CN101447969A - Channel estimation method of multi-band orthogonal frequency division multiplexing ultra wide band system - Google Patents

Channel estimation method of multi-band orthogonal frequency division multiplexing ultra wide band system Download PDF

Info

Publication number
CN101447969A
CN101447969A CNA2008101642240A CN200810164224A CN101447969A CN 101447969 A CN101447969 A CN 101447969A CN A2008101642240 A CNA2008101642240 A CN A2008101642240A CN 200810164224 A CN200810164224 A CN 200810164224A CN 101447969 A CN101447969 A CN 101447969A
Authority
CN
China
Prior art keywords
mrow
msubsup
msub
msup
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008101642240A
Other languages
Chinese (zh)
Other versions
CN101447969B (en
Inventor
李有明
李新苗
徐铁锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN2008101642240A priority Critical patent/CN101447969B/en
Publication of CN101447969A publication Critical patent/CN101447969A/en
Application granted granted Critical
Publication of CN101447969B publication Critical patent/CN101447969B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Noise Elimination (AREA)

Abstract

The invention discloses a channel estimation method of multi-band orthogonal frequency division multiplexing ultra wide band system. The invention has the advantages that m sequence having better auto-correlation characteristics is taken as a time-domain training sequence and a cyclic prefix is appended; impulse response estimation value is obtained by doing mutual-correlation operation to receiving signals the cyclic prefix of which is eliminated and the training sequence and doing auto-correlation operation to each training sequence on a receiving terminal; that an auto-correlation matrix of the m sequence having diagonally dominant characteristics is utilized; one diagonal decomposition or three diagonal decomposition is respectively carried out to the auto-correlation matrix of the m sequence firstly; then an approximation method of first-order inverse matrix is adopted to effectively avoid complex inverse operation; then the operation amount is reduced by an order of magnitude; the performance approaches normal time-domain channel estimation method; and the invention is the fast and effective channel estimation method of the ultra wide band system, and is easy to be realized.

