CN101443572A - 电流变流体制动及致动装置以及使用该装置的矫形器 - Google Patents

电流变流体制动及致动装置以及使用该装置的矫形器 Download PDF

Info

Publication number
CN101443572A
CN101443572A CN 200580046036 CN200580046036A CN101443572A CN 101443572 A CN101443572 A CN 101443572A CN 200580046036 CN200580046036 CN 200580046036 CN 200580046036 A CN200580046036 A CN 200580046036A CN 101443572 A CN101443572 A CN 101443572A
Authority
CN
China
Prior art keywords
electrode
kafo
actuator
rotatable
axle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200580046036
Other languages
English (en)
Inventor
B·温伯格
J·尼基祖克
C·马夫罗伊迪斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University Boston
Original Assignee
Northeastern University Boston
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University Boston filed Critical Northeastern University Boston
Publication of CN101443572A publication Critical patent/CN101443572A/zh
Pending legal-status Critical Current

Links

Images

Abstract

电流变流体制动或致动装置提供在手动控制或计算机控制下提供可控的阻力,包括或不包括任一旋转方向的主动力矩输出。该制动及致动装置适合在用于诸如膝或肘等关节的矫形器中使用。

Description

电流变流体制动及致动装置以及使用该装置的矫形器
相关申请的交叉引用
本申请要求2004年11月9日提交的美国临时专利申请No.60/626,256以及2004年11月9日提交的美国临时专利申请No.60/626,365的优先权,上述专利申请的内容以引用的方式并入本申请中。
关于联邦政府资助的研究或开发的申明
背景技术
各种类型的致动器和制动器为人公知。举例来说,DC电机可以用作控制输出力矩的致动器。对于某些应用来说这种电机可能难以控制,并且可能庞大而笨重。增大输出力矩通常需要增大电机的尺寸。由于上述原因以及其它原因,在很多用于提供阻力控制或制动的应用场合中DC电机都不是理想的。作为另一个例子,摩擦制动器可以用于阻力控制,但是不能用于提供输出力矩。不利的是,摩擦制动器会发热,容易出现磨损以及可靠性问题,并且可能受到污染物的损坏。磁性制动器为人公知,并且用于阻力控制,但是不能用于提供输出力矩。磁性制动器也发热并难以控制,并且提供“急动”接合。MRF制动器同样不能用于提供输出力矩。另外还容易过度发热,并且可能庞大而笨重。因此,这些公知类型的致动器或者可以控制输出力矩,或者可以调节输入力矩,但是都不能实现这两个功能。
诸如膝或肘等受损关节的康复可以采用各种方法。在一种方法中,康复者外部佩带被动式矫形器或矫正器,以便为关节提供恒定的支撑或阻力。在被动式矫形器中,矫形器所提供的矫正力或偏压力或者是恒定的或者不能实时地变化。这些矫形器应用广泛,其成本相对较低、容易获得以及简单的特点对其应用做出了贡献。
另一类康复装置能够实时地改变阻力或作用力,这种改变通常通过某些形式的电子控制来实现。这些装置中的一些可以佩带并且可以看作主动式矫形器。举例来说,一种这样的装置能够锁定膝部的位置,以避免过度伸展,并且限制运动范围。另一种装置通过使用致动器而能够提高或有助于活动性。通常,这些装置仅限于对自然步态进行再训练以及增强肌肉。这些装置通常显得庞大而不方便,这妨碍了其应用,并且由于包括主动元件而增大了总体尺寸、成本和重量。
