CN101463454B - 一种利用孪生变形制备块体纳米/超细晶粒镁合金的方法 - Google Patents

一种利用孪生变形制备块体纳米/超细晶粒镁合金的方法 Download PDF

Info

Publication number
CN101463454B
CN101463454B CN2009100425142A CN200910042514A CN101463454B CN 101463454 B CN101463454 B CN 101463454B CN 2009100425142 A CN2009100425142 A CN 2009100425142A CN 200910042514 A CN200910042514 A CN 200910042514A CN 101463454 B CN101463454 B CN 101463454B
Authority
CN
China
Prior art keywords
magnesium alloy
axis
deformation
prepare
true strain
Prior art date
Application number
CN2009100425142A
Other languages
English (en)
Other versions
CN101463454A (zh
Inventor
杨续跃
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学 filed Critical 中南大学
Priority to CN2009100425142A priority Critical patent/CN101463454B/zh
Publication of CN101463454A publication Critical patent/CN101463454A/zh
Application granted granted Critical
Publication of CN101463454B publication Critical patent/CN101463454B/zh

Links

Abstract

一种利用孪生变形制备块体纳米镁合金的方法,是将镁合金铸锭或挤压棒材切割成矩形块状,在室温分别沿矩形块的X轴、Y轴、Z轴三个方向依次进行多道次、多轴压缩孪晶变形,控制每道次真应变量及应变速率,当各方向的真应变量累积至少达到1.5时,即可获得平均尺寸小于0.5μm的孪晶强化块体纳米镁合金。本发明加工工艺、设备要求简单,操作方便,可有效克服现有技术在细化镁合金晶粒时存在的剧烈塑性变形中的再结晶失控、应变累积效果差和规模化难的问题;可制备大件致密超细晶镁合金材料,有良好的工业应用前景。

Description

一种利用孪生变形制备块体纳米/超细晶粒镁合金的方法

技术领域

[0001] 本发明属超细晶粒镁合金及镁合金加工领域,涉及一种镁合金在室温下获得巨大

冷形变和高密度孪晶组织的方法,特别是涉及一种利用孪生变形制备块体纳米/超细晶粒镁合金的方法。

背景技术

[0002] 超细晶粒镁合金作为密度最低的金属结构材料,具有高比强、高比模和电磁屏蔽等优点,在汽车、电子、航空航天、国防等领域具有重要的应用价值和广阔的应用前景。目前制备块体超细晶粒镁合金的方法主要是等通道角挤压(ECAP),但是该法制备的产品尺寸较小,而且还需要大吨位的液压机及昂贵的模具,这些问题制约了其在工业上的推广和应用。另外,由于镁合金的室温塑性变形能力差,ECAP加工主要是以位错滑移变形为主,大多是在200度以上的高温下进行的,因此在变形中或变形的各道次间极易发生回复和再结晶,应变的累积效果差,晶粒细化到l-2ym后已达到极限而无法再细化下去,尤其是在3-4道次以后的高道次变形下,镁合金的硬度和强度随加工道次的增加而逐渐趋于饱和,甚至反而下降,发生与Hall-Petch关系相违背的软化现象。因此,无论是基础研究还是开发应用,如何低成本制备出具有高强度和高硬度的纳米镁合金结构材料是一道工业难题。[0003] 纳米和亚微米级镁合金的制备,必须解决剧烈塑性变形中的再结晶失控、应变累积效果差和规模化难的问题。采用以室温非滑移变形(孪生)为主的低应变累积和反复多向变形能有效抑制和避免变形过程中或各道次间回复和再结晶,解决了形变诱发再结晶引起的软化和晶粒长大问题。使高强超细晶粒镁合金的低成本规模化制备成为可能。

发明内容

[0004] 本发明的目的在于克服现有技术之不足而提供一种镁合金在室温下获得巨大冷变形量和高密度孪晶组织的方法,特别是提供一种利用孪生变形制备块体纳米/超细晶粒镁合金的方法。

[0005] 本发明一种利用孪生变形制备块体纳米镁合金的方法是采用下述技术方案实现的:

[0006] 将镁合金铸锭或挤压棒材切割成矩形块状,在室温分别沿矩形块的X轴、Y轴、Z轴三个方向依次进行多道次、多轴压縮孪晶变形,每道次真应变量控制在0. 03〜0. 2,应变速率控制在10—Y1〜1018—、当各方向的真应变量累积至少达到1. 5时,即可获得平均尺寸小于0. 5 ii m的孪晶强化块体纳米镁合金。