Description

Channel estimation method of multi-band orthogonal frequency division multiplexing ultra-wideband system
Technical Field
The present invention relates to a channel estimation method, and more particularly, to a channel estimation method for a multi-band orthogonal frequency division multiplexing ultra-wideband system.
Background
Ultra Wide Band (UWB) technology is a high-speed and short-distance wireless personal communication technology with great potential, and has attracted great attention in recent years in both academic and industrial circles, and has become a hotspot for research and development in the field of wireless communication at present. The ultra-wideband technology combines the Multi-Band orthogonal frequency Division Multiplexing (MB-OFDM) technology to form the Multi-Band orthogonal frequency Division Multiplexing ultra-wideband (MB-OFDM UWB) technology, which can effectively resist the characteristics of Multi-path fading, various narrowband interferences, flexible utilization of frequency spectrum resources and the like, and becomes one of the mainstream realization schemes of the ultra-wideband technology. The application prospect of the multi-band orthogonal frequency division multiplexing ultra-wideband technology is very attractive, for example, the technology is widely applied to a plurality of fields such as a high-speed wireless personal area network, a wireless Ethernet interface link, an intelligent wireless local area network, an outdoor peer-to-peer network, a sensing, positioning and identifying network and the like, and is particularly applied to the field of digital home electronic products. At present, many companies select the application of wireless home electronic products as a breakthrough of the multiband Orthogonal Frequency Division Multiplexing (OFDM) ultra-wideband technology.
In order to obtain ideal performance, technologies such as coherent detection, demodulation, equalization and the like need to be adopted in the multi-band orthogonal frequency division multiplexing ultra-wideband system, and the technologies all need to utilize information of a channel, so that accurate channel estimation information plays a crucial role in ensuring reliable data transmission in a multi-band orthogonal frequency division multiplexing ultra-wideband communication environment. Because the ultra-wideband signal occupies a large bandwidth, has short signal duration and high transmission rate, the requirements of high estimation precision and low calculation complexity are provided for the channel estimation technology. Therefore, how to perform fast and effective channel estimation in a multiband orthogonal frequency division multiplexing ultra-wideband system is a big challenge faced by the existing multiband orthogonal frequency division multiplexing ultra-wideband technology.
The multi-band orthogonal frequency division multiplexing ultra-wideband system mostly adopts a method of frequency domain pilot frequency domain channel estimation, namely, pilot frequency is inserted in a frequency domain, and channel estimation is carried out in the frequency domain. Such a channel estimation method includes the steps of: firstly, inserting pilot frequency in proper position of frequency domain of transmitting end, utilizing pilot frequency data to obtain channel information of pilot frequency position by utilizing correspondent channel estimation rule
Figure A200810164224D00051
Then passes through an interpolator, and uses the interpolation mode to carry out the comparisonInterpolating in the whole frequency domain to obtain the whole channel estimation value
Figure A200810164224D00053
Finally, the channel estimation value and the received data are sent to an equalizer, and the received data can be equalized to obtain the estimation value of the original transmitted data.
Currently, the channel information for the pilot positions is usually obtained based on Least Square (LS) criterion or Minimum Mean Square Error (MMSE) criterion. The frequency domain pilot frequency domain channel estimation method based on the least square criterion is simple in calculation process and easy to implement, but the method does not consider the influence of noise, so that the accuracy of channel estimation is not high. The frequency domain pilot frequency domain channel estimation method based on the minimum mean square error criterion can obtain good performance because of utilizing the frequency domain autocorrelation characteristic of the channel, but matrix inversion is involved in the estimation process of the method, the calculation complexity of the method is increased, and the feasibility of the method is poor. In summary, some existing frequency domain pilot frequency domain channel estimation methods have the problems that the calculation complexity is high, the methods are difficult to be used in practice, and the calculation accuracy is low due to the fact that the channel characteristics of the non-pilot position need to use an interpolation mode.
The existing time domain channel estimation methods mainly include estimation methods based on Discrete Fourier Transform (DFT) filtering methods and Maximum Likelihood criteria (ML), which can reduce the mean square error value of channel estimation to some extent, but have the disadvantage that channel length (or finite delay spread of a channel) information needs to be accurately obtained before channel estimation, thereby increasing the duration and computational complexity of the channel estimation process, and limiting the two methods in practical application.
Bowei Song et al propose a time domain channel estimation method based on m-sequence, and the working flow of a multi-band orthogonal frequency division multiplexing ultra-wideband system applying the method is shown in FIG. 1. At a transmitting end, an input data signal is subjected to Quadrature Phase Shift modulation (QPSK) to obtain a modulation signal, the modulation signal is subjected to serial-to-parallel conversion, Inverse Fourier Transform (IFFT) and parallel-to-serial conversion to form a plurality of OFDM symbols, and a length L is inserted into every fixed number of OFDM symbolsPThe m sequence s is used as a training sequence for time domain channel estimation, and the length is L according to the quality of the channel characteristicsCAssuming that the multi-band orthogonal frequency division multiplexing ultra-wideband system is synchronous, the training sequence obtained after the Cyclic Prefix is added and the input data signal are transmitted through an ultra-wideband channel after being modulated by a carrier; at the receiving end, firstly, the cyclic prefix in the training sequence after being influenced by the channel fading and the Gaussian white noise is removed, and then the training sequence after being influenced by the channel fading and the Gaussian white noise after the cyclic prefix is removed
Figure A200810164224D0006185031QIETU
M sequence s circularly right shifted by i bit from m sequence siThe correlation operation is carried out, and the correlation operation is carried out, <math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>C</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mover> <mi>r</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msup> <mi>s</mi> <mi>i</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>C</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>h</mi> <mi>j</mi> </msub> <msub> <mi>C</mi> <mi>P</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>n</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msup> <mi>s</mi> <mi>i</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow></math> wherein k is 0, 1, …, Lp+Lc1, h denotes a matrix vector composed of coefficients of respective multipaths of the channel, <math> <mrow> <mi>h</mi> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msub> <mi>h</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <msub> <mi>L</mi> <mrow> <mi>C</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </msub> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow></math> hjfor the jth multipath coefficient of the channel, h should satisfy the condition: { hj=0|L≤j≤LC-1}, L is the order of the channel, CP(i, j) is the m-sequence s circularly right-shifted by j bitsjAnd m sequence s circularly right-shifted by i bitiThe second term is white gaussianAnd the noise sequence n and the m sequence s are normalized cross correlation coefficients, n is white Gaussian noise, and n (k) is white Gaussian noise at the kth moment. The amplitude of the noise is compressed to 1/LPDouble, i.e.