最有效的康复工具是诸如等动力(isokinetic)和CPM机等康复机。这些机械通常用于物理治疗、运动训练或研究机构。这些机械提供较高的阻力,有时候提供较高的辅助力,同时为几乎任何康复者提供康复区域的独特适应性。其强大的能力增大了其作为康复工具的发展。
发明内容
本发明涉及将电流变流体(electro-rheological fluid)的控制功能与紧凑型制动器和/或致动器的动力能力相结合的电流变流体(ERF)装置。在本文中,术语“动力”表示与运动相关或与导致运动相关的特性。在手动控制或计算机控制下,制动或阻尼装置能够控制任何旋转方向上的阻力。ERF致动装置能够启动力输出。
本发明还涉及能够由动力装置(motive device)控制的便携式矫形器(orthotic device),该动力装置优选地利用上述ERF制动/阻尼器或致动器来提供可变的阻力和/或致动功能。在一个实施例中,根据本发明的ERF制动/阻尼装置紧凑而轻质,具有较强的调节力矩的能力,完全便携并可佩带,带有机载传感器、功率和控制电路以及用于闭环计算机控制的实时能力,以便在使用中优化康复训练。在另一实施例中,根据本发明的矫形器包括作为致动特征的致动器。优选的是,该矫正器展示出阻力装置的全部特征以及如下另外的能力:使膝部进行力运动,执行肌肉增强,并且提供力反馈。
因此,在一方面,本发明涉及一种用于产生力矩或力输出以及为力矩或力输入提供阻力的电流变流体致动器,该致动器包括:外壳,其包括绝缘壳体,其中输入/输出轴可旋转地安装在壳体中;多个可旋转部件,它们呈弓形地设置在壳体内并且与输入/输出轴连接;多个可旋转电极,它们形成为多个圆柱段,每个电极安装在相关的可旋转部件上,用于与可旋转部件一起旋转;圆柱形接地电极,其固定在壳体上并且与可旋转电极同心,接地电极与可旋转电极之间设有间隙;电流变流体,其设置在所述间隙内;以及多个线性致动元件,它们设置在相关的可旋转部件内,用于驱动相关可旋转部件旋转。优选的是,线性致动元件顺序地操作,以提供可旋转部件的步进式旋转,并且还与可旋转电极相配合地操作,其中通过激发电流变流体而锁定一部分电极的旋转,允许一个可旋转电极旋转,以提供可旋转部件的步进式旋转。
此外,优选的是,电流变流体可被激活,以便经由可旋转电极上的剪切应力为轴上的输入力矩提供阻力,并且致动器还包括多个滚动触头,其可操作而给可旋转电极、接地电极以及线性致动元件供电,其中滚动触头在一个从输入/输出轴径向延伸的轴上排列,并且滚动触头可在可旋转部件表面上的触头上滚动。更优选的是,致动器还包括棘轮机构,其可操作以控制线性致动元件的旋转方向,其中,棘轮机构包括:棘轮,其安装在输入/输出轴上,棘轮具有两排相反的齿;以及棘齿凸轮,其可操作以在顺时针模式中啮合一排齿,并且在逆时针模式中啮合另一排齿,或者棘轮机构可以在自由旋转模式中操作。棘齿凸轮还可以通过弹性轴安装为可进行枢转运动,该弹性轴安装在凸轮从动元件中,以导致棘齿凸轮枢转,凸轮从动元件可操作而沿外部元件所致动的正弦路线移动,以调节旋转方向。线性致动元件可以包括电磁体、螺线管、压电致动器和/或电活性聚合物。
在另一方面,本发明涉及用于为力矩或力输入提供阻力的电流变流体制动装置,该制动装置包括:外壳,其包括绝缘壳体,其中轴可旋转地安装在壳体中;一个或多个圆柱形可旋转电极,其安装在轴上,用于与轴一起旋转;一个或多个圆柱形接地电极,其固定在壳体上并且与可旋转电极相对并同心地设置,接地电极与可旋转电极之间设有间隙;以及电流变流体,其设置在所述间隙内。优选的是,圆柱形可旋转电极由单个一体的部件构成,圆柱形接地电极由单个一体的部件构成。
在另一方面,本发明涉及用于为力矩或力输入提供阻力的电流变流体制动装置,该制动装置包括:外壳,其包括绝缘壳体,其中轴可旋转地安装在壳体中;一个或多个可旋转电极,它们安装在轴上,用于与轴一起旋转;一个或多个接地电极,其固定在壳体上并且与可旋转电极相对地设置,接地电极与可旋转电极之间设有间隙,可旋转电极包括圆形板,这些圆形板在内周上安装在旋转中心座上,该旋转中心座安装在轴上,所述接地电极包括圆形板,这些圆形板在外周固定在嵌入件上,可旋转电极和接地电极交错并可以作为整体插入壳体中;以及电流变流体,其设置在接地电极与可旋转电极之间的间隙内。优选的是,制动装置还包括对准机构,该对准机构可操作以调节可旋转电极与接地电极之间的间隙大小,其中,所述对准机构是可从壳体外部触及的。更优选的是,可旋转电极通过锁固定在旋转中心座上,该锁配合在可旋转电极上的键槽中。
