进样端与一个注射泵(J)相连,其他连接方式不变;在不加电的情况下用注射泵(J)将第一维聚焦的组分区带分段送入第二维分离柱(G)中;
3)待样品组分进入第二维时,停止注射泵(J),一台工作高压直流电源(I)的两根地线分别插入2D-CE接口(B)处的酸性缓冲液贮槽中和注射泵(J)处,负极插入第二维分离柱(G)出口端缓冲液的出口贮槽(C)中;出口贮槽(C)加负高压,注射泵(J)和2D-CE接口(B)处接地,进行蛋白质样品的2D-CE分离。
7.按照权利要求6所述二维毛细管电泳装置的应用,其特征在于:所述第二维分离柱的分离模式可以为毛细管区带电泳、毛细管胶束电动色谱、毛细管凝胶电泳或者毛细管电色谱。
8.按照权利要求6所述二维毛细管电泳装置的应用,其特征在于:所述恒流泵的流速可以为0.25~1.0μl/min。
9.按照权利要求6所述二维毛细管电泳装置的应用,其特征在于:所述直流电源于第一维或第二维分离柱施加的电压为5~20kV。
10.按照权利要求6所述二维毛细管电泳装置的应用,其特征在于:所述碱性缓冲为PH>10的氢氧化钠水溶液或者氨水;酸性缓冲为PH<3.5甲酸、磷酸或者谷氨酸水溶液。
CN2007101592961A 2007-12-28 2007-12-28 一种二维毛细管电泳装置及其应用 Expired - Fee Related CN101469015B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101592961A CN101469015B (zh) 2007-12-28 2007-12-28 一种二维毛细管电泳装置及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101592961A CN101469015B (zh) 2007-12-28 2007-12-28 一种二维毛细管电泳装置及其应用

Publications (2)

Publication Number Publication Date
CN101469015A true CN101469015A (zh) 2009-07-01
CN101469015B CN101469015B (zh) 2011-08-24

Family

ID=40826845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101592961A Expired - Fee Related CN101469015B (zh) 2007-12-28 2007-12-28 一种二维毛细管电泳装置及其应用

Country Status (1)

Country Link
CN (1) CN101469015B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103930778A (zh) * 2011-03-23 2014-07-16 明尼苏达大学评议会 用于多维液体分析的阀和分流系统
CN104849378A (zh) * 2015-04-29 2015-08-19 华东理工大学 利用变径填充柱增加开管柱上样量的毛细管柱系统
CN108008053A (zh) * 2016-12-05 2018-05-08 北京理工大学 一种液相淌度分离装置和控制方法及与液相色谱和质谱联用的接口

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719244A (zh) * 2004-07-09 2006-01-11 中国科学院大连化学物理研究所 一种毛细管电泳多维装置
KR100624977B1 (ko) * 2004-09-22 2006-09-15 삼성에스디아이 주식회사 파우치형 리튬 이차 전지

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103930778A (zh) * 2011-03-23 2014-07-16 明尼苏达大学评议会 用于多维液体分析的阀和分流系统
US10429361B2 (en) 2011-03-23 2019-10-01 Regents Of The University Of Minnesota Valve and splitting system for multi-dimensional liquid analysis
US11692980B2 (en) 2011-03-23 2023-07-04 Regents Of The University Of Minnesota Valve and splitting system for multi-dimensional liquid analysis
CN104849378A (zh) * 2015-04-29 2015-08-19 华东理工大学 利用变径填充柱增加开管柱上样量的毛细管柱系统
CN108008053A (zh) * 2016-12-05 2018-05-08 北京理工大学 一种液相淌度分离装置和控制方法及与液相色谱和质谱联用的接口

Also Published As

Publication number Publication date
CN101469015B (zh) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4866430B2 (ja) キャピラリー等電点電気泳動−中空糸フローフィールドフロー分画法を用いたタンパク質分離装置およびその方法
Kašička Recent developments in CE and CEC of peptides
Cooper et al. Recent advances in capillary separations for proteomics
Herrero et al. Capillary electrophoresis‐electrospray‐mass spectrometry in peptide analysis and peptidomics
Kašička Recent developments in capillary electrophoresis and capillary electrochromatography of peptides
Guzman Improved solid‐phase microextraction device for use in on‐line immunoaffinity capillary electrophoresis
Kašička Recent advances in capillary electrophoresis and capillary electrochromatography of peptides
Veraart et al. Coupling of biological sample handling and capillary electrophoresis
Simpson et al. Combining capillary electrophoresis with mass spectrometry for applications in proteomics
Kilár Recent applications of capillary isoelectric focusing
US9146234B2 (en) Disease detection system and method
Yang et al. On-line hyphenation of capillary isoelectric focusing and capillary gel electrophoresis by a dialysis interface
Gaspar et al. Trends in CE‐MS 2005–2006
Schaller et al. Separation of antidepressants by capillary electrophoresis with in-line solid-phase extraction using a novel monolithic adsorbent
Ranjbar et al. Multidimensional liquid-phase separations combining both chromatography and electrophoresis–A review
Tragas et al. On‐line coupling of high performance gel filtration chromatography with imaged capillary isoelectric focusing using a membrane interface
US20080156080A1 (en) Methods and systems for multidimensional concentration and separation of biomolecules using capillary isotachophoresis
CN101464430B (zh) 一种内源性多肽在线富集和自动化分析的方法及专用装置
Visser et al. Sample preparation for peptides and proteins in biological matrices prior to liquid chromatography and capillary zone electrophoresis
CN101469015B (zh) 一种二维毛细管电泳装置及其应用
CN104630058A (zh) 一种串联多酶蛋白质微酶解反应器及其使用方法
CN1242262C (zh) 二维或多维毛细管电泳分离生物大分子的方法
Kang et al. Development of non-gel-based two-dimensional separation of intact proteins by an on-line hyphenation of capillary isoelectric focusing and hollow fiber flow field-flow fractionation
Tempels et al. Design and applications of coupled SPE‐CE
WO2006062471B1 (en) A methods and interfaces for single and multidimentional separations for characterization and/or identification of molecules by mass spectrometry

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110824

Termination date: 20151228

EXPY Termination of patent right or utility model