Figure A200810164224D00071
Thus, can be used for <math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>C</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mover> <mi>r</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msup> <mi>s</mi> <mi>i</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>C</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>h</mi> <mi>j</mi> </msub> <msub> <mi>C</mi> <mi>P</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>n</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msup> <mi>s</mi> <mi>i</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow></math> Approximately as C ≈ CPh, wherein CPIs an autocorrelation matrix of m-sequences s, inserted into the m-sequences s of length LPThen the autocorrelation matrix CPThe normalized autocorrelation function over one period satisfies: <math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>C</mi> <mi>P</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msup> <mi>s</mi> <mi>j</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msup> <mi>s</mi> <mi>i</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mi>i</mi> <mo>=</mo> <mi>j</mi> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>,</mo> </mtd> <mtd> <mi>i</mi> <mo>&NotEqual;</mo> <mi>j</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow></math> . Thereby obtaining the impulse response estimated value of the channel by utilizing the autocorrelation characteristic of the m sequence h ~ = C p - 1 C . The method skillfully utilizes the autocorrelation characteristic of the m sequence to obtain the estimated value of the channel impulse response, has high estimation precision, and can flexibly adjust the overhead of the training sequence according to the transmission rate requirement of the multi-band orthogonal frequency division multiplexing ultra-wideband communication system so as to obtain the compromise between the estimation precision and the overhead. But from h ~ = C p - 1 C It can be seen that to obtain the channel impulse response, the matrix CPIs necessary, whereas the autocorrelation matrix CP=[CP(i,j)],i=0,1,…Lp-1,j=0,1,…Lp-1 is an LPThe order square matrix, if it needs to be inverted, has high computational complexity (the computational complexity is) The high computational complexity poses a significant obstacle to the application of this method.
Disclosure of Invention
The technical problem to be solved by the present invention is to provide a channel estimation method with low computation complexity, which is suitable for a multi-band orthogonal frequency division multiplexing ultra-wideband system, aiming at the defects existing in the prior art.
The technical scheme adopted by the invention for solving the technical problems is as follows: multi-band orthogonal frequency divisionThe channel estimation method of the multiplexing ultra-wideband system comprises the following steps: firstly, carrying out quadrature phase shift modulation processing on an input data signal at a transmitting end to obtain a modulation signal; secondly, performing serial-parallel conversion, inverse Fourier transform and parallel-serial conversion on the modulation signals in sequence to form a plurality of OFDM symbols; thirdly, inserting a length L into a plurality of formed OFDM symbols every set number of OFDM symbolsPThe m sequence s is taken as a training sequence, and a length L is added in front of the training sequence according to the channel characteristicsCThe cyclic prefix of (a) is obtained as a training sequence to which the cyclic prefix is added, and x is represented by x ═ x (0), x (1), … x (L)P+LC-1)](ii) a Finally, the training sequence x with the attached cyclic prefix and the formed OFDM symbol are transmitted to a receiving end through an ultra-wideband channel after being subjected to carrier modulation processing, and the training sequence x with the attached cyclic prefix and the OFDM symbol are influenced by channel fading and Gaussian white noise in the transmission process; at the receiving end, defining the training sequence x with attached cyclic prefix received by the receiving end and influenced by channel fading and white Gaussian noise as the first received signal, defining the OFDM symbol received by the receiving end and influenced by channel fading and white Gaussian noise as the second received signal, and representing the first received signal as the second received signal by using a tapped delay line model <math> <mrow> <mi>r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>C</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>h</mi> <mi>t</mi> </msub> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>n</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow></math> Wherein k is 0, 1, …, Lp+Lc-1, r (k) is the first received signal at time k, h denotes the received signalThe coefficients of the various multipaths of a track constitute a matrix vector, <math> <mrow> <mi>h</mi> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msub> <mi>h</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <msub> <mi>L</mi> <mrow> <mi>C</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </msub> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow></math> htfor the t-th multipath coefficient of the channel, h should satisfy the condition: { ht=0|L≤t≤LC-1}, L is the order of the channel, x is the training sequence after cyclic prefix is added, x (k-t) is the training sequence after cyclic prefix is added at the k-t time, n is white gaussian noise, and n (k) is white gaussian noise at the k time; firstly, the first received signal r (k) is processed with carrier wave removing modulation, and the first received signal processed with carrier wave removing modulation is processed with cyclic prefix removing processing to obtain <math> <mrow> <mover> <mi>r</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>C</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>h</mi> <mi>j</mi> </msub> <msup> <mi>s</mi> <mi>j</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>n</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow></math> Wherein k is 0, 1, …, Lp+Lc-1,
Figure A200810164224D00084
H represents a matrix vector composed of respective multipath coefficients of the channel for the first received signal at the k-th time after the cyclic prefix is removed, <math> <mrow> <mi>h</mi> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msub> <mi>h</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <msub> <mi>L</mi> <mrow> <mi>C</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </msub> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow></math> hjfor the jth multipath coefficient of the channel, h should satisfy the condition: { hj=0|L≤j≤LC-1}, L is the order of the channel, n is white Gaussian noise, n (k) is white Gaussian noise at the k-th time, sjCyclically shift the m sequence s by j bitsj(k) The sequence at the k-th moment after the m sequence s is circularly shifted by j bits to the right; seventhly, calculating the first received signal after the cyclic prefix is removed
Figure A200810164224D0006185031QIETU
M sequence s circularly right shifted by i bit from m sequence siCross correlation matrix C and autocorrelation matrix C of each training sequence sP,C=[C(i,j)]C (i, j) is the first received signal after the cyclic prefix is removed
Figure A200810164224D00086
M sequence s circularly right-shifted by i from m sequence siThe normalized cross-correlation coefficient of (a), <math> <mrow> <mi>C</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mover> <mi>r</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msup> <mi>s</mi> <mi>i</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow></math> CP=[CP(i,j)],CP(i, j) is the m sequence s circularly right shifted by j bitsjAnd m sequence s circularly right-shifted by i bitiThe normalized auto-correlation coefficient of (a), <math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>C</mi> <mi>P</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msup> <mi>s</mi> <mi>j</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msup> <mi>s</mi> <mi>i</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mi>i</mi> <mo>=</mo> <mi>j</mi> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>,</mo> </mtd> <mtd> <mi>i</mi> <mo>&NotEqual;</mo> <mi>j</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow></math> wherein i is 0, 1, …, Lp,j=0,1,…,Lp,k=0,1,…,Lp+Lc-1,