在另一方面,本发明涉及用于关节的矫形器,包括:框架,其可拆除地固定在使用者的肢体上,该框架包括可以设置在肢体关节处的铰链组件;电流变致动器,其如本文所述;以及齿轮组件,其安装在电流变流体制动器的轴上,以将输入/输出力或力矩与铰链组件连接。作为选择,根据本发明的矫形器可以包括本文所述的任一电流变流体制动装置。优选的是,根据本发明的矫形器包括护膝,并且框架构造成安装在腿上,或者作为选择,该矫形器包括护肘,并且框架构造成安装在臂上。更优选的是,该矫形器包括传感系统,该传感系统包括可操作以测量关节的角度、速度和加速度的传感组件,其中,传感组件可操作以提供装置的闭环控制。传感组件还可操作以测量轴上的力矩以提供装置的闭环控制。根据本发明的任一矫形器还可以包括设置在关节相对侧的第二电流变流体装置。优选的矫形器还包括可操作以控制电流变流体装置的控制组件,其中该控制组件可操作以提供远程通信。更优选的是,矫形器可以由电池电源提供的电力下工作,该电池电源包括一个或多个电池,可以设置在矫形器内部或矫形器外部。
在更广泛的一方面,本发明涉及用于关节的矫形器,包括:框架,其可拆除地固定在使用者的肢体上,该框架包括可以设置在肢体关节处的铰链组件;动力装置,其在铰链组件处安装在框架上,并且可操作以产生输出力或力矩或者阻止输入力或力矩;以及齿轮组件,其安装在动力装置的轴上,以将输入/输出力或力矩与铰链组件连接。动力装置可以包括电流变流体制动装置和/或电流变流体致动器。在一个具体实施例中,动力装置是选自如下组的制动和/或致动装置:DC电机、磁流变流体装置、摩擦装置、电动气动装置、电磁装置、电滞装置、涡电流装置、气动装置、液压装置、音圈装置、电活性聚合物装置、超声波电机以及压电装置。
附图说明
结合附图阅读下面的详细说明将更全面地理解本发明,其中:
图1是本发明的制动或阻尼装置的第一实施例的剖视图;
图2是图1所示制动或阻尼装置的局部视图;
图3是图1所示固定电极的平面图;
图4是图1所示旋转电极的平面图;
图5是本发明的制动或阻尼装置的另一实施例的等轴测视图;
图6是图5所示制动或阻尼装置的侧视图;
图7是本发明的阻力和力矩生成致动器的实施例的部分切除等轴测视图;
图8是图7所示致动器的电磁体的等轴测视图;
图9示意性示出在力矩生成模式中图7所示致动器的操作;
图10是图7所示致动器的底部等轴测视图;
图11是示出图7所示致动器的棘齿凸轮和棘轮的一部分的局部视图;
图12是示出图7所示致动器的方向控制机构的局部视图;
图13A、图13B和图13C示出图12所示方向控制机构的各个位置;
图14是图7所示致动器的等轴测视图;
图15是图7所示致动器的局部剖视图;
图16是图7所示致动器的滚动触头的局部视图;
图17示出单个滚动触头;
图18A是图7所示致动器的壳体的等轴测视图;
图18B是图7所示致动器的应力环的等轴测视图;
图19是包含有本发明的制动或阻尼装置和/或致动装置的腿用矫形器的等轴测视图;
图20是图19所示矫形器的等轴测视图;
图21A是图19所示矫形器的等轴测视图,其中移去制动或阻尼装置或致动装置;
图21B是图19所示矫形器的齿轮箱和铰链组件的局部等轴测视图;
图22是用于图19所示矫形器中的齿轮组件的等轴测视图;
图23是图22所示齿轮组件的顶视图;
图24是图22所示齿轮组件的底视图;
图25示出包含有本发明的两个制动或阻尼装置或两个致动装置的腿用矫形器的另一实施例;
图26A是图25所示矫形器的铰链组件的局部视图;
图26B是图26A所示铰链组件的示意图;
图27是用于本发明的矫形器的控制系统的框图;以及
图28是包含有本发明的制动或阻尼装置或致动装置的肘用矫形器的等轴测视图。
具体实施方式
在存在电场的情况下,电流变流体会经历诸如粘度等流变特性上的变化。采用诸如油等绝缘基体流体中尺寸在大约0.01至0.1μm的颗粒的悬浮液制造这种流体。颗粒的体积比率通常在20%至60%之间。电流变效应(有时候称为温斯洛效应)被认为是由于电流变流体(ERF)中流体与颗粒的介电常数差异而产生的。在存在电场的情况下,由于感应偶极子矩,颗粒沿着场线形成链。该感应结构改变ERF的粘度、屈服应力以及其它特性,从而允许ERF的稠度在毫秒级的响应时间内从液体的稠度改变为诸如凝胶体等类似粘弹性体的稠度。ERF可以施加很高的电控制的阻力,而其尺寸(重量和几何参数)可以很小。ERF没有研磨性、无毒或者无污染,因此满足健康和安全要求。
