CN101464935B - AUV intelligent fault-tolerance combined navigation simulation system based on network - Google Patents

AUV intelligent fault-tolerance combined navigation simulation system based on network Download PDF

Info

Publication number
CN101464935B
CN101464935B CN2009100712325A CN200910071232A CN101464935B CN 101464935 B CN101464935 B CN 101464935B CN 2009100712325 A CN2009100712325 A CN 2009100712325A CN 200910071232 A CN200910071232 A CN 200910071232A CN 101464935 B CN101464935 B CN 101464935B
Authority
CN
China
Prior art keywords
navigation
auv
module
fault
simulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009100712325A
Other languages
Chinese (zh)
Other versions
CN101464935A (en
Inventor
郝燕玲
郭真
孙枫
高伟
奔粤阳
徐博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN2009100712325A priority Critical patent/CN101464935B/en
Publication of CN101464935A publication Critical patent/CN101464935A/en
Application granted granted Critical
Publication of CN101464935B publication Critical patent/CN101464935B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明提供的是一种基于网络的AUV智能容错组合导航仿真系统,由捷联惯导模拟器、GPS模拟器、DVL模拟器、AUV导航终端四部分构成。子导航系统与AUV导航终端通过IP网络建立连接,向AUV导航终端实时传输相关导航信息,并在AUV导航终端中完成故障检测及组合导航运算。各个子系统具备独立工作的特点,形成即插即用式AUV智能容错组合导航系统;突破了以往传统导航设备通过RS232串口接入组合导航终端,受串口个数限制的问题,达到多用户同时访问的目的,同时也代表了设备IP化的趋势,有效的节省了研发成本,对于研究组合导航系统以及后期导航系统的通信设计具有重要的工程应用意义。

Figure 200910071232

The invention provides a network-based AUV intelligent fault-tolerant combined navigation simulation system, which is composed of four parts: a strapdown inertial navigation simulator, a GPS simulator, a DVL simulator, and an AUV navigation terminal. The sub-navigation system establishes a connection with the AUV navigation terminal through the IP network, transmits relevant navigation information to the AUV navigation terminal in real time, and completes fault detection and integrated navigation calculations in the AUV navigation terminal. Each subsystem has the characteristics of independent work, forming a plug-and-play AUV intelligent fault-tolerant integrated navigation system; it breaks through the traditional navigation equipment connected to the integrated navigation terminal through the RS232 serial port, which is limited by the number of serial ports, and achieves simultaneous access by multiple users At the same time, it also represents the trend of equipment IP, which effectively saves the research and development cost, and has important engineering application significance for the research of integrated navigation system and the communication design of the later navigation system.

Figure 200910071232

Description

基于网络的AUV智能容错组合导航仿真系统 Network-based AUV intelligent fault-tolerant integrated navigation simulation system

(一)技术领域(1) Technical field

本发明涉及的是一种仿真系统,具体地说是一种水下智能机器人的导航仿真系统。The invention relates to a simulation system, in particular to a navigation simulation system for an underwater intelligent robot.

(二)背景技术(2) Background technology

随着科技进步,占地球面积70.8%的海洋,以其丰富的生物资源、矿物资源和能源,不断吸引着人们研究水下航行技术,水下探测技术,开发这座社会巨大的宝库。近年来,AUV成为人类进行海洋生产活动的重要工具和得力助手,在民用及军用领域具有广泛的应用空间和研发需求。为了适应AUV活动范围广、隐蔽性要求高和多重使命任务的特点,必须研制一种水下自主、高可靠性、高精度的组合导航系统。由于湖试、海试需要大量的经费,在进行试验前,进行仿真验证智能容错组合导航效果具有重要意义。With the advancement of science and technology, the ocean, which accounts for 70.8% of the earth's area, continues to attract people to study underwater navigation technology and underwater detection technology with its rich biological resources, mineral resources and energy, and develop this huge treasure house of society. In recent years, AUV has become an important tool and right-hand man for human beings to carry out marine production activities, and has a wide range of application space and research and development needs in civilian and military fields. In order to adapt to the characteristics of AUV's wide range of activities, high concealment requirements, and multiple missions, it is necessary to develop an underwater autonomous, high-reliability, and high-precision integrated navigation system. Since the lake test and sea test require a lot of funds, it is of great significance to conduct simulation to verify the effect of intelligent fault-tolerant integrated navigation before the test.

传统的半实物仿真系统,以申请号为200610011580.X中所述半实物仿真系统为例,通过RS232串行数据线将各导航子系统与组合终端联系在一起,但该方法受串口个数限制,通常是单机单用,浪费了资源;而普通的集成化模拟方式,各导航子系统耦合度高,可复用性差,同步性高,无法体现真实环境中,设备之间信号存在异步的现象。从研究角度来讲,急需研发一种AUV智能容错组合导航系统,各子系统可以满足多用户多任务并行操作的要求,缩短研发时间,节约研发成本。The traditional hardware-in-the-loop simulation system, taking the hardware-in-the-loop simulation system described in the application number 200610011580.X as an example, connects each navigation subsystem with the combination terminal through the RS232 serial data line, but this method is limited by the number of serial ports , usually stand-alone and single-use, wasting resources; and the common integrated simulation method, the coupling degree of each navigation subsystem is high, the reusability is poor, and the synchronization is high, which cannot reflect the asynchronous phenomenon of signals between devices in the real environment. . From a research point of view, it is urgent to develop an AUV intelligent fault-tolerant integrated navigation system. Each subsystem can meet the requirements of multi-user and multi-task parallel operation, shorten the development time and save the development cost.