Figure A200810164224D00093
Is the first received signal at the k-th time after the cyclic prefix removal, sj(k) For m-sequences s cyclically shifted by j bits at time k, si(k) And circularly right shifting the m sequence s by i bit to the k time sequence. And according to the first received signal after removing cyclic prefix
Figure A200810164224D00094
M sequence s circularly right shifted by i bit from m sequence siCross correlation matrix C and autocorrelation matrix C of each training sequence sPCalculating an impulse response estimate of the channel
Figure A200810164224D00095
h ~ = C p - 1 C , Wherein,
Figure A200810164224D00097
is an autocorrelation matrix CPThe inverse matrix of (d); according to the autocorrelation matrix CPThe said autocorrelation matrix CPDecomposing the matrix into the sum of a first matrix and a second matrix, recording the first matrix as D, and recording the second matrix as E, CPD + E, said first matrix D and said second matrix E satisfying | D-1E‖<1, calculating the autocorrelation matrix CPInverse matrix of <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>m</mi> </msup> <msup> <mrow> <mo>(</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>)</mo> </mrow> <mi>m</mi> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mrow></math> Wherein the symbol "II" is a norm symbol, I is an identity matrix, D-1Is the inverse of the first matrix D, m is 1, 2, …, ∞; then according to <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>m</mi> </msup> <msup> <mrow> <mo>(</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>)</mo> </mrow> <mi>m</mi> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow></math> Computing
Figure A200810164224D000911
To a first order approximation of the first order, <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>)</mo> </mrow> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>&ap;</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mrow></math>
the first matrix D is formed by the autocorrelation matrix CPThe second matrix E is the diagonal matrix formed by the autocorrelation matrix CPThe diagonal matrix is marked as D1Said off-diagonal matrix is denoted as E1To obtain <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mn>1</mn> </msub> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>;</mo> </mrow></math> For the autocorrelation matrix CPThe coefficient of (a) is normalized, and the diagonal matrix D is obtained after the normalization1Is an identity matrix I; according to <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mn>1</mn> </msub> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> </mrow></math> To obtain C p - 1 = I - E 1 .
The first matrix D is formed by the autocorrelation matrix CPThe second matrix E is a three-diagonal matrix formed by the autocorrelation matrix CPThe non-tri-diagonal matrix composed of elements except the tri-diagonal elements is marked as D3And recording the non-tri-diagonal matrix as E3To obtain <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mn>3</mn> </msub> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>;</mo> </mrow></math> Combining the three diagonal matrix D3Decomposed into autocorrelation matrix CPAnd a diagonal matrix composed of diagonal elements of and said autocorrelation matrix CPThe diagonal element of (2) is the sum of diagonal matrices composed of diagonal elements of 0, and the diagonal matrix is denoted as D1And said diagonal matrix is denoted as D2Calculating said tri-diagonal matrix D3Inverse matrix of <math> <mrow> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>m</mi> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>m</mi> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> </mrow></math> Wherein, I is an identity matrix,
Figure A200810164224D00103
is a diagonal matrix D1M 1, 2, …, ∞; then according to <math> <mrow> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>m</mi> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>m</mi> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> </mrow></math> Computing
Figure A200810164224D00105
To a first order approximation of the first order, <math> <mrow> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>;</mo> </mrow></math> for the autocorrelation matrix CPThe coefficient of (A) is normalized, and the diagonal matrix D is obtained after the normalization1Is an identity matrix I, based on <math> <mrow> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> </mrow></math> To obtain D 3 - 1 = I - D 2 ; Then according to <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mn>3</mn> </msub> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> </mrow></math> And D 3 - 1 = I - D 2 , to obtain <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>E</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>.</mo> </mrow></math>
Compared with the prior art, the invention has the advantages that the m sequence with better autocorrelation property is adopted as the time domain training sequence, the first receiving signal without cyclic prefix and the training sequence are subjected to cross correlation operation at the receiving end, the impulse response estimation value of the channel is obtained by the autocorrelation operation of each training sequence, the autocorrelation matrix of the m sequence is utilized to have diagonal dominance property, firstly, the autocorrelation matrix of the m sequence is subjected to one-diagonal decomposition or three-diagonal decomposition respectively, and then, the approximation method of the first-order inverse matrix is adopted, so that the complex inversion operation is effectively avoided, the operation amount is reduced by one order of magnitude, and the performance approaches to the conventional time domain channel estimation method, thereby being a quick and effective channel estimation method of the ultra-wideband system and being easy to realize.
Drawings
Fig. 1 is a schematic diagram of a working flow of a multi-band orthogonal frequency division multiplexing ultra-wideband system;
FIG. 2 is a graph showing bit error rate of LS algorithm and conventional time domain channel estimation method corresponding to m sequences of different lengths varying with signal-to-noise ratio;
FIG. 3 is LPA performance comparison graph of a 31-hour LS algorithm, a conventional time domain estimation method, a one-pair angular decomposition method and a three-pair angular decomposition method is obtained;
FIG. 4 is LPA performance comparison graph of a 15-hour conventional time domain estimation method, a pair of angle decomposition method and a three-pair angle decomposition method of the invention.
Detailed Description
The invention is described in further detail below with reference to the accompanying examples.
A channel estimation method of a multi-band orthogonal frequency division multiplexing ultra-wideband system comprises the following steps:
firstly, at a transmitting end, the prior quadrature phase shift modulation (QPSK) technology is adopted to perform quadrature phase shift modulation processing on an input data signal to obtain a modulation signal.
Secondly, serial-parallel conversion and Fourier conversion are carried out on the modulation signals in sequenceInverse fourier transform (IFFT) and parallel-to-serial conversion processes form a plurality of OFDM symbols. In this embodiment, each OFDM symbol uses 128 subcarriers, the frequency interval between adjacent subcarriers is 4.1254MHz, and the duration of each OFDM symbol is T0=242.4ns。
Thirdly, inserting a length L into a plurality of formed OFDM symbols every set number of OFDM symbolsPThe m sequence s is used as a training sequence, and a length L is added in front of the training sequence according to the channel characteristicsCThe Cyclic Prefix (CP) of (1) is obtained as a cyclic prefix-added training sequence, which is represented by x ═ x (0), x (1), … x (L)P+LC-1)]Wherein L isPIs the length of the m-sequence s, i.e. the training sequence, LCIs the length of the cyclic prefix. In this embodiment, the selected set number is 4, that is, a length L is inserted every 4 OFDM symbolsPM-sequence s of (1).