[0007] 本发明中,所述每道次压縮孪晶变形前、后,可将矩形块置于-196t:的液氮中,保

温3min〜30min进行深冷处理。

[0008] 本发明中,所述真应变量为O. 08〜0. 15。

[0009] 本发明中,所述真应变量为0. 1 。

[0010] 本发明中,所述应变速率为10—S—1〜10—、一1。[0011] 本发明中,所述应变速率为10—2s一1。

[0012] 本发明一种利用孪生变形制备超细晶粒镁合金的方法是采用下述技术方案实现的:

[0013] 将镁合金铸锭或挤压棒材切割成矩形块状,在室温分别沿矩形块的X轴、Y轴、Z轴三个方向依次进行多道次、多轴压縮孪晶变形,每道次真应变量控制在0. 03〜0. 2,应变速率控制在10—V—1〜1018—、当各方向的真应变量累积至少达到1. 5时,将矩形块加热至150〜25(TC,保温1〜20min后水冷,可获得平均尺寸小于2 y m的超细晶粒镁合金。[0014] 本发明中,所述保温时间为8〜14min。[0015] 本发明中,所述保温时间为12min。[0016] 本发明的优点和积极效果简述于下:

[0017] 本发明采用镁合金铸锭或挤压棒材为原材料,将其切割成矩形块状,在室温分别沿矩形块的X轴、Y轴、Z轴三个方向依次进行多道次、多轴压縮孪晶变形,通过控制每道次应变量及应变速率,完全通过累积孪生产生大面积、高密度的孪晶来细化晶粒和强化组织,制备出高硬度高延性块体纳米/超细晶粒镁合金;具有如下优点:

[0018] 1、采用以室温非滑移变形(孪生)为主的低应变累积和反复多向变形,可有效抑制和避免变形过程中或各道次间的回复、再结晶,保持加工硬化效应,晶粒细化效应和孪晶强化至高道次变形,获得具有高强度和高硬度的超细晶粒镁合金,而且还能弱化织构避免出现流线组织和各向异性。通过液氮深冷处理可进一步抑制基面位错滑和动态回复,从而提高镁合金硬度和加速晶粒细化过程。

[0019] 2、采用本发明,在累积变形远小于5的应变条件下制备了晶粒尺寸为0. 2〜0. 5 ii m,硬度为lOOOMPa的AZ31镁合金。

[0020] 3、本发明加工工艺、设备要求简单,可制备大件致密超细晶镁合金材料,有良好的工业应用前景。

[0021] 综上所述,本发明加工工艺、设备要求简单,操作方便,可有效克服现有技术在细化镁合金晶粒时存在的剧烈塑性变形中的再结晶失控、应变累积效果差和规模化难的问题;可制备大件致密超细晶镁合金材料,有良好的工业应用前景。

附图说明

[0022] 附图1为本发明沿X、Y、Z轴方向进行多道多轴变形的原理示意图。

[0023] 附图2本发明实施例1中沿X、 Y、 Z轴方向进行多道多轴变形时的应力_应变曲线。

[0024] 附图3本发明实施例2中沿X、 Y、 Z轴方向进行多道多轴变形时的应力_应变曲线。

[0025] 附图4为本发明实施例3的试件累积变形量达到3时的透射电镜组织。[0026] 附图5 (a)为本发明实施例4的试件变形前的金相组织。

[0027] 附图5 (b)为本发明实施例4的试件累积变形1. 5后20(TC保温1分钟后退火的金相组织。

[0028] 附图5 (c)为本发明实施例4的试件累积变形1. 5后20(TC保温10分钟后退火的金相组织。[0029] 附图6 (a)为本发明实施例5的试件累积变形3后20(TC保温1分钟后退火的金相组织。