(三)发明内容(3) Contents of the invention

本发明的目的在于提供一种可以满足多用户多任务并行操作的要求,为研究智能容错组合导航系统提供了很好的仿真环境,节约了研发成本的基于网络的AUV智能容错组合导航仿真系统。The purpose of the present invention is to provide a network-based AUV intelligent fault-tolerant integrated navigation simulation system that can meet the requirements of multi-user and multi-task parallel operation, provide a good simulation environment for researching intelligent fault-tolerant integrated navigation systems, and save research and development costs.

本发明的目的是这样实现的:The purpose of the present invention is achieved like this:

一种基于网络的AUV智能容错组合导航仿真系统,由捷联惯导模拟器、GPS模拟器、DVL模拟器、AUV导航终端四部分构成。其中:AUV导航终端由:a)AUV运动轨迹发生器、b)故障发生器、c)智能容错组合导航模块、d)轨迹生成模块、e)用户界面终端和f)通讯模块构成。其中,用户界面终端提供航行计划设置、传感器参数设置、故障设置、轨迹显示等友好信息交互环境;AUV运动轨迹发生器根据用户设置的航行计划模拟AUV在海浪摇摆状态下的位置、速度、加速度、姿态信息;故障发生器负责触发捷联惯导、GPS、DVL突变与慢变故障;智能容错组合导航模块通过实时采集到的SINS位置速度姿态信息、GPS位置速度信息、DVL速度信息进行故障检测及信息融合,最终输出有效导航信息;轨迹生成模块按照传感器数据及最终组合数据实时绘制导航曲线;通讯模块通过IP网络与其它模拟器进行信息实时交互。DVL模拟器根据运动轨迹发生器进行DVL速度信息模拟,与AUV导航终端处于同一PC;捷联惯导模拟器、GPS模拟器分别通过IP网络与AUV导航终端建立socket连接,在导航过程中实时传递参数信息。A network-based AUV intelligent fault-tolerant integrated navigation simulation system consists of four parts: a strapdown inertial navigation simulator, a GPS simulator, a DVL simulator, and an AUV navigation terminal. Among them: AUV navigation terminal is composed of: a) AUV trajectory generator, b) fault generator, c) intelligent fault-tolerant integrated navigation module, d) trajectory generation module, e) user interface terminal and f) communication module. Among them, the user interface terminal provides a friendly information interaction environment such as navigation plan setting, sensor parameter setting, fault setting, and trajectory display; the AUV trajectory generator simulates the position, speed, acceleration, attitude information; the fault generator is responsible for triggering SINS, GPS, DVL mutation and slow-change faults; the intelligent fault-tolerant integrated navigation module detects and monitors faults through real-time collected SINS position, speed, attitude information, GPS position and speed information, and DVL speed information. Information fusion finally outputs effective navigation information; the trajectory generation module draws navigation curves in real time according to the sensor data and the final combined data; the communication module performs real-time information interaction with other simulators through the IP network. The DVL simulator simulates the DVL speed information according to the motion trajectory generator, and is on the same PC as the AUV navigation terminal; the strapdown inertial navigation simulator and the GPS simulator respectively establish socket connections with the AUV navigation terminal through the IP network, and transmit it in real time during the navigation process Parameter information.

其中,捷联惯导模拟器包括:用户界面模块、运动仿真模块、惯性传感器仿真模块、杆臂干扰及噪声生成模块、故障发生模块、导航算法实现模块、通讯模块。其中,捷联惯导模拟器航行参数、故障参数既可由该模拟器的用户界面模块设置,也可在AUV导航终端中进行设置;运动仿真模块根据航行计划及运行环境,模拟AUV在海浪摇摆状态下的位置、速度、加速度、姿态信息;杆臂干扰及噪声生成模块根据安装误差、常值漂移、随机漂移模拟传感器误差;故障发生模块可根据该模拟器或AUV导航终端设置的故障参数引入传感器慢变、突变故障;同时惯性传感器仿真模块实时模拟捷联惯导在该情况下的加速度计及陀螺输出值;导航算法实现模块根据惯性传感器仿真模块输出的加速度信息及角速度信息计算载体的位置、速度、姿态信息;通讯模块通过建立socket连接,可获取AUV导航终端设置的航行计划以及与捷联惯导系统相关的传感器参数和故障参数等;并可将捷联惯导解算信息实时传输给AUV导航终端。Among them, the strapdown inertial navigation simulator includes: a user interface module, a motion simulation module, an inertial sensor simulation module, a lever-arm interference and noise generation module, a fault occurrence module, a navigation algorithm realization module, and a communication module. Among them, the navigation parameters and fault parameters of the strapdown inertial navigation simulator can be set by the user interface module of the simulator, and can also be set in the AUV navigation terminal; the motion simulation module simulates the swaying state of the AUV in the sea according to the navigation plan and operating environment position, speed, acceleration, and attitude information; the lever arm interference and noise generation module simulates sensor errors based on installation errors, constant value drift, and random drift; the fault occurrence module can introduce sensors according to the fault parameters set by the simulator or AUV navigation terminal slow-change and sudden-change faults; at the same time, the inertial sensor simulation module simulates the accelerometer and gyroscope output values of the strapdown inertial navigation in real time; the navigation algorithm realization module calculates the carrier's position, Speed and attitude information; the communication module can obtain the voyage plan set by the AUV navigation terminal and the sensor parameters and fault parameters related to the strapdown inertial navigation system by establishing a socket connection; and can transmit the strapdown inertial navigation solution information to the AUV navigation terminal.