And finally, the training sequence x with the cyclic prefix and the formed OFDM symbol are transmitted to a receiving end through an ultra-wideband channel after being subjected to carrier modulation processing, and the training sequence x and the OFDM symbol with the cyclic prefix are influenced by channel fading and white Gaussian noise in the transmission process.
At the receiving end, defining the training sequence x with attached cyclic prefix received by the receiving end and influenced by channel fading and white Gaussian noise as the first received signal, defining the OFDM symbol received by the receiving end and influenced by channel fading and white Gaussian noise as the second received signal, and representing the first received signal as the second received signal by using a tapped delay line model <math> <mrow> <mi>r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>C</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>h</mi> <mi>t</mi> </msub> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>n</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow></math> Wherein k is 0, 1, …, Lp+Lc1, r (k) is the first received signal at time k, h represents a matrix vector formed by the multipath coefficients of the channel, <math> <mrow> <mi>h</mi> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msub> <mi>h</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <msub> <mi>L</mi> <mrow> <mi>C</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </msub> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow></math> htfor the t-th multipath coefficient of the channel, h should satisfy the condition: { ht=0|L≤t≤LC-1}, L is the order of the channel, x is the training sequence with the cyclic prefix appended thereto, x (k-t) is the training sequence with the cyclic prefix appended thereto at the k-t time, n is white gaussian noise, and n (k) is white gaussian noise at the k time.
Firstly, the first received signal r (k) is processed with carrier wave removing modulation, and the first received signal processed with carrier wave removing modulation is processed with cyclic prefix removing processing to obtain <math> <mrow> <mover> <mi>r</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>C</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>h</mi> <mi>j</mi> </msub> <msup> <mi>s</mi> <mi>j</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>n</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow></math> Wherein k is 0, 1, …, Lp+Lc-1,
Figure A200810164224D0011185942QIETU
H represents a matrix vector composed of respective multipath coefficients of the channel for the first received signal at the k-th time after the cyclic prefix is removed, <math> <mrow> <mi>h</mi> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msub> <mi>h</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <msub> <mi>L</mi> <mrow> <mi>C</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </msub> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow></math> hjfor the jth multipath coefficient of the channel, h should satisfy the condition: { hj=0|L≤j≤LC-1}, L is the order of the channel, n is white Gaussian noise, n (k) is white Gaussian noise at the k-th time, sjCyclically shift the m sequence s by j bitsj(k) The m-sequence s is circularly shifted by j bits to the right to obtain the sequence at the k-th moment.
Seventhly, calculating the first received signal after the cyclic prefix is removed
Figure A200810164224D0012190317QIETU
M sequence s circularly right shifted by i bit from m sequence siCross correlation matrix C and autocorrelation matrix C of each training sequence sP,C=[C(i,j)]C (i, j) is the first received signal after the cyclic prefix is removed
Figure A200810164224D00122
M sequence s circularly right-shifted by i from m sequence siThe normalized cross-correlation coefficient of (a), <math> <mrow> <mi>C</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mover> <mi>r</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msup> <mi>s</mi> <mi>i</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow></math> CP=[CP(i,j)],CP(i, j) is the m sequence s circularly right shifted by j bitsjAnd the normalized autocorrelation coefficient of the m-sequence si after the m-sequence s is circularly right-shifted by i bits, <math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>C</mi> <mi>P</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msup> <mi>s</mi> <mi>j</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msup> <mi>s</mi> <mi>i</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mi>i</mi> <mo>=</mo> <mi>j</mi> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>,</mo> </mtd> <mtd> <mi>i</mi> <mo>&NotEqual;</mo> <mi>j</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow></math> wherein i is 0, 1, …, Lp,j=0,1,…,Lp,k=0,1,…,Lp+Lc-1,
Figure A200810164224D00126
Before being recycledFirst received signal, s, at time k after affixationj(k) For m-sequences s cyclically shifted by j bits at time k, si(k) And circularly right shifting the m sequence s by i bit to the k time sequence.
And according to the first received signal after removing cyclic prefix
Figure A200810164224D00127
M sequence s circularly right shifted by i bit from m sequence siCross correlation matrix C and autocorrelation matrix C of each training sequence sPCalculating an impulse response estimate of the channel h ~ = C p - 1 C ,
Figure A200810164224D001210
An autocorrelation matrix C representing each training sequence sPThe inverse matrix of (c). In this step, an impulse response estimate of the channel is calculated
Figure A200810164224D001211
Previously based on an autocorrelation matrix CPThe diagonal dominance of (C) is given by the autocorrelation matrix CPDecomposing into the sum of the first matrix and the second matrix, and recording the first matrix as D and the second matrix as E, if there is CPD + E, satisfying | D in the first matrix D and the second matrix E-1E‖<1 hour, calculate the autocorrelation matrix CPInverse matrix of
Figure A200810164224D001212
<math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>m</mi> </msup> <msup> <mrow> <mo>(</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>)</mo> </mrow> <mi>m</mi> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mrow></math> Wherein the symbol "II" is a norm symbol, I is an identity matrix, D-1Is the inverse of the first matrix D, m is 1, 2, …, ∞; if only considerTo a first order approximation, is based on <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>m</mi> </msup> <msup> <mrow> <mo>(</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>)</mo> </mrow> <mi>m</mi> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow></math> Computing
Figure A200810164224D001216
To a first order approximation of the first order, <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>)</mo> </mrow> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>&ap;</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mrow></math> finally utilize <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow></math> Computing an impulse response estimate for a channel
Figure A200810164224D00133
h ~ = C p - 1 C = ( D - 1 - D - 1 E D - 1 ) C .
In order to reduce the complexity of calculation, the invention providesTwo solutions C are obtainedPFast approximation method of inverse matrix: a one-diagonal decomposition method and a three-diagonal decomposition method.
A pair of angle decomposition methods: to autocorrelation matrix CPDecomposed into a matrix of autocorrelation CPAnd a diagonal matrix composed of diagonal elements of and an autocorrelation matrix CPThe sum of off-diagonal matrices composed of off-diagonal elements, and the diagonal matrix is denoted as D1Let the off-diagonal matrix be denoted as E1Then C isP=D1+E1Wherein
Figure A200810164224D00136
Figure A200810164224D00137
LPis the length of the training sequence inserted at the transmitting end; due to the autocorrelation matrix CPThe opposite-angle dominance of (a) is, | | D 1 - 1 E 1 | | < 1 , thus, it is possible to provide
Figure A200810164224D00139
