CN101446189B - Supercritical carbon dioxide drive physical analogue device - Google Patents
Supercritical carbon dioxide drive physical analogue device Download PDFInfo
- Publication number
- CN101446189B CN101446189B CN2008102469901A CN200810246990A CN101446189B CN 101446189 B CN101446189 B CN 101446189B CN 2008102469901 A CN2008102469901 A CN 2008102469901A CN 200810246990 A CN200810246990 A CN 200810246990A CN 101446189 B CN101446189 B CN 101446189B
- Authority
- CN
- China
- Prior art keywords
- carbon dioxide
- core device
- flooding
- pressure
- rock core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 110
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 55
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 51
- 239000008398 formation water Substances 0.000 claims abstract description 19
- 238000004088 simulation Methods 0.000 claims abstract description 18
- 239000010779 crude oil Substances 0.000 claims abstract description 17
- 238000002347 injection Methods 0.000 claims abstract description 14
- 239000007924 injection Substances 0.000 claims abstract description 14
- 238000009530 blood pressure measurement Methods 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims abstract description 5
- 239000011435 rock Substances 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- 230000000087 stabilizing effect Effects 0.000 claims description 14
- 238000003860 storage Methods 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 8
- 238000009529 body temperature measurement Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 abstract description 12
- 230000005465 channeling Effects 0.000 abstract description 7
- 238000011160 research Methods 0.000 abstract description 6
- 238000013461 design Methods 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000003208 petroleum Substances 0.000 abstract description 2
- 239000003921 oil Substances 0.000 description 11
- 238000006073 displacement reaction Methods 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 239000006004 Quartz sand Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/70—Combining sequestration of CO2 and exploitation of hydrocarbons by injecting CO2 or carbonated water in oil wells
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
一种超临界二氧化碳驱油物理模拟装置,其属于石油工程和工艺技术领域。该装置采用二个并列的模拟岩心装置与注入系统连接,每个模拟岩心装置各自设有一个出口计量系统;注入系统向模拟岩心装置依次注入地层水、原油和超临界二氧化碳,并采用所述温度压力测控系统控制整个系统的压力和温度为要求的设定值,最后用出口计量系统测量通过模拟岩心装置的二氧化碳气体、地层水、原油的体积。该装置先将CO2气体经过冷却液化后再加压升温至超临界状态,解决了注入C02流量精确计量的难题;采用双管模型,可以模拟非均质油藏CO2驱过程中出现指进和窜流现象;该装置设计压力为0~40MPa,设计温度为0~180℃,主要应用于超临界CO2混相驱或非混相驱、连续气驱或水气交替驱等研究。
A supercritical carbon dioxide flooding physical simulation device belongs to the field of petroleum engineering and process technology. The device uses two parallel simulated core devices to connect with the injection system, and each simulated core device is equipped with an outlet metering system; the injection system sequentially injects formation water, crude oil and supercritical carbon dioxide into the simulated core device, and adopts the temperature The pressure measurement and control system controls the pressure and temperature of the entire system to the required set values, and finally uses the outlet metering system to measure the volume of carbon dioxide gas, formation water, and crude oil passing through the simulated core device. The device first cools and liquefies CO 2 gas, then pressurizes and heats it up to a supercritical state, which solves the problem of accurate metering of injected CO 2 flow; adopts a double-pipe model, which can simulate the occurrence of indicators in the process of CO 2 flooding in heterogeneous reservoirs. Ingress and channeling phenomena; the design pressure of the device is 0-40MPa, and the design temperature is 0-180°C. It is mainly used in the research of supercritical CO 2 miscible flooding or immiscible flooding, continuous gas flooding or water-gas alternate flooding.
Description
技术领域technical field
本发明涉及一种超临界二氧化碳驱油物理模拟装置,其属于石油工程和工艺技术领域。The invention relates to a supercritical carbon dioxide flooding physical simulation device, which belongs to the technical field of petroleum engineering and technology.