[0030] 附图6 (b)为本发明实施例5的试件累积变形3后20(TC保温10分钟后退火的金相组织。

[0031] 附图6 (c)为本发明实施例5的试件累积变形3后20(TC保温20分钟后退火的金相组织。

[0032] 附图7 (a)为本发明实施例6的试件累积变形5后20(TC保温1分钟后退火的金相组织。

[0033] 附图7 (b)为本发明实施例6的试件累积变形5后20(TC保温10分钟后退火的金相组织。

[0034] 附图7 (c)为本发明实施例6的试件累积变形5后20(TC保温20分钟后退火的金相组织。

具体实施方式

[0035] 下面,结合实施例,对本发明作详细介绍:[0036] 实施例1

[0037] 将AZ31镁合金挤压棒材切割成矩形块状试样置于液压机的下平砧上,先以X轴为压縮轴,在10—4广的应变速率下进行压縮变形。当X方向的真应变量达到0. 2时,停止压縮,将试样旋转90度,以Y轴为压縮轴,再次压縮。当Y方向的真应变量达到0. 2时,停止压縮,将试样旋转90度,以Z轴为压縮轴,再次压縮。当Z方向的真应变量达到0. 2时,停止压縮,将试样旋转90度,再以X轴为压縮轴,反复进行X — Y — Z — X……方向压縮。当各方向的真应变量累积到2时,即得本发明之平均尺寸小于0. 5 ii m的孪晶强化块体纳米镁

[0038] 实施例2

[0039] 将AZ31镁合金挤压棒材切割成矩形块状试样置于液压机的下平砧上,先以X轴为压縮轴,在10—2s—1的应变速率下进行压縮变形。当X方向的真应变量达到O. 1时,停止压縮,将试样旋转90度,以Y轴为压縮轴,再次压縮。当Y方向的真应变量达到0. 1时,停止压縮,将试样旋转90度,以Z轴为压縮轴,再次压縮。当Z方向的真应变量达到0. 1时,停止压縮,将试样旋转90度,再以X轴为压縮轴,反复进行X — Y — Z — X……方向压縮。当各方向的累积真应变量达到1. 5时,即得本发明之平均尺寸小于0. 3 ii m的孪晶强化块体纳米镁合金。[0040] 实施例3

[0041] 将AZ31镁合金挤压棒材切割成矩形块状试样置于-196t:的液氮中保温5min后取出将其置于液压机的下平砧上,先以X轴为压縮轴,在1018—1的应变速率下进行压縮变形。当X方向的真应变量达到0. 05时,停止压縮,再将试样放回液氮中保温5min后取出,将试样旋转90度,以Y轴为压縮轴,再次压縮。当Y方向的真应变量达到0. 05时,停止压縮,再将试样置于液氮中保温5min后取出,将试样旋转90度,以Z轴为压縮轴,再次压縮。当Z方向的真应变量达到0. 05时,停止压縮,再将试样置于液氮中保温5min后取出,将试样旋转90度,以X轴为压縮轴,反复进行X — Y — Z — X……方向的压縮和各道次变形前后的液

5氮深冷处理。当各方向的真应变量累积到3时,即得本发明之平均尺寸小于0. 1 i! m的孪晶

强化块体纳米镁合金。

[0042] 实施例4

[0043] 将AZ31镁合金挤压棒材切割成矩形块状试样置于液压机的下平砧上,先以X轴为压縮轴,在10—V—1的应变速率下进行压縮变形。当X方向的真应变量达到O. 1时,停止压縮,将试样旋转90度,以Y轴为压縮轴,再次压縮。当Y方向的真应变量达到0. 1时,停止压縮,将试样旋转90度,以Z轴为压縮轴,再次压縮。当Z方向的真应变量达到0. 1时,停止压縮,将试样旋转90度,以X轴为压縮轴,反复进行X — Y — Z — X……方向压縮。当各方向的累积真应变量达到1. 5时,将矩形块状试样置于箱式电阻炉中、控制样品表面温度为15(TC,保温1分钟后出炉水冷,即得本发明之平均尺寸小于4ii m的超细晶粒镁合金。[0044] 实施例5

[0045] 首先,以AZ31镁合金挤压棒材为原料,将切割成具有一定比例的矩形块状试样置于液压机的下平砧上,先以X轴为压縮轴,在10—S—1的应变速率下进行压縮变形。当X方向的真应变量达到0. 2时,停止压縮,将试样旋转90度,以Y轴为压縮轴,再次压縮。当Y方向的真应变量达到0. 2时,停止压縮,将试样旋转90度,以Z轴为压縮轴,再次压縮。当Z方向的真应变量达到0. 2时,停止压縮,将试样旋转90度,以X轴为压縮轴,反复进行X — Y — Z — X……方向压縮。当各方向的累积真应变量达到3时,将矩形块状试样置于箱式电阻炉中、控制样品表面温度为20(TC,保温10分钟后出炉水冷,即得本发明之平均尺寸小于3 ii m的超细晶粒镁合金。[0046] 实施例6