其中,GPS模拟器包括:用户界面模块、通讯模块、载体运动模型、卫星轨迹发生器、可见星预报模块、确定最佳星模块、GPS噪声与故障发生模块、解算接收点位置模块、通讯模块。GPS模拟器航行参数、故障参数既可由该模拟器的用户界面模块设置,也可在AUV导航终端中进行设置;运动仿真模块根据航行计划及运行环境,模拟载体位置、速度、加速度、姿态信息;卫星轨迹发生器由星历计算卫星瞬时位置,结合载体运动信息由可见星预报模块预测可见星,并确定最佳四颗星;GPS噪声与故障可由该模拟器故障发生模块或AUV导航终端生成,并通过伪距计算引入到由解算接收点位置模块得到最佳点位置信息中;通讯模块通过建立socket连接,可获取AUV导航终端设置的航行计划以及与GPS系统相关的传感器参数和故障参数等;并可将GPS解算的位置速度信息实时传输给AUV导航终端。Among them, the GPS simulator includes: user interface module, communication module, carrier motion model, satellite trajectory generator, visible star forecast module, module for determining the best star, GPS noise and fault occurrence module, module for calculating receiving point position, and communication module . The navigation parameters and fault parameters of the GPS simulator can be set by the user interface module of the simulator or in the AUV navigation terminal; the motion simulation module simulates the position, speed, acceleration and attitude information of the carrier according to the navigation plan and operating environment; The satellite trajectory generator calculates the instantaneous position of the satellite from the ephemeris, combines the carrier movement information with the visible star prediction module to predict the visible stars, and determines the best four stars; GPS noise and faults can be generated by the simulator failure module or AUV navigation terminal, And through the pseudo-range calculation, it is introduced into the best point position information obtained by the solution receiving point position module; the communication module can obtain the navigation plan set by the AUV navigation terminal and the sensor parameters and fault parameters related to the GPS system by establishing a socket connection. ; And the position and speed information calculated by GPS can be transmitted to the AUV navigation terminal in real time.

本发明中,SINS、GPS、DVL模拟器通过IP网络与AUV导航终端建立socket连接,其中,DVL模拟器由于模块功能较单一,在本发明中与AUV导航终端处于同一PC。三个模拟器可由AUV导航终端进行导航参数设置,误差模型设置,并可由AUV导航终端的故障发生模块触发突变与慢变故障。In the present invention, SINS, GPS, DVL emulator establishes socket connection with AUV navigation terminal through IP network, and wherein, DVL emulator is in the same PC as AUV navigation terminal in the present invention because the module function is relatively single. The three simulators can be set by the AUV navigation terminal for navigation parameters and error models, and can be triggered by the fault occurrence module of the AUV navigation terminal for sudden and slow-change faults.

本发明的优势在于,各模块间结合关系本着低耦合、可复用、易扩展的原则,以及即插即用的思想设计AUV智能容错组合导航系统,基于IP网络的模拟环境,使多用户多任务并行操作成为了可能,有效地解决了传统RS232串行通讯设计受串口个数的限制,又保证了各导航子系统的独立工作特性,即插即用的思想从根本上体现了实际工作环境,为导航设备IP化、网络化做了深入的前期准备,具有工程应用价值。The advantage of the present invention is that the combined relationship between modules is based on the principles of low coupling, reusability, and easy expansion, and the idea of plug-and-play design of the AUV intelligent fault-tolerant combined navigation system, based on the simulation environment of the IP network, enables multi-user Multi-task parallel operation has become possible, which effectively solves the limitation of the number of serial ports in the traditional RS232 serial communication design, and ensures the independent working characteristics of each navigation subsystem. The idea of plug and play fundamentally reflects the actual work The environment has made in-depth preliminary preparations for the IP and networking of navigation equipment, which has engineering application value.

(四)附图说明(4) Description of drawings

图1为本发明中,AUV智能容错组合导航系统仿真结构图。Fig. 1 is a simulation structure diagram of the AUV intelligent fault-tolerant integrated navigation system in the present invention.

图2为本发明中,智能容错组合模块原理图。Fig. 2 is a schematic diagram of an intelligent fault-tolerant combination module in the present invention.

图3为本发明中,AUV智能容错组合导航仿真系统软件设计流程图。Fig. 3 is a flow chart of the software design of the AUV intelligent fault-tolerant integrated navigation simulation system in the present invention.

图4为本发明中,GPS模拟器结构图。Fig. 4 is a structural diagram of the GPS simulator in the present invention.

图5为本发明中,SINS模拟器结构图。Fig. 5 is a structural diagram of the SINS simulator in the present invention.