背景技术Background technique
在注CO2采油过程中,由于粘型指进和油藏的非均质性,通常会发生气体窜流现象,严重影响CO2波及效率及驱替效率,因而有必要对该方面进行深入研究。物理模拟是最常见有效的实验手段之一,目前,关于CO2驱油物理模拟方面,大多数实验装置上模拟岩心系统主要是采用金属管填砂模型或天然岩心模型制成的一维单管模式,不能对气体窜流现象进行较好的分析,若采用二维或三维岩心物理模型,由于模型复杂,大大提高了制作和操作成本。另外,进行超临界CO2驱油物理模拟实验过程中,如何使储罐中CO2气体在进入驱替模拟岩心前达到超临界状态以及如何对其流量进行精确计量,是保证实验效果接近实际及实验结果精确的关键。目前,多数实验装置不能够很好的解决这方面难题。In the process of CO 2 injection oil recovery, due to viscous fingering and reservoir heterogeneity, gas channeling usually occurs, which seriously affects the CO 2 sweep efficiency and displacement efficiency, so it is necessary to conduct in-depth research on this aspect . Physical simulation is one of the most common and effective experimental methods. At present, regarding the physical simulation of CO 2 flooding, the simulated core system on most experimental devices is mainly a one-dimensional single-pipe made of a metal pipe sand filling model or a natural core model. However, the gas channeling phenomenon cannot be well analyzed. If a two-dimensional or three-dimensional core physical model is used, due to the complexity of the model, the production and operation costs are greatly increased. In addition, during the supercritical CO 2 flooding physical simulation experiment, how to make the CO 2 gas in the storage tank reach the supercritical state before entering the displacement simulation core and how to accurately measure its flow rate are the key to ensure that the experimental effect is close to reality and The key to accurate experimental results. At present, most experimental devices cannot solve this problem well.
发明内容Contents of the invention
为了解决上述物理模拟研究中存在的问题,本发明提供一种超临界二氧化碳驱油物理模拟装置,该装置将先把CO2气体经过冷却液化后,更容易实现实验工况下的高温高压超临界状态,同时也为解决注入CO2流量精确计量的难题;模拟岩心装置采用双管模型,可以模拟非均质油藏CO2驱过程中出现指进和窜流现象;可以完成驱油非稳态过程中CO2、油、水三相流体在多孔介质中的相对渗透率、饱和度、驱油效率等多项参数瞬态测量,对非均质油藏CO2驱过程中出现指进和窜流现象影响的波及效率及驱替效率进行深入研究。In order to solve the problems existing in the above-mentioned physical simulation research, the present invention provides a physical simulation device for supercritical carbon dioxide flooding. After the CO2 gas is cooled and liquefied, it is easier to realize high-temperature and high-pressure supercritical conditions under experimental conditions. At the same time, it is also to solve the problem of accurate measurement of injected CO 2 flow rate; the simulated core device adopts a double-tube model, which can simulate fingering and channeling phenomena in the process of CO 2 flooding in heterogeneous reservoirs; it can complete the unsteady state of oil displacement Transient measurement of multiple parameters such as CO 2 , oil, and water three-phase fluid in porous media, such as relative permeability, saturation, and oil displacement efficiency, for fingering and channeling in the process of CO 2 flooding in heterogeneous reservoirs In-depth research on the sweep efficiency and displacement efficiency affected by flow phenomena.
本发明为解决上述技术问题所采用的技术方案是:一种超临界二氧化碳驱油物理模拟装置主要包括一个注入系统、模拟岩心装置、温度压力测控系统和出口计量系统;所述模拟岩心装置采用第一模拟岩心装置和第二模拟岩心装置并列与注入系统连接,第一模拟岩心装置和第二模拟岩心装置各自设有一个出口计量系统;所述注入系统向模拟岩心装置依次注入地层水、原油和超临界二氧化碳,并采用所述温度压力测控系统控制整个系统的压力和温度为要求的设定值,最后用出口计量系统测量通过模拟岩心装置的二氧化碳气体、地层水、原油的体积。The technical scheme adopted by the present invention to solve the above-mentioned technical problems is: a physical simulation device for supercritical carbon dioxide flooding mainly includes an injection system, a simulated rock core device, a temperature and pressure measurement and control system and an outlet metering system; the simulated rock core device adopts the first A simulated rock core device and a second simulated rock core device are connected side by side with the injection system, and the first simulated rock core device and the second simulated rock core device are respectively provided with an outlet metering system; the injection system injects formation water, crude oil and Supercritical carbon dioxide, and use the temperature and pressure measurement and control system to control the pressure and temperature of the entire system to the required set value, and finally use the outlet metering system to measure the volume of carbon dioxide gas, formation water, and crude oil passing through the simulated core device.
所述注入系统主要包含设置在空气恒温箱(7)中的三个中间容器,由一台高压计量泵向这三个中间容器中的驱活塞的一侧提供高压水产生驱动力,让第一中间容器、第二中间容器和第三中间容器依次向第一模拟岩心装置和第二模拟岩心装置驱地层水、原油和超临界二氧化碳。The injection system mainly includes three intermediate containers arranged in the air thermostat (7), and a high-pressure metering pump supplies high-pressure water to one side of the driving piston in the three intermediate containers to generate driving force, so that the first The intermediate container, the second intermediate container and the third intermediate container drive formation water, crude oil and supercritical carbon dioxide to the first simulated rock core device and the second simulated rock core device in sequence.