在电场的影响下,ERF的状态从牛顿流体改变为非牛顿宾汉塑性流体。作为宾汉塑性流体,仅仅在超出所需的最小屈服应力之后,ERF才展示出与牛顿流体相类似的应力与应变率之间的线性关系。在该屈服点之前,其行为类似固体。在应力高于该最小屈服应力的情况下,流体流动,剪切应力与剪切应变率成比例地继续增大。
τ = τ y + μ γ . - - - ( 1 )
式中,τ是剪切应力,τy是屈服应力,μ是动态粘度,γ是剪切应变。剪切应变上面的点表示其时间微分,即剪切率。这称为宾汉模型。
在足够高的电场中,流体的动态粘度变为负值。该现象可以如下解释,即,假定剪切率越高,形成的结合就越少或越弱,从而得到更小的总屈服应力和负值动态粘度效应。
屈服应力τy和动态粘度μ是影响目前基于ERF的制动或致动装置或矫形器的设计的两个重要参数。动态粘度μ通常由基体流体确定,并对电场有一定的依赖性,当利用宾汉模型时通常忽略该参数。电场感应的屈服应力τy通常取决于电场强度,并且被认为独立于剪切率。对于这种依赖性,已经得到一些理论模型,但是没有哪种模型能够准确地反映这些关系。实际经验表明,可以假定屈服应力随着电场强度而二次增大。
对于屈服应力有两个重要值:静态屈服应力τy,s和动态屈服应力τy,d。静态屈服应力定义为激发流动所需的应力值,即,从固态变为液态所需的应力。动态屈服应力是在零应变率状态中从液态变为固态所需的应力值。对于不同的流体而言,哪一个值更大是彼此不同的。大多数情况下,静态屈服应力大于动态屈服应力。这一称为“黏着”的现象高度取决于颗粒的尺寸和形状。
对于ERF来说需要知道的另一个重要参数是电流强度J,其定义为每单位电极面积上的电流。需要该参数评估基于ERF的装置的功耗。经过ERF材料的电流的测量值被认为是颗粒之间的电荷泄漏的结果。
ERF特性随着温度而变化,温度对于基于ERF的装置的性能可以具有重大影响。优选的是,ERF应该在较大的温度范围内显示出恒定的特性。没有统一的模型来描述ERF的参数对温度的依赖性。对于不同的流体来说,这种温度依赖性也不相同。对于ERF来说,最大的温度问题来自于随着温度升高而导致的电流强度的大幅增加。这不仅会增大功耗,而且还增大对于ERF装置的操作者的担忧。
适合于本发明的一种ERF是Smart Technology Ltd.公司制造的LID 3354S。该ERF由硅酮/氟碳润滑剂基油中体积百分比为35%的聚合物颗粒构成。该ERF的密度为1.46×103kg/m3,在30℃温度下粘度为110mPa·sec,沸点高于200℃,闪点高于150℃,凝固点低于-20℃。该ERF在水中不可溶。
在本发明的第一方面中,提供了一种制动或阻尼装置,其最佳地利用ERF的特性来施加阻力矩或阻力。这种装置能够减缓或阻止运动或动作。(为了简单起见,在本文中将该装置称为制动装置。)一个或多个旋转电极与一个或多个固定电极相交替地布置。这些电极由填充有ERF薄层的间隙隔开。在间隙上施加的电场改变流体的特性。更具体地说,使流体的屈服应力增大。当旋转电极运动时,更高的屈服应力对应于电极表面上增大的剪切应力。电场的强度与电极之间的间隙宽度以及电压成比例地变化:
E=V/g                                          (2)
式中,E是电场,V是电压,g是电极之间的间隙宽度。随着电场增强,流体的屈服应力增大,并且剪切应力增大。电极表面上的力(剪切力)与剪切应力成比例:
F=τ·A                                          (3)
式中,F是剪切力,τ是剪切应力,A是电极表面的面积。该剪切力可以或者线性地或者旋转地用于阻力控制,这取决于装置的构造。利用上述宾汉模型以及电极板的半径r,将等式1和3相结合并且乘以电极半径r可以得到ERF产生的阻力矩:
T = ( τ y + μ γ . ) Ar - - - ( 4 )
更特别地参照图1至图4所示的实施例,两组导电电极板14、16在方向上交替,一组电极板14刚性地安装在外壳或壳体18上以阻止任何运动,而另一组电极板16安装在旋转的输入轴20上。这些交替的电极板用作正电极和负电极,其产生电场以激发填充电极板之间间隙22的ERF。该电极组件置于绝缘外壳或壳体中,外壳中填充有ER F24,由盖组件26封闭并且例如采用密封件28进行密封以防止ERF泄漏。
固定电极板14刚性地安装(接地)到装置的壳体上。固定电极板14由诸如铝等轻质导电材料构成。围绕电极板边缘间隔开的小突片30与滑入壳体中的嵌入件32相配合,从而将电极板牢固地保持在壳体内的适当位置中。(另外参见图3。)旋转电极板16安装在旋转中心座34上。两组电极板的边缘都呈圆形,以使得导致电弧的“避雷针效应”降至最低。