(五)具体实施方式(5) Specific implementation methods

下面结合附图举例对本发明做更详细地描述:The present invention is described in more detail below in conjunction with accompanying drawing example:

结合图1,AUV智能组合容错仿真系统由捷联惯导模拟器、GPS模拟器、DVL模拟器、AUV导航终端四部分构成。AUV导航终端由:a)AUV运动轨迹发生器、b)故障发生器、c)智能容错组合导航模块、d)轨迹生成模块、e)用户界面终端和f)通讯模块构成。其中,用户界面终端提供航行计划设置、传感器参数设置、故障设置、轨迹显示等友好信息交互环境;AUV运动轨迹发生器根据用户设置的航行计划模拟AUV在海浪摇摆状态下的位置、速度、加速度、姿态信息;故障发生器负责触发捷联惯导、GPS、DVL突变与慢变故障;智能容错组合导航模块通过实时采集到的SINS位置速度姿态信息、GPS位置速度信息、DVL速度信息进行故障检测及信息融合,最终输出有效导航信息;轨迹生成模块按照传感器数据及最终组合数据实时绘制导航曲线;通讯模块通过IP网络与其它模拟器进行信息实时交互。DVL模拟器根据运动轨迹发生器进行DVL速度信息模拟,与AUV导航终端处于同一PC;捷联惯导模拟器、GPS模拟器分别通过IP网络与AUV导航终端建立socket连接,在导航过程中实时传递参数信息。Combined with Figure 1, the AUV intelligent combined fault-tolerant simulation system consists of four parts: strapdown inertial navigation simulator, GPS simulator, DVL simulator, and AUV navigation terminal. The AUV navigation terminal is composed of: a) AUV trajectory generator, b) fault generator, c) intelligent fault-tolerant integrated navigation module, d) trajectory generation module, e) user interface terminal and f) communication module. Among them, the user interface terminal provides a friendly information interaction environment such as navigation plan setting, sensor parameter setting, fault setting, and trajectory display; the AUV trajectory generator simulates the position, speed, acceleration, attitude information; the fault generator is responsible for triggering SINS, GPS, DVL mutation and slow-change faults; the intelligent fault-tolerant integrated navigation module detects and monitors faults through real-time collected SINS position, speed, attitude information, GPS position and speed information, and DVL speed information. Information fusion finally outputs effective navigation information; the trajectory generation module draws navigation curves in real time according to the sensor data and the final combined data; the communication module performs real-time information interaction with other simulators through the IP network. The DVL simulator simulates the DVL speed information according to the motion trajectory generator, and is on the same PC as the AUV navigation terminal; the strapdown inertial navigation simulator and the GPS simulator respectively establish socket connections with the AUV navigation terminal through the IP network, and transmit it in real time during the navigation process Parameter information.

图2为智能容错组合模块原理图。首先,对各导航子系统信息进行合理性、一致性检验,各分组合系统进行信息融合,再进行故障检测及系统重构。为了使残差、双状态检测能够判别故障来源,针对SINS/GPS组合导航模块,以捷联惯导与GPS位置信息差作为观测量,设计9阶滤波器获取组合位置信息;以捷联惯导与GPS速度信息差作为观测量,设计7阶滤波器获取组合速度信息,以便于分析故障源自位置或速度信息。针对SINS/GPS/DVL组合导航模块,以捷联惯导与GPS位置信息差作为观测量,设计9阶滤波器获取组合位置信息;以捷联惯导与DVL速度信息差作为观测量,设计7阶滤波器获取组合速度信息;针对SINS/DVL组合导航系统,以捷联惯导与DVL速度信息差作为观测量,设计13阶模拟器。状态变量可根据捷联惯导误差运动方程与DVL误差模型进行选取。Figure 2 is a schematic diagram of the intelligent fault-tolerant combination module. First of all, the rationality and consistency of the information of each navigation subsystem are checked, and the information fusion of each sub-combination system is carried out, and then the fault detection and system reconstruction are carried out. In order to make the residual and dual-state detection able to identify the source of the fault, for the SINS/GPS integrated navigation module, the difference between the SINS and GPS position information is used as the observation quantity, and a 9-order filter is designed to obtain the combined position information; The difference between the speed information and the GPS speed information is used as the observation quantity, and a 7th-order filter is designed to obtain the combined speed information, so as to analyze the fault originating from the position or speed information. For the SINS/GPS/DVL integrated navigation module, a 9th-order filter is designed to obtain the combined position information by taking the position information difference between the SINS and GPS as the observation; Aiming at the SINS/DVL integrated navigation system, a 13th-order simulator is designed with the difference between SINS and DVL speed information as the observation. The state variables can be selected according to the strapdown inertial navigation error motion equation and the DVL error model.

DVL误差模型为:The DVL error model is:

δδ VV ·&Center Dot; dd == -- ββ dd δVδV dd ++ ww dd δδ ΔΔ ·&Center Dot; == -- ββ ΔΔ δΔδΔ ++ ww ΔΔ δδ cc ·&Center Dot; == 00

捷联惯导误差方程为:The error equation of strapdown inertial navigation is:

Figure G2009100712325D00051
Figure G2009100712325D00051

1)所述的建立SINS/DVL13阶组合导航系统状态方程的系统状态方程为:1) The described system state equation of setting up the SINS/DVL13 order integrated navigation system state equation is:

Xx ·· (( tt )) == Ff (( tt )) ·&Center Dot; Xx (( tt )) ++ GG (( tt )) ·&Center Dot; WW (( tt ))