所述第一中间容器中的超临界二氧化碳由一台二氧化碳泵从储罐中抽取液态二氧化碳供给;储存在二氧化碳瓶中的二氧化碳气体进入设置在冷浴中的储罐,经冷却后转变为液态二氧化碳。The supercritical carbon dioxide in the first intermediate container is supplied by a carbon dioxide pump drawing liquid carbon dioxide from the storage tank; the carbon dioxide gas stored in the carbon dioxide bottle enters the storage tank arranged in the cold bath, and is converted into liquid carbon dioxide after being cooled .
所述第一模拟岩心装置和第二模拟岩心装置设置在空气恒温箱中。The first simulated core device and the second simulated core device are arranged in an air constant temperature box.
所述出口计量系统主要包含连接稳压阀的油水计量管和连接油水计量管的气体流量计;它还包含连接稳压阀的稳压罐,采用一个手动泵连接稳压罐。The outlet metering system mainly includes the oil-water metering pipe connected to the pressure-stabilizing valve and the gas flow meter connected to the oil-water metering pipe; it also includes a pressure-stabilizing tank connected to the pressure-stabilizing valve, and a manual pump is used to connect the pressure-stabilizing tank.
本发明的有益效果是:一种超临界二氧化碳驱油物理模拟装置采用二个并列的模拟岩心装置与注入系统连接,每个模拟岩心装置各自设有一个出口计量系统;注入系统向模拟岩心装置依次注入地层水、原油和超临界二氧化碳,并采用所述温度压力测控系统控制整个系统的压力和温度为要求的设定值,最后用出口计量系统测量通过模拟岩心装置的二氧化碳气体、地层水、原油的体积。该装置先将CO2气体经过冷却液化后再加压升温,这样更容易实现实验工况下的高温高压超临界状态,同时也解决了对注入CO2流量精确计量的难题;模拟岩心装置采用双管模型,可以模拟非均质油藏CO2驱过程中出现指进和窜流现象;注入系统向模拟岩心装置依次注入地层水、原油和超临界二氧化碳,并采用测控系统控制整个系统的压力和温度,最后用出口计量系统测量二氧化碳气体、地层水、原油的体积。该装置设计压力为0~40MPa,设计温度为0~180℃,主要应用于超临界CO2混相驱或非混相驱、连续气驱或水气交替驱等多种方案室内试验研究中。可以完成驱油非稳态过程中CO2、油、水三相流体在多孔介质中的相对渗透率、饱和度、驱油效率等多项参数瞬态测量,对非均质油藏CO2驱过程中出现指进和窜流现象影响的波及效率及驱替效率进行深入研究。The beneficial effects of the present invention are: a supercritical carbon dioxide flooding physical simulation device adopts two parallel simulated rock core devices to connect with the injection system, and each simulated rock core device is respectively provided with an outlet metering system; Inject formation water, crude oil and supercritical carbon dioxide, and use the temperature and pressure measurement and control system to control the pressure and temperature of the entire system to the required set value, and finally use the outlet metering system to measure the carbon dioxide gas, formation water and crude oil passing through the simulated core device volume of. The device cools and liquefies the CO 2 gas first, then pressurizes and raises the temperature, which makes it easier to realize the high-temperature and high-pressure supercritical state under the experimental conditions, and also solves the problem of accurate measurement of the injected CO 2 flow rate; the simulated core device adopts dual The pipe model can simulate fingering and channeling phenomena in the process of CO2 flooding in heterogeneous reservoirs; the injection system injects formation water, crude oil and supercritical carbon dioxide into the simulated core device in sequence, and uses the measurement and control system to control the pressure and pressure of the entire system temperature, and finally measure the volumes of carbon dioxide gas, formation water, and crude oil with an export metering system. The design pressure of the device is 0-40MPa, and the design temperature is 0-180°C. It is mainly used in the indoor experimental research of various schemes such as supercritical CO 2 miscible flooding or immiscible flooding, continuous gas flooding or water-gas alternate flooding. It can complete the transient measurement of multiple parameters such as relative permeability, saturation and oil displacement efficiency of CO 2 , oil and water three-phase fluid in porous media during the unsteady process of oil displacement. In-depth research on the sweep efficiency and displacement efficiency affected by fingering and channeling phenomena in the process.