There are the following expansions: <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mn>1</mn> </msub> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>m</mi> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mi>m</mi> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> </mrow></math> where | is the norm symbol,
Figure A200810164224D001311
is composed of
Figure A200810164224D001312
To the m-th power of (a), I is the identity matrix,
Figure A200810164224D001313
is a diagonal matrix D1M 1, 2, …, ∞; according to
Figure A200810164224D001314
Is obtained by expansion ofTo a first order approximation of <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mn>1</mn> </msub> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> </mrow></math> From <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mn>1</mn> </msub> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> </mrow></math> It can be seen that the autocorrelation matrix C is solved using a one-to-one angular decomposition method, involving only the inversion of the diagonal matrixPThe coefficient of (A) is normalized, and the diagonal matrix D is obtained after the normalization1Is an identity matrix I, thus
Figure A200810164224D001318
To a first order approximation of C p - 1 = I - E 1 , From C p - 1 = I - E 1 Can derive the calculation
Figure A200810164224D001321
The inversion process is not needed, the computational complexity is greatly reduced, and the performance of the method completely depends on the autocorrelation matrix CPThe opposite angle dominance of.
A three diagonal decomposition method: to autocorrelation matrix CPDecomposed into a matrix of autocorrelation CPAnd a tri-diagonal matrix composed of tri-diagonal elements of and an autocorrelation matrix CPThe sum of the non-tri-diagonal matrices composed of elements other than the tri-diagonal elements, and the tri-diagonal matrix is denoted as D3Let the non-tri-diagonal matrix be denoted as E3Then C isP=D3+E3Wherein
Figure A200810164224D00141
Figure A200810164224D00142
LPis the length of the training sequence inserted at the transmitting end; like a diagonal decomposition method, due to the autocorrelation matrix CPThe opposite-angle dominance of (a) is, | | D 3 - 1 E 3 | | < 1 , thus, it is possible to provideThere are the following expansions: <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mn>3</mn> </msub> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>m</mi> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mi>m</mi> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> </mrow></math> where | is the norm symbol,
Figure A200810164224D00146
is composed of
Figure A200810164224D00147
To the m-th power of (a), I is the identity matrix,
Figure A200810164224D00148
is a three diagonal matrix D3M 1, 2, …, ∞; according to
Figure A200810164224D0014174951QIETU
Is obtained by expansion ofCan be expressed as a first approximation <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mn>3</mn> </msub> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>;</mo> </mrow></math> Combining the three diagonal matrices D3Decomposed into a matrix of autocorrelation CPAnd a diagonal matrix composed of diagonal elements of and an autocorrelation matrix CPThe diagonal matrix is represented as D1Let a diagonal matrix be D2Then there is D3=D1+D2Wherein
Figure A200810164224D001411
Figure A200810164224D001412
computing a tri-diagonal matrix D3Inverse matrix of
Figure A200810164224D001413
<math> <mrow> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>m</mi> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>m</mi> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> </mrow></math> Wherein, I is an identity matrix,
Figure A200810164224D001415
is a diagonal matrix D1M 1, 2, …, ∞; then according to <math> <mrow> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>m</mi> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>m</mi> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> </mrow></math> ComputingTo a first order approximation of the first order, <math> <mrow> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>;</mo> </mrow></math> for autocorrelation matrix CPThe coefficient of (A) is normalized, and the diagonal matrix D is obtained after the normalization1Is an identity matrix I, based on <math> <mrow> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> </mrow></math> To obtain D 3 - 1 = I - D 2 ; Then according to <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mn>3</mn> </msub> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> </mrow></math> And D 3 - 1 = I - D 2 , to obtain <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>E</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>.</mo> </mrow></math> Known three diagonal decomposition method calculation
Figure A200810164224D001424
And an inversion process is also not needed, so that the computational complexity is greatly reduced.
Table 1 lists the magnitudes of the computational complexity of the existing time-domain channel estimation method based on m-sequences (referred to as the direct inversion method in table 1), the one-pair angular decomposition method and the three-pair angular decomposition method of the present invention.
Table 1 calculation complexity comparison table
Figure A200810164224D00151
As can be seen from table 1, the processing method using the one-diagonal decomposition and the three-diagonal decomposition proposed in the present invention can greatly reduce the computational complexity of the existing direct inversion method.
The invention utilizes the diagonal dominance characteristic of a special training sequence, namely the autocorrelation matrix of the m sequence, firstly carries out one-diagonal decomposition and three-diagonal decomposition on the autocorrelation matrix of the m sequence, and then adopts an approximation method of a first-order inverse matrix. The computer simulation result verifies the effectiveness of the invention.
Inserting a training sequence every 4 OFDM symbols, respectively inserting L P15, 31, 63 and 127, and m sequences with different lengths. FIG. 2 compares the corresponding different lengthsThe bit error rate of the conventional time domain channel estimation method (i.e. direct inversion method) and the frequency domain LS channel estimation method of the m sequence is a curve which changes along with the signal-to-noise ratio. As can be easily seen from fig. 2, under the same snr condition, the shorter the m-sequence length is, the higher the bit error rate of the conventional time domain channel estimation method is, the worse the performance is, while the longer the m-sequence length is, the lower the bit error rate thereof is, the better the performance is. The purpose of the simulation of fig. 2 is to choose the appropriate length of the training sequence. However, considering the amount of calculation and the system performance, the pilot length is not suitable to be too long in practice. Since m sequences are respectively taken as LP=31、LPThe performance is similar when the length is 64, so that the length L should be considered in practicePThe m-sequence of 31 is suitable.
FIG. 3 compares the m-sequence length L P31, the bit error rate versus signal-to-noise ratio curves of the conventional time domain estimation method, the one-to-angle decomposition method, the three-to-angle decomposition method, and the frequency domain LS channel estimation method. As can be seen from fig. 3, the performance of the one-diagonal decomposition method and the three-diagonal decomposition method is very similar to that of the conventional time domain estimation method, but the computational complexity of the first two methods is reduced by an order of magnitude.
In order to further compare the performance of the one-diagonal decomposition method and the three-diagonal decomposition method with the performance difference from the conventional time domain estimation method, fig. 4 shows that the three methods have poor m-sequence autocorrelation characteristics (m-sequence length L)P15) was simulated. As shown in FIG. 4, the performance of the proposed diagonal decomposition method is slightly reduced, but the performance of the three-diagonal decomposition method is obviously better than that of the one-pair diagonal decomposition method.