Figure G2009100712325D00053
Figure G2009100712325D00053

W=[0 0 ax ay 0 0 0 wx wy wz wd wΔ 0]T W=[0 0 a x a y 0 0 0 w x w y w z w d w Δ 0] T

系统的量测方程为: Z = V x - V dx V y - V dy = HX + v The measurement equation of the system is: Z = V x - V dx V the y - V dy = HX + v

Hh == 00 00 11 00 00 00 -- VV ythe y 00 00 00 -- sinsin KK dd -- VV ythe y -- VV xx 00 00 00 11 00 00 VV xx 00 00 00 -- coscos KK dd VV xx -- VV ythe y

离散方程为:The discrete equation is:

Xx kk == ΦΦ kk ,, kk -- 11 Xx kk -- 11 ++ ΓΓ kk -- 11 WW kk -- 11 ZZ kk == Hh kk Xx kk ++ VV kk ,, kk ≥&Greater Equal; 11

其中,Xk为被估计状态;Wk为噪声序列;Φk,k-1为tk-1至tk时刻一步转移阵;Γk-1为系统噪声驱动阵;Hk为量测阵;Vk为量测噪声序列;

Figure G2009100712325D00057
δλ表示纬度、经度误差;δVx,δVy表示东向、北向速度误差;Vx,Vy表示东向、北向速度;φx,φy表示北向、东向水平失准角;φz表示方位失准角;  εx,εy,εz表示陀螺漂移;δVd表示多普勒速度偏移误差;δΔ表示偏流角误差;刻度系数误差δC,Vdx Vdy为DVL东向北向速度。Among them, X k is the estimated state; W k is the noise sequence; Φ k, k-1 is the one-step transfer matrix from t k-1 to t k ; Γ k-1 is the system noise driving matrix; H k is the measurement matrix ; V k is the measurement noise sequence;
Figure G2009100712325D00057
δλ means latitude and longitude error; δV x , δV y means east and north speed error; V x , V y means east and north speed; φ x , φ y means north and east horizontal misalignment angle; φ z means Azimuth misalignment angle; ε x , ε y , ε z represent gyro drift; δV d represents Doppler velocity offset error; δΔ represents drift angle error; scale coefficient error δC, V dx V dy is DVL east to north velocity.

2)以速度误差为观测量,建立的SINS/DVL7阶卡尔曼滤波器有以下状态方程和量测方程形式,由于天向陀螺漂移可观测度低,略掉εz项:2) Taking the velocity error as the observation quantity, the established SINS/DVL 7th-order Kalman filter has the following state equation and measurement equation form. Due to the low observability of the celestial gyro drift, the ε z term is omitted:

X=[δVx δVy φx φy φz εx εy]T X=[δV x δV y φ x φ y φ z ε x ε y ] T

系统的量测方程为:The measurement equation of the system is:

ZZ == VV xx -- VV dxdx VV ythe y -- VV dydy == Hh 22 ×× 77 Xx ++ vv

H=[I2×2 02×5]H=[I 2×2 0 2×5 ]

3)以位置误差为观测量,建立的SINS/GPS9阶卡尔曼滤波器有以下状态方程和量测方程形式3) Taking the position error as the observation quantity, the established SINS/GPS 9-order Kalman filter has the following state equation and measurement equation form

Figure G2009100712325D00062
Figure G2009100712325D00062

系统的量测方程为:The measurement equation of the system is:

Figure G2009100712325D00063
Figure G2009100712325D00063

H=[I2×2 02×7]H=[I 2×2 0 2×7 ]

其中,

Figure G2009100712325D00064
λgy为GPS纬度、经度信息。in,
Figure G2009100712325D00064
λ gy is GPS latitude and longitude information.

4)以速度误差为观测量,建立的SINS/GPS7阶卡尔曼滤波器有以下状态方程和量测方程形式:4) Taking the velocity error as the observation quantity, the established SINS/GPS 7-order Kalman filter has the following state equation and measurement equation form:

X=[δVx δVy φx φy φz εx εy]T X=[δV x δV y φ x φ y φ z ε x ε y ] T

系统的量测方程为:The measurement equation of the system is:

ZZ == VV xx -- VV gxgx VV ythe y -- VV gygy == Hh 22 ×× 77 Xx ++ vv

H=[I2×2 02×5]H=[I 2×2 0 2×5 ]

其中,Vgx Vgy为DVL东向北向速度。Among them, V gx V gy is the east-to-north speed of DVL.

5)智能容错组合导航系统用到的残差x2、双状态x2法,故障判别与系统重构为业界研究人员熟知的算法。5) The residual x 2 and two-state x 2 methods used in the intelligent fault-tolerant integrated navigation system, fault discrimination and system reconstruction are algorithms well known to researchers in the industry.