旋转中心座34由诸如复合塑料等任何合适的轻质非导电材料构成,其支撑旋转电极板。中心座可以为中空的以减轻装置的重量。输入轴20也安装到旋转中心座上。旋转中心座还提供用于通过对准机构36调节电极板对准状态的平台。
由于间隙尺寸对于装置的正常工作比较关键,因此对准机构36使得能够调节电极板之间的距离。举例来说,位于输入轴20一端的固定螺钉40平衡弹簧38施加给旋转中心座34顶部的力。调节该固定螺钉可以使旋转中心座和旋转电极偏移,从而使它们在固定电极之间适当地位于中心。可以在外部进行调节的这一对准机构降低了在组装过程中加垫片的需要,因为在组装过程中加垫片是耗时的过程,并且需要拆卸装置来进行调节。这样,外部对准机构使得能够在组装之后快速而准确地对准电极,并且还允许在采用流体填充单元之后进行调节。
移动电极16采用卡槽锁系统安装在旋转中心座34中,在该卡槽锁系统中,板状锁42配合在电极上的键槽43中,这一点如图2和图4中最佳地示出。该安装方法将电极板锁在适当位置中并且在电极板安装槽上提供刚性连接,以至于当施加力矩时旋转中心座保持强度和刚度。在组装过程中,可以将移动电极安装在中心座34上,并且使其与安装在嵌入件32上的固定电极交错。这些元件可以作为整体容易地插入壳体中。
为了给旋转电极供电,设置有旋转触头。在图示实施例中,设置有刷子—换向器机构或衬套—换向器机构。换向器44为合适的轴承或衬套,其安装在旋转中心座34上,并且换向器44被偏压为与旋转的输入轴20接触。该换向器构造使用导电银脂稳定通过触头的电阻。带有激发信号的刷子经由弹簧保持与换向器接触。
在工作中,激发粘性流体25,从而在旋转的输入轴20上产生阻力矩。使通过粘性流体运动的表面积最大化将增大从制动装置输出的力矩或力,因此优选使用多个平行的旋转电极板。这使得能够将剪切表面积最大化,同时保持制动装置具有较小的总体积。
制动装置的性能与三个因素直接相关。这三个因素包括制动装置的几何形状、发送到电极的输入电压以及ERF自身的特性。致动模型的几何形状因素是平板电极的全部参数。这些参数包括电极板的内径(ri)、电极板的外径(ro)、电极板的数量以及电极板之间的间隙宽度(d)。使用这些变量以及特定流体特性的平板制动装置的力矩输出等式为:
T = 4 πN [ ( r o 3 - r i 3 3 ) τ y + μ ( r o 4 - r i 4 4 d ) ω ] - - - ( 5 )
式中,N是移动电极板的数量,τy是流体的屈服应力,μ是流体的粘度,ω是电极板的角速度。每种ERF都由流体基体中悬浮颗粒的不同组合物构成,因此具有自己独特的行为和特性。因此,各ERF具有自己的行为与特性之间的特征关系,并且必须知道这种关系,以便于获得制动装置的完整而准确的模型。在对ERF LID3354S进行测试并且确定其特性(如上所述)之后,使用该流体的制动装置的最终模型等式为:
T = 4 πN [ ( r o 3 - r i 3 3 ) ( . 179 E 2 + . 0253 E + τ f ) + μ 0 ( r o 4 - r i 4 4 d ) ω ] - - - ( 6 )
式中,τf是各特定制动装置所特有的无场摩擦屈服应力项,μ0是流体的动态粘度,并且等于187cP,E是由下面关系决定的电场:
Figure A200580046036D00213
可控制的ERF制动装置于是用作这样的制动或阻尼装置,其使得能够准确地调节阻力矩,同时提供一致而稳定的工作状态。该装置特别适合于机械系统的控制。该装置还可以用作安全装置。
该装置提供优于现有装置的几个优势。除了容易更换的电触头和主密封件之外,该装置没有内部磨损。可以准确构建ERF的行为,并因此可以实现准确的控制。由于利用电流非常低的高压激发ERF,因此功耗非常低。电极具有双重功能:利用流体应力,以及产生电场。这使得能够获得紧凑而轻质的设计。装置的阻力强度与电极的尺寸和数量成比例,因此对于各种应用场合具有非常强的适应性。
在图5和图6中示出ERF制动装置的另一实施例。在该实施例中,一个或多个固定电极60和一个或多个旋转电极62构造成交替的同心圆柱体。举例来说,圆柱形的旋转电极同心地置于两个圆柱形的固定电极之间。这些圆柱形的电极仅仅由填充有ERF的间隙63隔开。如上所述,在间隙上施加电场将改变ERF的特性。为了使通过粘性流体运动的表面积最大化,以便增大输出的力矩或力,优选使用多个同心的圆柱形旋转电极。这使得能够将剪切表面积最大化,同时保持阻力元件具有较小的总体积。