Claims (3)

1. A channel estimation method of a multi-band orthogonal frequency division multiplexing ultra-wideband system comprises the following steps: firstly, carrying out quadrature phase shift modulation processing on an input data signal at a transmitting end to obtain a modulation signal; secondly, performing serial-parallel conversion, inverse Fourier transform and parallel-serial conversion on the modulation signals in sequence to form a plurality of OFDM symbols; thirdly, inserting a length L into a plurality of formed OFDM symbols every set number of OFDM symbolsPThe m sequence s is taken as a training sequence, and a length L is added in front of the training sequence according to the channel characteristicsCThe cyclic prefix of (a) is obtained as a training sequence to which the cyclic prefix is added, and x is represented by x ═ x (0), x (1), … x (L)P+LC-1)](ii) a Finally, the training sequence x with the attached cyclic prefix and the formed OFDM symbol are transmitted to a receiving end through an ultra-wideband channel after being subjected to carrier modulation processing, and the training sequence x with the attached cyclic prefix and the OFDM symbol are influenced by channel fading and Gaussian white noise in the transmission process; at the receiving end, defining the training sequence x with attached cyclic prefix received by the receiving end and influenced by channel fading and white Gaussian noise as the first received signal, defining the OFDM symbol received by the receiving end and influenced by channel fading and white Gaussian noise as the second received signal, and representing the first received signal as the second received signal by using a tapped delay line model <math> <mrow> <mi>r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>C</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>h</mi> <mi>t</mi> </msub> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>n</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow></math> Wherein k is 0, 1, …, Lp+Lc1, r (k) is the first received signal at time k, h represents a matrix vector composed of the coefficients of the various multipaths of the channel, <math> <mrow> <mi>h</mi> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msub> <mi>h</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <msub> <mi>L</mi> <mrow> <mi>C</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </msub> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow></math> htfor the t-th multipath coefficient of the channel, h should satisfy the condition: { ht=0|L≤t≤LC-1}, L is the order of the channel, x is the training sequence after cyclic prefix is added, x (k-t) is the training sequence after cyclic prefix is added at the k-t time, n is white gaussian noise, and n (k) is white gaussian noise at the k time; firstly, the first received signal r (k) is processed with carrier wave removing modulation, and the first received signal processed with carrier wave removing modulation is processed with cyclic prefix removing processing to obtain <math> <mrow> <mover> <mi>r</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>C</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>h</mi> <mi>j</mi> </msub> <msup> <mi>s</mi> <mi>j</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>n</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow></math> Wherein k is 0, 1, …, Lp+Lc-1,
Figure A200810164224C0002111517QIETU
H represents a matrix vector composed of respective multipath coefficients of the channel for the first received signal at the k-th time after the cyclic prefix is removed, <math> <mrow> <mi>h</mi> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msub> <mi>h</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <msub> <mi>L</mi> <mrow> <mi>C</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </msub> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow></math> hjfor the jth multipath coefficient of the channel, h should satisfy the condition: { hj=0|L≤j≤LC-1}, L is the order of the channel, n is white Gaussian noise, n (k) is white Gaussian noise at the k-th time, sjCyclically shift the m sequence s by j bitsj(k) The sequence at the k-th moment after the m sequence s is circularly shifted by j bits to the right; seventhly, calculating the first received signal after the cyclic prefix is removed
Figure A200810164224C00025
M sequence s circularly right shifted by i bit from m sequence siCross correlation matrix C and autocorrelation matrix C of each training sequence sP,C=[C(i,j)]C (i, j) is the first received signal after the cyclic prefix is removed
Figure A200810164224C00031
M sequence s circularly right-shifted by i from m sequence siThe normalized cross-correlation coefficient of (a), <math> <mrow> <mi>C</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mover> <mi>r</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msup> <mi>s</mi> <mi>i</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow></math> CP=[CP(i,j)],CP(i, j) is the m sequence s circularly right shifted by j bitsjAnd m sequence s circularly right-shifted by i bitiThe normalized auto-correlation coefficient of (a), <math> <mrow> <mrow> <mfenced open='' close='' separators=' '> <mtable> <mtr> <mtd> <msub> <mi>C</mi> <mi>P</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msup> <mi>s</mi> <mi>j</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msup> <mi>s</mi> <mi>i</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mi>i</mi> <mo>=</mo> <mi>j</mi> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>L</mi> <mi>P</mi> </msub> <mo>,</mo> </mtd> <mtd> <mi>i</mi> <mo>&NotEqual;</mo> <mi>j</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> <mo>,</mo> </mrow></math> wherein i is 0, 1, …, Lp,j=0,1,…,Lp,k=0,1,…,Lp+Lc-1,
Figure A200810164224C00034
Is the first received signal at the k-th time after the cyclic prefix removal, sj(k) For m-sequences s cyclically shifted by j bits at time k, si(k) And circularly right shifting the m sequence s by i bit to the k time sequence. And according to the first received signal after removing cyclic prefix
Figure A200810164224C00035
M sequence s circularly right shifted by i bit from m sequence siCross correlation matrix C and autocorrelation matrix C of each training sequence sPCalculating an impulse response estimate of the channel
Figure A200810164224C00036
h ~ = C p - 1 C , Wherein,
Figure A200810164224C00038
is an autocorrelation matrix CPThe inverse matrix of (d); characterized in that it is based on said autocorrelation matrix CPThe said autocorrelation matrix CPDecomposing the matrix into the sum of a first matrix and a second matrix, recording the first matrix as D, and recording the second matrix as E, CPD + E, said first matrix D and said second matrix E satisfying | D-1E‖<1, calculating the autocorrelation matrix CPInverse matrix of
Figure A200810164224C00039
<math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>m</mi> </msup> <msup> <mrow> <mo>(</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>)</mo> </mrow> <mi>m</mi> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mrow></math> Wherein the symbol "II" is a norm symbol, I is an identity matrix, D-1Is the inverse of the first matrix D, m is 1, 2, …, ∞; then according to <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>m</mi> </msup> <msup> <mrow> <mo>(</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>)</mo> </mrow> <mi>m</mi> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow></math> Computing
Figure A200810164224C000312
To a first order approximation of the first order, <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <mo>)</mo> </mrow> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>&ap;</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>E</mi> <msup> <mi>D</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mrow></math>
2. the method as claimed in claim 1, wherein the first matrix D is the autocorrelation matrix CPThe second matrix E is the diagonal matrix formed by the autocorrelation matrix CPThe diagonal matrix is marked as D1Said off-diagonal matrix is denoted as E1To obtain <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mn>1</mn> </msub> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>;</mo> </mrow></math> For the autocorrelation matrix CPThe coefficient of (a) is normalized, and the diagonal matrix D is obtained after the normalization1Is an identity matrix I; according to <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mn>1</mn> </msub> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> </mrow></math> To obtain C p - 1 = I - E 1 .
3. The method as claimed in claim 1, wherein the first matrix D is the autocorrelation matrix CPThe second matrix E is a three-diagonal matrix formed by the autocorrelation matrix CPThe non-tri-diagonal matrix composed of elements except the tri-diagonal elements is marked as D3And recording the non-tri-diagonal matrix as E3To obtain <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mn>3</mn> </msub> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>;</mo> </mrow></math> Combining the three diagonal matrix D3Decomposed into autocorrelation matrix CPAnd a diagonal matrix composed of diagonal elements of and said autocorrelation matrix CPThe diagonal element of (2) is the sum of diagonal matrices composed of two pairs of diagonal elements of 0, and the diagonal matrix is marked as D1And said diagonal matrix is denoted as D2Calculating said tri-diagonal matrix D3Inverse matrix of
Figure A200810164224C00044
<math> <mrow> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>m</mi> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>m</mi> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>,</mo> </mrow></math> Wherein, I is an identity matrix,
Figure A200810164224C00046
is a diagonal matrix D1M 1, 2, …, ∞; then according to <math> <mrow> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>m</mi> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>m</mi> </msup> <mo>+</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>)</mo> </mrow> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> </mrow></math> Computing
Figure A200810164224C00048
To a first order approximation of the first order, <math> <mrow> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>;</mo> </mrow></math> for the autocorrelation matrix CPThe coefficient of (A) is normalized, and the diagonal matrix D is obtained after the normalization1Is an identity matrix I, based on <math> <mrow> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msubsup> <mi>D</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> </mrow></math> To obtain D 3 - 1 = I - D 2 ; Then according to <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>E</mi> <mn>3</mn> </msub> <msubsup> <mi>D</mi> <mn>3</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> </mrow></math> And D 3 - 1 = I - D 2 , to obtain <math> <mrow> <msubsup> <mi>C</mi> <mi>p</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>&ap;</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>E</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>.</mo> </mrow></math>
CN2008101642240A 2008-12-31 2008-12-31 Channel estimation method of multi-band orthogonal frequency division multiplexing ultra wide band system Expired - Fee Related CN101447969B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101642240A CN101447969B (en) 2008-12-31 2008-12-31 Channel estimation method of multi-band orthogonal frequency division multiplexing ultra wide band system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101642240A CN101447969B (en) 2008-12-31 2008-12-31 Channel estimation method of multi-band orthogonal frequency division multiplexing ultra wide band system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201010567151.7A Division CN102065035B (en) 2008-12-31 2008-12-31 Channel estimation method of multi-band orthogonal frequency-division multiplexing ultra-wideband system