图3为AUV智能容错仿真系统软件设计流程图。首先,用户进入AUV导航终端友好界面,设置航迹信息;用户选择需要进行信息融合的子系统,并进行相应子系统的通讯信息设置,包括IP地址与端口号信息,误差参数设置,故障参数设置,子导航系统对于AUV导航终端系统具有即插即用性;用户发起导航开始命令后,AUV智能容错组合导航终端与各导航子系统建立socket连接,同时,各导航子系统获取航迹信息、传感器误差参数及故障参数等相关信息,进行导航解算;AUV导航系统按采样频率实时读取导航子系统导航参数;然后进入智能容错组合导航模块,首先对子系统参数进行合理性、一致性判断;进入联邦滤波分组合系统进行信息融合;通过残差x2、双状态x2法,进行故障判断;系统重构;输出AUV导航信息。其中导航算法与残差x2、双状态x2法均为本领域研究人员熟知算法。Figure 3 is a flow chart of the software design of the AUV intelligent fault-tolerant simulation system. First, the user enters the friendly interface of the AUV navigation terminal to set the track information; the user selects the subsystem that needs information fusion, and sets the communication information of the corresponding subsystem, including IP address and port number information, error parameter setting, and fault parameter setting , the sub-navigation system is plug-and-play for the AUV navigation terminal system; after the user initiates the navigation start command, the AUV intelligent fault-tolerant integrated navigation terminal establishes a socket connection with each navigation subsystem, and at the same time, each navigation subsystem acquires track information, sensor Error parameters and fault parameters and other related information are used for navigation calculation; the AUV navigation system reads the navigation subsystem navigation parameters in real time according to the sampling frequency; then enters the intelligent fault-tolerant integrated navigation module, and first judges the rationality and consistency of the subsystem parameters; Enter the federal filtering sub-combination system for information fusion; use the residual x 2 and two-state x 2 method to perform fault judgment; system reconstruction; output AUV navigation information. Among them, the navigation algorithm, the residual x 2 and the two-state x 2 method are algorithms well known to researchers in the field.

图4为GPS模拟器结构图。在传统GPS模拟器的基础上加入了通讯模块后,GPS模拟器主要由以下模块构成:用户界面模块、通讯模块、载体运动模型、卫星轨迹发生器、可见星预报模块、确定最佳星模块、GPS噪声与故障发生模块、解算接收点位置模块、通讯模块。GPS模拟器通过IP网络建立socket连接,与AUV导航终端通讯模块进行信息交互。其中,GPS模拟器的相关参数在通讯连接建立后,可由AUV导航终端模块中设置的规划航迹以及GPS误差参数和故障参数确定;运动仿真模块根据航行计划及运行环境,模拟载体位置、速度、加速度、姿态信息;卫星轨迹发生器由星历计算卫星瞬时位置,结合载体运动信息由可见星预报模块预测可见星,并确定最佳四颗星,模拟GPS输出,根据伪距进行导航解算,并根据故障发生器中设置的数据模拟位置、速度上的突变及慢变故障,向AUV导航终端实时传送GPS模拟器解算出的位置、速度等导航信息。Figure 4 is a structural diagram of the GPS simulator. After adding the communication module on the basis of the traditional GPS simulator, the GPS simulator is mainly composed of the following modules: user interface module, communication module, carrier motion model, satellite trajectory generator, visible star forecast module, optimal star module, GPS noise and fault occurrence module, module for calculating receiving point position, communication module. The GPS simulator establishes a socket connection through the IP network, and performs information interaction with the communication module of the AUV navigation terminal. Among them, after the communication connection is established, the relevant parameters of the GPS simulator can be determined by the planned track, GPS error parameters and fault parameters set in the AUV navigation terminal module; the motion simulation module simulates the carrier position, speed, Acceleration and attitude information; the satellite trajectory generator calculates the instantaneous position of the satellite from the ephemeris, combines the carrier motion information with the visible star forecast module to predict the visible star, and determines the best four stars, simulates the GPS output, and performs navigation calculation based on the pseudo-range. And according to the data set in the fault generator, the sudden change in position and speed and the slow-change fault are simulated, and the navigation information such as position and speed calculated by the GPS simulator is transmitted to the AUV navigation terminal in real time.

图5为捷联惯导模拟器。在传统捷联惯导模拟器的基础上加入了通讯模块后,捷联惯导模拟器主要由以下模块构成:用户界面模块、运动仿真模块、惯性传感器仿真模块、杆臂干扰及噪声生成模块、故障发生模块、导航算法实现模块、通讯模块。通过IP网络建立socket连接,与AUV导航终端通讯模块进行信息交互。其中,捷联惯导模拟器的相关参数在通讯连接建立后,可由AUV导航终端模块中设置的规划航迹以及捷联惯导相关传感器误差参数和故障参数确定;运动仿真模块根据航行计划及运行环境,模拟AUV在海浪摇摆状态下的位置、速度、加速度、姿态信息;杆臂干扰及噪声生成模块根据安装误差、常值漂移、随机漂移模拟传感器误差;故障发生模块可根据该模拟器或AUV导航终端设置的故障参数引入传感器慢变、突变故障;同时惯性传感器仿真模块实时模拟捷联惯导在该情况下的加速度计及陀螺输出值;导航算法实现模块根据惯性传感器仿真模块输出的加速度信息及角速度信息计算载体的位置、速度、姿态信息;导航过程中,捷联惯导模拟器,向AUV导航终端实时传送捷联惯导模拟器解算出的导航信息。Figure 5 is the strapdown inertial navigation simulator. After adding the communication module on the basis of the traditional strapdown inertial navigation simulator, the strapdown inertial navigation simulator is mainly composed of the following modules: user interface module, motion simulation module, inertial sensor simulation module, lever arm interference and noise generation module, Fault occurrence module, navigation algorithm realization module, communication module. Establish a socket connection through the IP network, and exchange information with the communication module of the AUV navigation terminal. Among them, after the communication connection is established, the relevant parameters of the strapdown inertial navigation simulator can be determined by the planned track set in the AUV navigation terminal module and the error parameters and fault parameters of the strapdown inertial navigation related sensors; Environment, simulating the position, velocity, acceleration, and attitude information of the AUV in the state of wave swing; the lever arm interference and noise generation module simulates the sensor error according to the installation error, constant value drift, and random drift; the fault occurrence module can be based on the simulator or AUV The fault parameters set by the navigation terminal introduce slow-change and sudden-change faults of the sensor; at the same time, the inertial sensor simulation module simulates the accelerometer and gyroscope output values of the strapdown inertial navigation in real time; the navigation algorithm implementation module is based on the acceleration information output by the inertial sensor simulation module and angular velocity information to calculate the position, velocity, and attitude information of the carrier; during the navigation process, the strapdown inertial navigation simulator transmits the navigation information calculated by the strapdown inertial navigation simulator to the AUV navigation terminal in real time.