附图说明Description of drawings
图1是一种超临界二氧化碳驱油物理模拟装置系统图。Fig. 1 is a system diagram of a supercritical carbon dioxide flooding physical simulation device.
图中:1、CO2气罐,2、储罐,3、冷浴,4、CO2泵,5、蒸馏水容器,6、高压计量泵,7、空气恒温箱,8a、第一中间容器,8b、第二中间容器,8c、第三中间容器,9a、第一模拟岩心装置,9b、第二模拟岩心装置,10a、第一稳压阀,10b、第二稳压阀,11a、第一稳压罐,11b、第二稳压罐,12a、第一手动泵,12b、第二手动泵,13a、第一油水计量管,13b、第二油水计量管,14a、第一气体流量计,14b、第二气体流量计,P、压力表,D、差压变送器,T、热电偶。In the figure: 1. CO2 gas tank, 2. storage tank, 3. cold bath, 4. CO2 pump, 5. distilled water container, 6. high-pressure metering pump, 7. air constant temperature box, 8a, first intermediate container, 8b, second intermediate container, 8c, third intermediate container, 9a, first simulated rock core device, 9b, second simulated rock core device, 10a, first pressure stabilizing valve, 10b, second pressure stabilizing valve, 11a, first Pressure tank, 11b, the second pressure tank, 12a, the first manual pump, 12b, the second manual pump, 13a, the first oil-water metering tube, 13b, the second oil-water metering tube, 14a, the first gas flowmeter , 14b, the second gas flow meter, P, pressure gauge, D, differential pressure transmitter, T, thermocouple.
具体实施方式Detailed ways
图1示出了一种超临界二氧化碳驱油物理模拟装置系统图。它主要包括一个注入系统、模拟岩心装置、温度压力测控系统和出口计量系统;模拟岩心装置采用第一模拟岩心装置9a和第二模拟岩心装置9b并列与注入系统连接,设置在空气恒温箱7中的第一模拟岩心装置9a和第二模拟岩心装置9b各自设有一个出口计量系统。Fig. 1 shows a system diagram of a supercritical carbon dioxide flooding physical simulation device. It mainly includes an injection system, a simulated rock core device, a temperature and pressure measurement and control system, and an outlet metering system; The first simulated
注入系统包含设置在空气恒温箱7中的三个中间容器,由一台高压计量泵6经过滤器吸取蒸馏水箱5中的蒸馏水,向这三个中间容器中的驱活塞的左侧提供高压水产生驱动力,让第三中间容器8c、第二中间容器8b和第一中间容器8a依次向第一模拟岩心装置9a和第二模拟岩心装置9b驱地层水、原油和超临界二氧化碳。第一中间容器8a中的超临界二氧化碳由一台二氧化碳泵4从储罐2中抽取液态二氧化碳经止回阀和转换阀供给;液态二氧化碳是让储存在二氧化碳瓶1中的二氧化碳气体进入设置在冷浴3中的储罐2经冷却后生成的。The injection system includes three intermediate containers arranged in the air
出口计量系统用来测量在模拟岩心装置中使用过的地层水、原油和二氧化碳气体的量。第一模拟岩心装置9a使用的出口计量系统包含一个连接第一稳压阀10a的第一油水计量管13a,第一气体流量计14a通过针阀连接到第一油水计量管13a上。第一稳压阀10a还连接一个第一稳压罐11a,采用一个第一手动泵12a经针阀对第一稳压罐11a的压力进行调节,以满足系统的工作压力。第二模拟岩心装置9b使用的出口计量系统包含一个连接第二稳压阀10b的第二油水计量管13b,第二气体流量计14b通过针阀连接到第二油水计量管13b上。第二稳压阀10b还连接一个第二稳压罐11b,采用一个第二手动泵12b经针阀对第二稳压罐11b的压力进行调节,以满足系统的工作压力。An outlet metering system is used to measure the amount of formation water, crude oil and carbon dioxide gas used in the simulated core unit. The outlet metering system used by the first simulated
温度压力测控系统用来测控整个系统的温度和压力,正如图1中所示设置了热电偶T、差压变送器D和压力表P。The temperature and pressure measurement and control system is used to measure and control the temperature and pressure of the entire system. As shown in Figure 1, a thermocouple T, a differential pressure transmitter D and a pressure gauge P are set.