Publications (2)

Publication Number Publication Date
CN101447969A true CN101447969A (en) 2009-06-03
CN101447969B CN101447969B (en) 2011-04-20

Family

ID=40743372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101642240A Expired - Fee Related CN101447969B (en) 2008-12-31 2008-12-31 Channel estimation method of multi-band orthogonal frequency division multiplexing ultra wide band system

Country Status (1)

Country Link
CN (1) CN101447969B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945063A (en) * 2010-09-21 2011-01-12 北京交通大学 Method and system for estimating ultra-wideband channel of MB-OFDM (Multiband-Orthogonal Frequency Division Multiplexing) system
CN101958856B (en) * 2009-07-13 2012-10-17 联芯科技有限公司 Method and device for carrying out channel estimation by using cyclic prefix code
CN101789926B (en) * 2010-01-29 2012-11-07 北京交通大学 United carrier and sampling frequency offset estimation method for multiband-orthogonal frequency division multiplexing (OFDM) ultra wide band system
CN110944384A (en) * 2019-12-09 2020-03-31 中国电子科技集团公司第五十四研究所 Indoor and outdoor high-precision positioning and communication integrated signal and service integration method
CN115298716A (en) * 2020-03-04 2022-11-04 Eto电磁有限责任公司 Traffic guidance device, traffic guidance system, traffic information system, adaptable receiving module and method for guiding traffic

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4164364B2 (en) * 2001-02-22 2008-10-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Multi-carrier transmission system with channel response estimation with reduced complexity
CN100588194C (en) * 2004-01-14 2010-02-03 北京邮电大学 Self-adaptive channel estimation method based on two-dimensional minimum mean square criterion
CN100405790C (en) * 2004-06-25 2008-07-23 北京邮电大学 Self-adaptive channel estimation method based on least squares criterion of two-dimensional iteration
CN101217288B (en) * 2007-12-27 2012-08-22 复旦大学 An estimation method of virtual pilot frequency assistant channel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958856B (en) * 2009-07-13 2012-10-17 联芯科技有限公司 Method and device for carrying out channel estimation by using cyclic prefix code
CN101789926B (en) * 2010-01-29 2012-11-07 北京交通大学 United carrier and sampling frequency offset estimation method for multiband-orthogonal frequency division multiplexing (OFDM) ultra wide band system
CN101945063A (en) * 2010-09-21 2011-01-12 北京交通大学 Method and system for estimating ultra-wideband channel of MB-OFDM (Multiband-Orthogonal Frequency Division Multiplexing) system
CN101945063B (en) * 2010-09-21 2014-04-09 北京交通大学 Method and system for estimating ultra-wideband channel of MB-OFDM (Multiband-Orthogonal Frequency Division Multiplexing) system
CN110944384A (en) * 2019-12-09 2020-03-31 中国电子科技集团公司第五十四研究所 Indoor and outdoor high-precision positioning and communication integrated signal and service integration method
CN110944384B (en) * 2019-12-09 2020-12-15 中国电子科技集团公司第五十四研究所 Indoor and outdoor high-precision positioning and communication integrated method
CN115298716A (en) * 2020-03-04 2022-11-04 Eto电磁有限责任公司 Traffic guidance device, traffic guidance system, traffic information system, adaptable receiving module and method for guiding traffic

Also Published As

Publication number Publication date
CN101447969B (en) 2011-04-20

Similar Documents

Publication Publication Date Title
CN101005475A (en) Method and system for synchronizing time and frequency in orthogonal frequency division multiplex communication
CN103428154B (en) The transform domain multiplexing method of the dual-selection channel based on Vector OFDM
CN109861939B (en) OQPSK frequency domain equalization wireless data transmission method
WO2008113216A1 (en) A channel estimation method
CN102664687A (en) CHIRP-OFDM system frequency domain diversity receiving method
Nissel et al. Doubly-selective channel estimation in FBMC-OQAM and OFDM systems
CN101252555A (en) Time frequency optimum channel estimation method in OFDM mobile communication system
CN101447969B (en) Channel estimation method of multi-band orthogonal frequency division multiplexing ultra wide band system
CN101729479B (en) Blind channel estimation method based on cyclostationarity of OFDM signals
CN103414678A (en) Doubly selective channel transform domain equalization method based on Vector OFDM
CN108881080A (en) A kind of anti-ICI detection method of OFDM based on sliding window and deep learning
CN102065035B (en) Channel estimation method of multi-band orthogonal frequency-division multiplexing ultra-wideband system
CN101667982A (en) Removing method of WiMAX fast fading ICI based on plane spreading kalman filtering wave
CN101267409A (en) A MIMO-OFDM dual selective channel tracking method
CN102143116B (en) Orthogonal frequency division multiplexing (OFDM) signal cyclostationarity-based blind signal to noise ratio estimation method
CN1984109A (en) Channel estimater and channel estimating method in telecommunication system
CN101197796B (en) Wireless sensor network channel evaluation method based on SC-FDE and virtual multi-antenna
CN102487364B (en) Channel estimation method and apparatus thereof
CN111245589B (en) Pilot frequency superposition channel estimation method
WO2012035345A2 (en) Improvements in ofdm communication systems
CN102148788B (en) Carrier interferometry orthogonal frequency division multiplexing (CI-OFDM) communication method based on consideration of inter-carrier interference (ICI) influences under time-varying fading channels
CN102821078B (en) Blind channel estimation method based on OFDM (orthogonal frequency division multiplexing) signal cyclostationary features
He et al. A novel OFDM interpolation algorithm based on comb-type pilot
CN104301263B (en) A kind of mostly band UWB system low complexity channel estimation method and device
Yao Research on denoise methods of channel estimation in ofdm system with high-speed multipath channels

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110420

Termination date: 20131231