Claims (2)

1. The AUV intelligent fault-tolerant integrated navigation simulation system based on the network is characterized in that: the system is composed of a strapdown inertial navigation simulator, a GPS simulator, a DVL simulator and an AUV navigation terminal; the AUV navigation terminal is composed of: a) an AUV motion track generator, b) a fault generator, c) an intelligent fault-tolerant integrated navigation module, d) a track generation module, e) a user interface terminal and f) a communication module; the user interface terminal provides navigation plan setting, sensor parameter setting, fault setting and track display friendly information interaction environment; the AUV motion trail generator simulates position, speed, acceleration and attitude information of the AUV in a sea wave swing state according to a navigation plan set by a user; the fault generator is responsible for triggering strapdown inertial navigation, a GPS and DVL sudden change and slow change faults; the intelligent fault-tolerant integrated navigation module carries out fault detection and information fusion through the SINS position, speed and attitude information, the GPS position and speed information and the DVL speed information which are collected in real time, and finally outputs effective navigation information; the track generation module draws a navigation curve in real time according to the sensor data and the final combined data; the communication module carries out information real-time interaction with other simulators through an IP network; the DVL simulator simulates DVL speed information according to the motion trail generator and is positioned in the same PC with the AUV navigation terminal; the strapdown inertial navigation simulator and the GPS simulator are respectively connected with an AUV navigation terminal through a socket through an IP network, and parameter information is transmitted in real time in the navigation process;
the strapdown inertial navigation simulator comprises a user interface module, a motion simulation module, an inertial sensor simulation module, a lever arm interference and noise generation module, a fault generation module, a navigation algorithm realization module and a communication module; navigation parameters and fault parameters of the strapdown inertial navigation simulator are set by a user interface module of the strapdown inertial navigation simulator, or are set in an AUV navigation terminal; the motion simulation module simulates the position, speed, acceleration and attitude information of the AUV in a sea wave swinging state according to a navigation plan and an operation environment; the lever arm interference and noise generation module simulates sensor errors according to installation errors, constant drift and random drift; the fault generation module introduces sensor slow-changing and sudden-changing faults according to fault parameters set by a strapdown inertial navigation simulator or an AUV navigation terminal; meanwhile, the inertial sensor simulation module simulates an accelerometer and a gyroscope output value of the strapdown inertial navigation in real time under the condition; the navigation algorithm implementation module calculates the position, speed and attitude information of the carrier according to the acceleration information and the angular speed information output by the inertial sensor simulation module; the communication module acquires a navigation plan set by the AUV navigation terminal and sensor parameters and fault parameters related to the strapdown inertial navigation system by establishing socket connection; and transmitting the strapdown inertial navigation resolving information to the AUV navigation terminal in real time.
The GPS simulator comprises a user interface module, a communication module, a carrier motion model, a satellite trajectory generator, a visible star forecasting module, an optimal star determining module, a GPS noise and fault generating module, a receiving point position resolving module and a communication module; the navigation parameters and the fault parameters of the GPS simulator are set by a user interface module of the GPS simulator, or are set in an AUV navigation terminal; the motion simulation module simulates carrier position, speed, acceleration and attitude information according to the navigation plan and the operation environment; the satellite trajectory generator calculates the instantaneous position of the satellite from ephemeris, and the visible star prediction module predicts visible stars by combining the motion information of the carrier and determines the best four stars; GPS noise and faults are generated by a GPS noise and fault generation module of a GPS simulator or an AUV navigation terminal and are introduced into the optimal point position information obtained by a receiving point position resolving module through pseudo-range calculation; the communication module acquires a navigation plan set by the AUV navigation terminal and sensor parameters and fault parameters related to a GPS system by establishing socket connection; and transmitting the position and speed information resolved by the GPS to the AUV navigation terminal in real time.
2. The network-based AUV intelligent fault-tolerant integrated navigation simulation system according to claim 1, wherein: the DVL simulator generates speed information according to an AUV motion trail generator in the AUV navigation terminal and the set DVL error parameter, and meanwhile, a fault generation module simulates sudden change and slow change faults; the DVL simulator and the AUV navigation terminal are in the same PC.
CN2009100712325A 2009-01-09 2009-01-09 AUV intelligent fault-tolerance combined navigation simulation system based on network Expired - Fee Related CN101464935B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100712325A CN101464935B (en) 2009-01-09 2009-01-09 AUV intelligent fault-tolerance combined navigation simulation system based on network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100712325A CN101464935B (en) 2009-01-09 2009-01-09 AUV intelligent fault-tolerance combined navigation simulation system based on network