利用上述超临界二氧化碳驱油物理模拟装置的试验步骤如下:The test steps of utilizing the above-mentioned supercritical carbon dioxide flooding physical simulation device are as follows:
第一步,完成准备工作。根据模拟油藏致密度要求分别选用不同粒径石英砂填充入第一模拟岩心装置9a和第二模拟岩心装置9b压实封盖,完成模拟岩心的制备,同时完成实验介质模拟原油、地层水、CO2气体的准备工作,完成实验流程各部连接、试压等系列工作。The first step is to complete the preparatory work. According to the density requirements of the simulated oil reservoir, quartz sand with different particle sizes is selected to be filled into the first simulated
第二步,将实验流体介质注入中间容器(第一中间容器8a、第二中间容器8b、第三中间容器8c)。首先,让二氧化碳瓶中的二氧化碳气体进入设置在冷浴3中的储罐2,经冷却后转变为液态二氧化碳,由一台二氧化碳泵4将储罐2中抽取的液态二氧化碳打入第一中间容器8a中,通过加热加压达到实验要求的超临界状态;分别将模拟原油和地层水注入第二中间容器8b和第三中间容器8c中。In the second step, the experimental fluid medium is injected into the intermediate containers (the first
第三步,进行驱替实验。通过高压计量泵6向中间容器一端注高压水驱动活塞产生连续稳定驱动力,先将第三中间容器8c中地层水注入抽真空后的第一模拟岩心装置9a和第二模拟岩心装置9b中建立饱和水;浸泡一段时间后,将第二中间容器8b中的模拟原油注入驱替地层水建立饱和油;达到模拟油层要求后,再次将中间容器8c中地层水注入含饱和油的模拟岩心装置9a、9b中进行水驱油实验过程;水驱油过程达到预定效果后,将第一中间容器8a中超临界二氧化碳注入水驱后的第一模拟岩心装置9a和第二模拟岩心装置9b中进行气驱实验,达到预定效果后,停止实验。The third step is to carry out the displacement experiment. Inject high-pressure water into one end of the intermediate container through the high-pressure metering pump 6 to drive the piston to generate a continuous and stable driving force. First, inject the formation water in the third
驱替实验过程中模拟岩心出口压力采用第一稳压阀10a、第二稳压阀10b及其配套系统(包括第一手动泵12a、第二手动泵12b、第一稳压罐11a、第二稳压罐11b)来实现;通过第一油水计量管13a、第二油水计量管13b、第一气体流量计14a、第二气体流量计14b分别计量出口各相体积流量;温控部分分别采用恒温冷浴槽3控制二氧化碳液化温度,空气恒温箱7控制中间容器中实验流体温度;温度、压力、差压分别采用热电偶T、压力表P、差压变送器D来实时采集。During the displacement experiment, the outlet pressure of the core was simulated using the first stabilizing
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102469901A CN101446189B (en) | 2008-12-28 | 2008-12-28 | Supercritical carbon dioxide drive physical analogue device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102469901A CN101446189B (en) | 2008-12-28 | 2008-12-28 | Supercritical carbon dioxide drive physical analogue device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101446189A CN101446189A (en) | 2009-06-03 |
CN101446189B true CN101446189B (en) | 2011-08-10 |
Family
ID=40742044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008102469901A Expired - Fee Related CN101446189B (en) | 2008-12-28 | 2008-12-28 | Supercritical carbon dioxide drive physical analogue device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101446189B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104975828A (en) * | 2015-06-03 | 2015-10-14 | 东北石油大学 | Device capable of realizing miscible-phase additive screening and rock core miscible-phase displacement and manufacturing method |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO337537B1 (en) | 2010-09-29 | 2016-05-02 | Statoil Petroleum As | Methods for introducing carbon dioxide (CO2) into underground geological formations for permanent storage therein. |
CN103048247B (en) * | 2011-10-14 | 2015-08-26 | 中国石油化工股份有限公司 | A kind of CO 2the device and method of oil water interfacial tension Changing Pattern is measured in oil displacement process |
CN103048246B (en) * | 2011-10-14 | 2015-02-18 | 中国石油化工股份有限公司 | Device and method for measuring rock core-formation water-CO2 wettability change |
CN103375155B (en) * | 2012-04-19 | 2018-01-05 | 中国石油化工股份有限公司 | The linear physical simulation system of heavy crude reservoir thermal recovery |
CN102748018B (en) * | 2012-07-23 | 2015-07-08 | 中国石油天然气股份有限公司 | Heavy oil reservoir gas injection huff-puff oil production physical simulation experiment device and method |
CN102817598B (en) * | 2012-08-30 | 2014-11-05 | 中国石油天然气股份有限公司 | Thickened oil dissolved gas drive encrypted exploitation physical simulation experiment device and method |
CN102879306B (en) * | 2012-10-10 | 2014-12-10 | 大连理工大学 | Method for detecting gas-liquid diffusion processes by using magnetic resonance imaging (MRI) technique |
CN102979492B (en) * | 2012-11-30 | 2015-01-07 | 东北石油大学 | Experimental device for producing thin and heavy oil by solvent extraction |
CN103063400B (en) * | 2012-12-19 | 2015-05-06 | 中国科学技术大学 | Device simulating carbon dioxide (CO2) pipeline transport and leakage |