固定电极60以任何合适的方式固定在密封的壳体64内。旋转电极62通过延伸板部分70固定在输入轴68上。固定电极可以形成为单独一体的或整体的部件。同样,旋转电极可以形成为单独一体的或整体的部件。另外设置有合适的轴承72和密封件74。利用通电的衬套或轴承66给装置供电。
该实施例的有利之处在于,更大表面积的电极位于径向距离输入轴更远的位置,这会增大阻力矩。
在本发明的另一方面中,将ERF制动装置与诸如电磁、气动或电化学致动器相结合,以便提供能够阻止和施加力矩或力的混合致动装置。
参照图7至图18B,固定电极102安装在外壳或壳体104上,特别是如图18A所示,而移动电极106安装为经由可旋转部件或应力环110与输入/输出轴108一起旋转。如下面进一步所述,这些电极设置在可以独立致动的圆柱体弓形段(弧段)中(在这里所述的实施例中,有三个弓形段)。电极由轻质的导电材料构成。所有电极的边缘优选呈圆形,以减小边缘的电弧效应。固定电极与移动电极之间的间隙112填充有ERF。该装置按照与上面关于同心圆柱形电极所述相似的方式作为制动装置起作用。固定电极与移动电极之间的激发ERF的间隙是关键的,并且在1.0至1.5mm的范围内。在致动器的其它部分中,间隙增大以减小由于零场流体剪切而产生的不期望的力。
另外,在装置内的弓形段中设置多个可以独立致动的线性致动器。在图示实施例中,设置有三个电磁致动器114。图8示出一个电磁致动器。各电磁致动器包括连接在一起的两个磁体116。芯体在中间部分118中是隔开的,并且绕组方向相反。该构造使各电磁组件在各端部120、122具有类似的磁极。各电磁体以任何合适的方式固定在相关的弓形应力环110中,相关的一个移动电极106也安装在相关的弓形应力环110上。
壳体104容纳全部带电元件。壳体104为绝缘体,并且提供内部机构工作所依靠的刚性结构。可以提供任何合适的特征103用于进行安装或者与应用结构诸如矫形器(下面描述)的框架等相接合。主密封件124是用于防止ERF泄漏并且防止污染物进入的轴密封件。固定电极102用作安装在应力环110上的全部三个电极的共用高压接地。
在工作中,通过将线性致动器安装在可以独立旋转的部件即应力环110上,并且采用ERF顺序地锁定和解开应力环110,从而将致动器的线性动作转变为离散的旋转运动。作为例子,各致动步骤大约为1至2mm(旋转0.5°至2°),并且以高达60次每秒的频率进行致动。该装置的工作具有较高的功率密度需求和较低的能量需求。
图9示出详细说明内部工作顺序的示意图。上面一排图示出一个操作周期的开始,下面一排图示出一个操作周期的结束。各应力环110′、110″、110″′包括独立的线性致动器、电磁体。外环代表ERF旋转电极106′、106″、106″′。中心圆126示意性地代表将应力环的运动与输入/输出轴108连接的棘轮机构。下面将进一步描述该棘轮机构。中心圆上的白点示意性地示出棘轮机构的运动,以及输入/输出轴的运动。
在操作周期1中,在步骤1a中,利用激发的ERF将应力环110′、110″锁定在壳体上。应力环110″′是驱动输入/输出轴的活动环。应力环110′与110″′的电磁体之间的相反极性驱动装置前进一步,如步骤1b所示。在步骤2a中,将应力环110′和110″′锁定在壳体上。使应力环110″′中电磁体的极性变为相反,从而朝向应力环110″′的电磁体驱动活动环110″的电磁体,如步骤2b所示。以这种方式继续动作。
如上所述,在三个独立的应力环上顺序发生致动。这一顺序的动作利用棘轮机构传递到输出轴上。在力矩生成模式中,该棘轮机构能够在使用中朝一个方向渐进;在阻力模式中,该棘轮机构还能够锁定全部应力环,因此输入力矩均匀地分配到全部三个应力环上。
参照图7和图10至图14,棘轮132固定在轴108上。棘轮具有轮齿相反的上排齿136和下排齿138,这些齿使得可以朝一个方向旋转同时锁定朝相反方向的旋转。至少一个棘齿凸轮134与各应力环相关联。各棘齿凸轮具有两个锁定面,其中上锁定面142用于锁在棘轮的上排齿上,下锁定面144用于锁在棘轮的下排齿上。棘齿凸轮可以在允许朝一个方向运动的一个位置与允许朝相反方向运动的另一位置之间枢转。棘齿凸轮还可以位于允许轴自由旋转的非啮合中间位置。
在生成主动力矩的操作中,处于运动中的应力环的棘齿凸轮134锁定在棘轮132上,从而棘齿凸轮被迫旋转。其它的棘齿凸轮(利用ERF耦合与壳体接地的另外两个应力环)朝向无阻力地允许该旋转的方向。为了增大棘轮机构的精度,使各应力环中的两个棘齿凸轮偏移1/2轮齿。这可以有效地使关于棘轮的精度加倍。