Publications (2)

Publication Number Publication Date
CN101464935A CN101464935A (en) 2009-06-24
CN101464935B true CN101464935B (en) 2011-04-20

Family

ID=40805510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100712325A Expired - Fee Related CN101464935B (en) 2009-01-09 2009-01-09 AUV intelligent fault-tolerance combined navigation simulation system based on network

Country Status (1)

Country Link
CN (1) CN101464935B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117071B (en) * 2009-12-30 2013-03-06 中国科学院沈阳自动化研究所 Multi-underwater robot semi-physical simulation system and control method thereof
CN102004447A (en) * 2010-11-11 2011-04-06 西北工业大学 Integrated-navigation and control hardware-in-the-loop simulation test system of underwater vehicle
CN102221363B (en) * 2011-04-12 2012-12-19 东南大学 Fault-tolerant combined method of strapdown inertial integrated navigation system for underwater vehicles
CN103064296B (en) * 2011-10-21 2016-03-02 中国科学院沈阳自动化研究所 A kind of underwater robot sub-control system
CN102506901B (en) * 2011-11-25 2014-11-05 北京航空航天大学 Multi-serial-port navigation information simulation integrated system
CN102654407B (en) * 2012-04-17 2014-07-02 南京航空航天大学 Multiple-fault detecting device and detecting method for tightly-integrated inertial satellite navigation system
CN103411609B (en) * 2013-07-18 2016-03-02 北京航天自动控制研究所 A kind of aircraft return route planing method based on online composition
CN103744098B (en) * 2014-01-23 2017-03-15 东南大学 AUV integrated navigation systems based on SINS/DVL/GPS
CN104503432B (en) * 2014-11-27 2017-04-12 哈尔滨工程大学 Autonomous underwater robot fault identification method based on wavelet energy
CN106896389B (en) * 2015-12-18 2019-06-28 大唐半导体设计有限公司 A kind of positioning constant speed calculation method of satellite navigation receiver
CN105547329B (en) * 2016-01-11 2019-07-26 山东理工大学 A kind of fault detection method applied to integrated navigation system
CN107478219B (en) * 2017-06-27 2020-08-18 河北汉光重工有限责任公司 Navigation method using deep sea compass system
CN108375971A (en) * 2018-03-18 2018-08-07 哈尔滨工程大学 Integrated Electronic System health control module and health control method for moonlet
CN108803374B (en) * 2018-06-07 2021-09-21 中国人民解放军海军工程大学 Unmanned ship environment data simulation method
CN110296701B (en) * 2019-07-09 2022-12-13 哈尔滨工程大学 Gradual Fault Backtracking Fault Tolerance Method for Inertial and Satellite Integrated Navigation System
CN114076610B (en) * 2020-08-12 2024-05-28 千寻位置网络(浙江)有限公司 Error calibration and navigation method and device of GNSS/MEMS vehicle-mounted integrated navigation system

Also Published As

Publication number Publication date
CN101464935A (en) 2009-06-24

Similar Documents

Publication Publication Date Title
CN101464935B (en) AUV intelligent fault-tolerance combined navigation simulation system based on network
CN101320524B (en) Multiprocessor real-time simulation platform
CN102636149B (en) Combined measurement device and method for dynamic deformation of flexible bodies
CN109856638B (en) Method for automatically searching and positioning specific underwater target
CN201876683U (en) Integrated navigation and control hardware-in-loop simulation experimental system for underwater vehicle
CN110006433A (en) Integrated navigation and positioning system and method of submarine oil and gas pipeline inspection robot
CN104034329B (en) The air navigation aid of the many integrated navigations processing means under employing launching inertial system
CN108955675A (en) A kind of underground piping track detection system and method based on inertia measurement
CN107544467A (en) Double Satellite's control closed loop test system and method under the conditions of whole star
CN103434610B (en) A kind of offshore drilling platforms butt junction location bootstrap technique
CN108844539A (en) A kind of pose detection system for wave Active Compensation system
CN103760584B (en) A motion monitoring system for actual measurement of float-over installations
CN102354123A (en) Cross-platform extendible satellite dynamic simulation test system
CN110779518A (en) Underwater vehicle single beacon positioning method with global convergence
CN106643709A (en) Combined navigation method and device for offshore carrier
CN101424534A (en) Inertia/gravity combined navigation semi-physical object simulating device
CN102679977A (en) Distributive navigation unit based on inertia network and information fusion method thereof
CN102809375A (en) System and method for sensing and computing underwater navigation and water quality parameter longitude and latitude distribution
CN103017787A (en) Initial alignment method suitable for rocking base
CN101975955B (en) Method for generating universal three-dimensional carrier motion trail in GNSS simulator
CN110906933A (en) An AUV-assisted Navigation Method Based on Deep Neural Network
CN105547289A (en) Underwater vehicle combined navigation system and navigation information fusion method
CN104316058B (en) Interacting multiple model adopted WSN-INS combined navigation method for mobile robot
Wang et al. Robust filter method for SINS/DVL/USBL tight integrated navigation system
CN113155134B (en) A Tracking and Prediction Method of Underwater Acoustic Channel Based on Inertial Information Aid

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110420

Termination date: 20180109