CN103061729B (en) * | 2013-01-08 | 2015-08-26 | 北京科技大学 | A kind of anaerobism simple and easy core flooding test simulation system analogy method |
CN103939091A (en) * | 2013-01-23 | 2014-07-23 | 刘怀珠 | Radial flow displacement physical model system |
CN103161459A (en) * | 2013-02-06 | 2013-06-19 | 中国矿业大学 | Multi-layer overlaid coalbed methane treasure exploitation interlayer interruption mechanism modeling device |
CN105555905B (en) | 2013-04-17 | 2019-07-16 | 斯塔特伊石油公司 | Methods and uses for CO2EOR and storage |
US9815626B2 (en) | 2013-04-17 | 2017-11-14 | Statoil Petroleum As | Method of storing CO2 |
CN103352695B (en) * | 2013-07-10 | 2015-04-08 | 中国石油大学(北京) | Visualization physical simulation device with consideration of interlamination fluid channeling |
CN103954731A (en) * | 2013-08-02 | 2014-07-30 | 西南石油大学 | Device for simulating influence of dry layer on oil displacement efficiency in water injection process |
CN103527176B (en) * | 2013-10-28 | 2016-10-05 | 东北石油大学 | Stereoscopic development three-dimensional experimental device of heavy oil reservoir |
CN103556993B (en) * | 2013-11-07 | 2016-12-07 | 中国石油大学(北京) | Low permeability oil field plane Five-point method pattern carbon dioxide flooding emulation experiment analogy method |
CN104632158B (en) * | 2013-11-13 | 2017-02-08 | 中国石油化工股份有限公司 | Oil well response stage dividing and distinguishing method under carbon dioxide miscible displacement condition |
CN103645302B (en) * | 2013-12-17 | 2015-12-30 | 中国石油大学(北京) | Realize CO 2displacement of reservoir oil dynamic monitoring and inverting dynamic simulation experimental device and method |
CN103758512A (en) * | 2013-12-30 | 2014-04-30 | 中国石油天然气股份有限公司 | Method and device for integrally testing reaction and seepage characteristics in oil reservoir |
CN103940818B (en) * | 2014-02-25 | 2016-07-13 | 中国石油大学(华东) | Apparatus and method for evaluating the stability of supercritical CO2 emulsion |
CN103884628A (en) * | 2014-03-14 | 2014-06-25 | 大连理工大学 | Device and method for measuring diffusion coefficient of carbon dioxide in porous medium by applying CT (computed tomography) |
CN104155405B (en) * | 2014-08-12 | 2015-10-28 | 中国石油大学(北京) | A kind of method and device measuring carbon dioxide-local water effect production precipitation capacity |
CN104318845B (en) * | 2014-10-20 | 2016-04-20 | 中国石油大学(华东) | A kind of apparatus and method simulating profundal zone oil spilling under water |
CN104594886A (en) * | 2014-10-31 | 2015-05-06 | 中国石油天然气股份有限公司 | Simulator of oil-gas reservoir type gas storage |
CN104483449B (en) * | 2014-12-08 | 2016-03-30 | 中国石油大学(华东) | A device and method for measuring the retention rate of carbon dioxide flooding process |
CN104568699B (en) * | 2014-12-29 | 2017-08-11 | 中国石油大学(华东) | The method for measuring supercritical carbon dioxide fracturing fluid leak coefficient |
CN104777057B (en) * | 2015-03-24 | 2017-05-24 | 中国矿业大学 | Supercritical CO2 injection and coalbed methane enhanced displacement simulation test device |
CN104867379B (en) * | 2015-04-07 | 2018-04-27 | 扬州华宝石油仪器有限公司 | A kind of high pressure resistant visual automatic compaction model |
CN105041280B (en) * | 2015-06-03 | 2016-10-05 | 东北石油大学 | A method and device for realizing indoor experiment of carbon dioxide miscible flooding |
CN105004838B (en) * | 2015-07-03 | 2016-11-02 | 中国石油大学(华东) | A kind of supercritical carbon dioxide treatment crude oil equipment and its treatment method |
CN105116107B (en) * | 2015-07-31 | 2017-04-05 | 中国石油天然气股份有限公司 | Identification method for phase state of CO 2 in ultra-low permeability homogeneous core under oil reservoir condition |
CN105134149B (en) * | 2015-08-04 | 2016-06-15 | 东北石油大学 | A kind of change carbon dioxide between injection-production well and drive the apparatus and method of situation |
CN106545322B (en) * | 2015-09-21 | 2019-05-07 | 中国石油天然气股份有限公司 | Squeezing liquid pretreatment method of SAGD shaft |
CN105201467B (en) * | 2015-10-20 | 2018-01-23 | 西南石油大学 | A kind of HTHP bottom water reservoir gas injection cooperates with evaluation experimental device of handling up |