各棘齿凸轮134安装在弹性杆146上,该弹性杆穿过凸轮从动元件152中限定凸轮表面148的开口延伸。当凸轮从动元件向上或向下移动时,弹性杆按照导致棘齿凸轮枢转的方式沿着凸轮表面移动。凸轮从动元件由诸如
Figure A200580046036D00251
或类似材料等非黏着材料形成,以便于进行平滑的滑动动作。图中显示为一对支腿的方向滑块154自凸轮从动元件延伸,直至与具有两个正弦表面158、162的正弦表面组件156接触,以至于凸轮从动元件可以上下移动。一个表面158固定在壳体上。另一个两自由度(DOF)的正弦表面162是可旋转的,当该表面运动时会抬升滑块154,如图13A至图13C所示。弹簧164抵消方向滑块的向上的力。通过小齿轮166和内齿轮168提供对正弦表面组件的控制。
可以在计算机的控制下对小齿轮进行自动驱动,或者可以通过外部把手172对小齿轮进行手动驱动。滑块控制系统对力矩的较低要求有助于应用诸如超声波电机、伺服电机、DC电机等轻质、紧凑的装置。作为选择,如果不需要进行自动化的方向控制,可以用简单的把手代替致动器。在该情况下,凹陷部可以与方向控制系统的内部定位装置通信。
电气元件使用用于各应力环的两个独立通路和一个接地通路。一个通路是用于(电极106的)高压控制,一个通路是用于各应力环的(电磁体114的)低压控制,最后一个是用于低压接地。参照图7、图15和图16,一组环形触头182位于应力环上与应力环一起运动。对应的一组环形触头184固定在壳体上。当只有一组滚动触头(下面将讨论)时,这些环形触头通过柔性弹簧或带状导体(未示出)在应力环之间延伸。参照图15和图16所示的实施例,触头182a是接地的。触头182b、182c和182d经由例如穿过应力环的导线或其它导体(未示出)分别与各应力环中的三个电磁体相连。触头182e、182f和182g也经由例如穿过应力环的导线或其它导体(未示出)与高压电极106相连。
径向滚动触头系统用于将动力从固定触头传递到运动触头。在各固定触头和各运动触头之间设置导电辊186,当应力环运动时,导电辊沿着各环形触头移动。导电辊设置在径向向外延伸的轴188上。该系统在紧凑的空间内提供多个触头,而导电通路从旋转轴线径向延伸。在该设计中包含有单组辊,但是可以使用多组辊来满足更大的电流需求。注意到,当滑移所产生的电气噪声成为问题时,可以调节各轨道的厚度。另外设置间隔件190以填充壳体内的空间,从而使需要的ERF数量最小化。
滚动/旋转触头186由薄的导电外层192、弹性中间层194以及用于实现低摩擦旋转的硬衬套196构成。参见图17,薄的外层变形以形成更大的接触区域。旋转触头围绕中心致动器轴线旋转,同时围绕自己的轴线旋转。弹性内部还允许在应力环之间轻松地转移。
该装置具有五个工作模式:两个旋转阻尼/制动模式(每个方向一个模式)、两个致动模式(每个方向一个模式)、以及无咬合/自由旋转模式,在无咬合/自由旋转模式中,该装置对于输入只有轻微的影响(只有棘轮的动量)。对于安全性和工业应用来说,这一点是重要的,因为这使得不需要另外的离合器来使装置分离。
如上所述,应力环容纳线性致动器/磁体,支撑电极,并且容纳棘轮系统和方向滑块。参见图18B,应力环还包括填充有诸如可压缩闭式泡沫的非反应性弹性材料的压力释放腔198。这些压力释放腔允许ERF由于温度变化而膨胀,吸收通过流体传播的能量波以减缓振动,并且有助于稳定因为快速移动内部元件而产生的内部压差。可以在径向排列的各应力环的端部形成用于减缓应力环运动的振动和冲击的减震沟槽202(参见图18B)。应力环可以构造成容纳几种类型的线性致动器,包括压电堆、螺线管、EAP致动器以及图示的带芯电磁体。
取决于应用场合,任何合适的力矩增大/降低传动装置都可以与输入/输出轴108连接。可以将任何齿轮组合添加到致动器中,以平衡致动器的输出、阻力矩和速度与各种应用需求。可以在整个装置中使用标准薄壁轴承208以确保无摩擦的可靠操作。
为了控制振动,可以包含阻尼配重(未示出)。该阻尼配重与输入/输出轴连接,并且沿着应力环运动的相反方向运动,以抵消应力环的旋转惯性力。