[0047] 将AZ31镁合金挤压棒材切割成矩形块状试样置于液压机的下平砧上,先以X轴为压縮轴,在1018—1的应变速率下进行压縮变形。当X方向的真应变量达到0. 03时,停止压縮,将试样旋转90度,以Y轴为压縮轴,再次压縮。当Y方向的真应变量达到0. 03时,停止压縮,将试样旋转90度,以Z轴为压縮轴,再次压縮。当Z方向的真应变量达到0. 03时,停止压縮,将试样旋转90度,以X轴为压縮轴,反复进行X — Y — Z — X……方向压縮。当各方向的累积真应变量达到5时,将矩形块状试样置于箱式电阻炉中、控制样品表面温度为25(TC,保温20分钟后出炉水冷,即得本发明之平均尺寸小于2 ii m的超细晶粒镁合金。

Claims (9)

  1. 一种利用孪生变形制备块体纳米镁合金的方法,是将镁合金铸锭或挤压棒材切割成矩形块状,在室温分别沿矩形块的X轴、Y轴、Z轴三个方向依次进行多道次、多轴压缩孪晶变形,每道次真应变量控制在0.03~0.2,应变速率控制在10-4s-1~101s-1,当各方向的真应变量累积至少达到1.5时,即可获得平均尺寸小于0.5μm的孪晶强化块体纳米镁合金。
  2. 2. 根据权利要求1所述的一种利用孪生变形制备块体纳米镁合金的方法,其特征在 于:所述每道次压縮孪晶变形前、后,将矩形块置于-196t:的液氮中,保温3 min〜30 min 进行深冷处理。
  3. 3. 根据权利要求1所述的一种利用孪生变形制备块体纳米镁合金的方法,其特征在 于:所述真应变量为0. 08〜0. 15。
  4. 4. 根据权利要求1所述的一种利用孪生变形制备块体纳米镁合金的方法,其特征在于:所述真应变量为0.1。
  5. 5. 根据权利要求1所述的一种利用孪生变形制备块体纳米镁合金的方法,其特征在于:所述应变速率为10—3s—1〜10—、一1。
  6. 6. 根据权利要求1所述的一种利用孪生变形制备块体纳米镁合金的方法,其特征在于:所述应变速率为10—2s—1。
  7. 7. —种利用孪生变形制备超细晶粒镁合金的方法,是将镁合金铸锭或挤压棒材切割成 矩形块状,在室温分别沿矩形块的X轴、Y轴、Z轴三个方向依次进行多道次、多轴压縮孪晶 变形,每道次真应变量控制在0. 03〜0. 2,应变速率控制在10—V—1〜1018—、当各方向的真 应变量累积至少达到1. 5时,将矩形块加热至150〜25(TC,保温1〜20 min后水冷,可获 得平均尺寸小于2 ii m的超细晶粒镁合金。
  8. 8. 根据权利要求7所述的一种利用孪生变形制备超细晶粒镁合金的方法,其特征在 于:所述保温时间为8〜14 min。
  9. 9. 根据权利要求7所述的一种利用孪生变形制备超细晶粒镁合金的方法,其特征在 于:所述保温时间为12 min。
CN2009100425142A 2009-01-16 2009-01-16 一种利用孪生变形制备块体纳米/超细晶粒镁合金的方法 CN101463454B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100425142A CN101463454B (zh) 2009-01-16 2009-01-16 一种利用孪生变形制备块体纳米/超细晶粒镁合金的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100425142A CN101463454B (zh) 2009-01-16 2009-01-16 一种利用孪生变形制备块体纳米/超细晶粒镁合金的方法

Publications (2)

Publication Number Publication Date
CN101463454A CN101463454A (zh) 2009-06-24
CN101463454B true CN101463454B (zh) 2010-06-16

Family

ID=40804244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100425142A CN101463454B (zh) 2009-01-16 2009-01-16 一种利用孪生变形制备块体纳米/超细晶粒镁合金的方法

Country Status (1)