CN105527409B (en) * | 2016-01-07 | 2017-05-10 | 西南石油大学 | A high temperature and high pressure adiabatic oxidation experimental system and method |
CN105651648B (en) * | 2016-03-21 | 2018-11-09 | 中国华能集团清洁能源技术研究院有限公司 | It is a kind of to replace and adsorb analytic simulation test system and method |
CN105784567B (en) * | 2016-04-28 | 2018-08-10 | 中国石油天然气股份有限公司 | Equipment and method for testing relative permeability of rock core |
CN105952424B (en) * | 2016-05-31 | 2018-08-14 | 西安交通大学 | A kind of supercritical water displacement of reservoir oil simulator and method |
US10444218B2 (en) * | 2016-08-09 | 2019-10-15 | Saudi Arabian Oil Company | Multiple function dual core flooding apparatus and methods |
CN106770377B (en) * | 2016-11-23 | 2019-05-07 | 东北石油大学 | Apparatus and method for monitoring residual oil distribution during carbon dioxide displacement of core |
CN106872230A (en) * | 2017-01-19 | 2017-06-20 | 中国地质大学(武汉) | Artificial clastic rock compact rock core and preparation method thereof |
CN208432512U (en) * | 2017-10-20 | 2019-01-25 | 中国石油大学(华东) | A kind of inefficient water circulation evolutionary process decompression test simulation system |
CN108180009A (en) * | 2018-01-05 | 2018-06-19 | 中国石油天然气股份有限公司 | Visual high gas-liquid ratio oil production simulation device |
CN110500067A (en) * | 2018-05-18 | 2019-11-26 | 中国石油天然气股份有限公司 | Sand filling pipe and oil reservoir physical simulation experiment device |
CN109060608A (en) * | 2018-07-09 | 2018-12-21 | 西南石油大学 | The multiple dimensioned water seal mechanism of qi reason visual experimental apparatus of high temperature and pressure and method |
CN109063346B (en) * | 2018-08-09 | 2022-02-01 | 中国石油天然气股份有限公司 | Displacement simulation method and device of pore throat network model considering dynamic cracking |
CN109267976A (en) * | 2018-10-23 | 2019-01-25 | 长江大学 | A kind of CO2Mixed phase drives the outer mixed phase device and method of rock core |
CN111197474B (en) * | 2018-11-19 | 2022-06-03 | 中国石油化工股份有限公司 | Experimental device for simulating change of thickened oil thermal recovery flow field |
CN109943313B (en) * | 2019-04-23 | 2021-03-12 | 中国石油大学(华东) | A kind of supercritical carbon dioxide microemulsion and fly ash particle composite dispersion preparation equipment and method |
CN110415141A (en) * | 2019-08-02 | 2019-11-05 | 中国石油大学(华东) | Method and device for determining injection capacity during water-gas alternating injection process |
CN110671100B (en) * | 2019-10-10 | 2022-08-30 | 东北石油大学 | Method for manufacturing chessboard-like simulator in device for simulating rock heterogeneity |
CN111238988B (en) * | 2020-02-11 | 2022-06-14 | 中国石油大学(华东) | Experimental device and method for measuring efficiency of supercritical carbon dioxide in dense oil core to replace crude oil |
CN111287717A (en) * | 2020-03-30 | 2020-06-16 | 江苏拓创科研仪器有限公司 | Supercritical carbon dioxide oil displacement device |
CN113533442B (en) * | 2020-04-21 | 2024-08-27 | 中国石油天然气股份有限公司 | Supercritical carbon dioxide foam channeling performance evaluation three-dimensional system and method |
CN113790042A (en) * | 2020-05-26 | 2021-12-14 | 中国石油化工股份有限公司 | Experimental system and experimental method for multiple rounds of thermal composite chemical huff and puff |
CN113945498B (en) * | 2020-07-15 | 2024-06-18 | 中国石油化工股份有限公司 | Gas injection throughput physical simulation device and method based on throughput compensation system |
CN115478820A (en) * | 2021-06-16 | 2022-12-16 | 中国石油化工股份有限公司 | Carbon dioxide reservoir pulse type gas injection reservoir oil displacement experimental device and method |
CN113926380B (en) * | 2021-12-16 | 2022-02-18 | 太原理工大学 | Pilot-scale organic rock long-distance multi-stage heating system for supercritical water-oxygen oil-to-hydrogen production |
CN116879122B (en) * | 2023-05-31 | 2024-06-21 | 中国石油大学(北京) | An infinitely scalable modular visual seepage simulation device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5910467A (en) * | 1997-05-23 | 1999-06-08 | Exxon Production Research Company | Solids-stabilized emulsion |
CN2500803Y (en) * | 2001-08-27 | 2002-07-17 | 石油大学(华东) | Visible physics simulation displacement plane model for oil displacement |