Country Link
CN (1) CN101463454B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102002656B (zh) * 2010-11-10 2012-04-25 中南大学 一种细化析出或弥散强化型块体铜合金晶粒的方法
CN102051565B (zh) * 2011-01-21 2012-05-30 中南大学 一种铍青铜合金的形变强化和时效强化工艺方法
CN102127725A (zh) * 2011-02-21 2011-07-20 中南大学 一种高强度高韧性镁合金板带材的制备方法
CN102146551B (zh) * 2011-03-08 2012-10-24 太原科技大学 对mb5镁合金氩弧焊接接头深冷强化处理的方法
CN103008346A (zh) * 2012-12-26 2013-04-03 南京理工大学 一种镁合金多面循环轧制方法
CN103785844B (zh) * 2014-01-13 2017-08-08 上海交通大学 一种纳米结构块体镁材料及制备方法
CN104511595B (zh) * 2014-12-30 2016-08-24 中南大学 一种高纯钛粉的制备方法
CN105112827B (zh) * 2015-09-14 2017-01-25 重庆大学 一种室温细化变形镁合金晶粒的方法
CN105970130B (zh) * 2016-05-31 2018-02-16 东北大学 一种交替反挤压制备细晶镁合金的方法
CN106756682B (zh) * 2016-12-23 2018-05-04 福州大学 一种镁合金晶粒细化方法
CN107190220B (zh) * 2017-05-22 2018-07-27 中南大学 一种利用反常孪晶改善稀土镁合金疲劳性能的方法
CN107557705B (zh) * 2017-09-04 2018-12-28 河北工业大学 一种提高变形镁合金力学性能的预处理方法
CN108754365A (zh) * 2018-05-25 2018-11-06 湖南工学院 一种高密度孪晶结构zk21镁合金块体材料制备方法
CN109161759B (zh) * 2018-10-10 2020-01-14 重庆科技学院 一种提高镁合金板材冲压性能的方法
CN109457204B (zh) * 2018-12-05 2020-09-15 贵州大学 一种在tc4钛合金中获得超细晶粒及表面微纳尺度孪晶的方法
CN110000322A (zh) * 2019-04-25 2019-07-12 湖南科技大学 一种大塑性变形制备高性能镁合金装置及制备方法

Also Published As

Publication number Publication date
CN101463454A (zh) 2009-06-24

Similar Documents

Publication Publication Date Title
CN104439247B (zh) 钼合金靶材的制备方法
Guan et al. Recent advances and challenges in electroplastic manufacturing processing of metals
Huang et al. The effect of stacking fault energy on equilibrium grain size and tensile properties of nanostructured copper and copper–aluminum alloys processed by equal channel angular pressing
Tsuji et al. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing
CN104480330B (zh) 一种孪晶变形镁合金超细晶型材、其制备方法和用途
CN103255329B (zh) 一种低成本细晶弱织构镁合金薄板及其制造方法
Li et al. Effects of grain size on compressive behaviour in ultrafine grained pure Mg processed by equal channel angular pressing at room temperature
CN101328562B (zh) 氧化物弥散强化低活化马氏体钢材料及其制备方法
Jian et al. Ultrastrong Mg alloy via nano-spaced stacking faults
CN103233148B (zh) 一种适用于结构功能一体化用铝合金制品及制备方法
CN104889186B (zh) 一种ZrTiAlV合金电场辅助正反复合挤压成形方法
Gu et al. Effect of cryogenic treatment and aging treatment on the tensile properties and microstructure of Ti–6Al–4V alloy
Jahedi et al. Texture evolution and enhanced grain refinement under high-pressure-double-torsion
CN104070125B (zh) 一种tc4钛合金大规格棒材的锻造加工方法
Feng et al. Constitutive equation and hot deformation behavior of homogenized Al–7.68 Zn–2.12 Mg–1.98 Cu–0.12 Zr alloy during compression at elevated temperature
CN105132772B (zh) 一种低成本非稀土型高强镁合金及其制备方法
CN104532057B (zh) 一种Ti6242钛合金及其小规格棒材的制备方法
Xing et al. Mechanical properties of magnesium alloy az31 after Severe Plastic Deformation
CN105618501A (zh) 废弃钛切屑的球磨-等通道转角挤压再制造方法
CN101914712B (zh) 一种高强镁合金厚板的挤压变形工艺
CN103898424B (zh) 一种镁合金晶粒细化方法
Dong et al. Evolution of microstructure and mechanical properties of a duplex Mg–Li alloy under extrusion with an increasing ratio
CN104498793B (zh) 高强韧性镁锂合金及累积叠轧焊工艺制备高强韧性镁锂合金的方法
CN103510030B (zh) 一种tc21钛合金大规格棒材的制备方法
CN103882356B (zh) 一种具有超塑性变形能力细晶粒镁合金的制备方法

Legal Events

Date Code Title Description
PB01 Publication
C06 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
C14 Grant of patent or utility model
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100616

Termination date: 20130116