CN201031675Y (en) * | 2007-03-30 | 2008-03-05 | 辽河石油勘探局 | Steam CO2 nitrogen linkage-pouring oil production device |
-
2008
- 2008-12-28 CN CN2008102469901A patent/CN101446189B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5910467A (en) * | 1997-05-23 | 1999-06-08 | Exxon Production Research Company | Solids-stabilized emulsion |
CN2500803Y (en) * | 2001-08-27 | 2002-07-17 | 石油大学(华东) | Visible physics simulation displacement plane model for oil displacement |
CN201031675Y (en) * | 2007-03-30 | 2008-03-05 | 辽河石油勘探局 | Steam CO2 nitrogen linkage-pouring oil production device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104975828A (en) * | 2015-06-03 | 2015-10-14 | 东北石油大学 | Device capable of realizing miscible-phase additive screening and rock core miscible-phase displacement and manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
CN101446189A (en) | 2009-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101446189B (en) | Supercritical carbon dioxide drive physical analogue device | |
Abedini et al. | On the CO2 storage potential of cyclic CO2 injection process for enhanced oil recovery | |
CN103216222B (en) | A kind of high-temperature and high-pressure visual device and analogy method simulating microbial oil displacement | |
CN102022107B (en) | Method for establishing physical model capable of predicting waterflooding of fractured anisotropic oil reservoirs | |
CN105156102B (en) | Bottom water reservoir water energy three-dimensional physical simulation device and method | |
CN105388254B (en) | High temperature and high pressure foam fracturing fluid filtration damage test system | |
WO2016078164A1 (en) | Simulation experiment system and simulation method for full process of natural gas hydrate extraction | |
CN106884635A (en) | Low, the extra-low permeability oil reservoirs CO of one kind2Drive the assay method of minimum miscibility pressure | |
CN106437637A (en) | Visualization microscopic experimental device and method for displacing super heavy oil by using high-temperature high-pressure carbon dioxide | |
CN205643096U (en) | Equipment for testing relative permeability of rock core | |
CN106837269A (en) | Low, the extra-low permeability oil reservoirs CO of one kind2Drive nearly miscible pressure area determination method | |
CN108362614A (en) | The device and method of diffusion coefficient during measurement shale oil CO_2 stimulation | |
CN204514769U (en) | A kind of steady state flow method measures supercritical CO 2the device of emulsion three phase permeability | |
CN104568699B (en) | The method for measuring supercritical carbon dioxide fracturing fluid leak coefficient | |
CN103674593B (en) | A kind of device and method for simulating the flood pot test of low permeability reservoir pressure break straight well | |
CN102980828A (en) | Apparatus and method for measuring gas phase saturation degree of single tube core during foam flooding process | |
CN109538176B (en) | Nitrogen composite huff and puff physical simulation experiment device and method for low-permeability reservoir | |
CN105258840B (en) | A method for determining the optimal miscible pressure and miscible area of carbon dioxide between injection and production wells | |
CN201935852U (en) | Selective water plugging simulation device system of oil well | |
CN105784567A (en) | Equipment and method for testing relative permeability of rock core | |
CN108956425A (en) | A kind of device and method measuring extra-viscous oil reservoir initial water permeability | |
CN105784939A (en) | Underground gas storage reservoir simulating experimental device and experimental method | |
CN105134149A (en) | Device and method changing injection and production well carbon dioxide driving status | |
CN102979492B (en) | Experimental device for producing thin and heavy oil by solvent extraction | |
Lin et al. | Effect of N2 impurity on CO2-based cyclic solvent injection process in enhancing heavy oil recovery and CO2 storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110810 Termination date: 20131228 |