在本发明中可以使用各种类型的内部致动器。在上述实施例中,设置有电磁体。电磁体是利用磁动力(MMF)的由电流控制的元件,该磁动力由流过围绕磁活性芯体的多圈导线的电流产生。作为选择,可以使用螺线管致动器。螺线管为包括电磁体和可移动软铁芯体(插棒)的独立电磁线性致动器。该流体致动器可以利用插棒的力和位移。在另外的可选实施例中,压电致动器利用因为施加电压而变形的压电材料。利用连续的多个材料层可以产生可用的应变量。在另外的可选实施例中,电活性聚合物(EAP)是在电场中改变形状的材料。这种材料可以以片材或带材的形式构成。
作为致动器,该装置易于控制,紧凑而轻质。该装置的效率较高并且其总功耗较低。该装置还能够以可预测的方式进行很好地缩放。作为阻力控制装置、阻尼器或制动器,该装置以较低的功耗工作。该装置在ERF元件方面基本上没有磨损。输出力矩和阻力矩也易于调节。
本发明的ERF制动及致动装置特别可以用作矫形器的制动及致动器。矫形器或矫正器为外部佩带装置,其通常在诸如膝或肘等关节上对身体施加力。这些力用于支撑、控制、修正或使身体上佩带有该装置的部位从各种问题中恢复。图19至图21A示出利用本发明的ERF制动或致动装置312的护膝形式的矫形器。该矫形器包括可以安装在肢体上并且铰接在膝部两侧的支撑架314。ERF制动或致动装置在一侧或两侧安装在铰链组件316上。该基于ERF的装置可以仅仅是阻力元件,或者作为选择,还可以提供力矩生成功能,这取决于期望的应用场合。与各ERF制动或致动装置相关联的齿轮箱318提供ERF制动或致动装置312与铰链316之间的接合。ERF制动或致动装置可以为模组化的,以至于仅仅通过更换制动或致动装置而使矫形器可以在纯阻力构造与包含力矩生成功能的平台之间变换。
支撑架314包括通过铰链组件316连接的上支撑架322和下支撑架324。铰链组件例如可以包括:可旋转元件317,其安装在上支撑架上;以及可旋转元件319,其安装在下支撑架上,而可旋转元件317与319经由元件321连接在一起。参见图21B,各支撑架可以安装在肢体上,一个在关节上,一个在关节下。例如,支撑架可以由诸如铝等金属或高强度塑料或诸如碳纤维复合材料等复合材料构成。支撑架可以以避免支撑架在肢体上移动的任何合适的方式安装在肢体上。举例来说,缠绕肢体的带326可以包括钩环扣件,并且可以衬有泡沫,以顺应患者的肢体。上支撑架与下支撑架之间的铰链组件优选在矫正器的两侧是相同的。这使得能够在左腿或右腿上使用相同的矫形器。力从佩带者经由带和支撑架传递,并且在铰链组件处产生力矩。
齿轮箱318传递并增大制动或致动装置的输出力矩。ERF制动或致动装置的输入/输出轴330与齿轮箱内的齿轮组件332连接。在图示实施例中,利用铰链组件316中包含的行星齿轮系统增大所产生的力矩。参见图22至图24,在一个示例性实施例中,力矩以6.2∶1的比例增大。轴330经由一对键槽336与小齿轮334相连。小齿轮与三个行星齿轮338啮合,这些行星齿轮被固定在接地环或框架342上的环形齿轮340包围。接地环安装在铰链组件316上,从而与铰链组件316一起旋转。齿轮箱包括合适的外壳。齿轮箱还用作制动或致动装置的支座并且用作铰链稳定器。
齿轮箱系统还用作传感系统的平台。优选地在该装置中使用三个传感器或传感组件。第一传感组件测量膝部的角度、速度和加速度,并且可以用于ERF制动或致动装置的闭环控制。可以使用诸如标准旋转绝对式光学编码器或霍尔效应传感器等光学编码器352。第二传感组件是用于测量患者所产生的力矩的力矩传感器,并且也可以用于ERF制动或致动装置的闭环控制。在图示实施例中,在环形齿轮340的延伸部分356与接地环342之间朝相反方向设置有两个微型压缩传感器354,用于在弯曲和伸展状态中经由力矩臂和力测量力矩。当力矩供给到铰链时,取决于运动的方向,环形齿轮的延伸部分推压在一个传感器上。将该力的测量值与公知的尺寸值(从轴到传感器的距离)相结合来计算力矩。作为选择,力传感器可以包括安装在支撑架上的应变计,该应变计用于测量施加在看作简单梁的下支撑架上的应变。随后可以计算力矩。作为选择,可以在铰链关节中包含力矩传感器,以直接测量所施加的力矩。在另外的可选实施例中,压强传感器可以安装在带上,并且可以根据给定的面积计算力和力矩。
第三传感组件(未示出)是用于监视脚与地面之间的相互作用的力传感电阻器阵列。该阵列可以结合在踝—脚附件中,该踝—脚附件可以增加到受伤患者的护膝上以便于如铰接的踝—脚矫形器中那样提供内外侧稳定性。在健康的患者中,该阵列可以位于患者的鞋上所佩带的鞋垫中。该阵列使得能够跟踪压力中心的前后运动,因此能够识别步态周期的不同阶段。该能力使得能够对膝部矫形器实施控制策略。
在另一实施例中,可以使用多中心铰链机构362。参见图26A和图26B,该铰链机构包括互啮合的上、下椭圆齿轮。椭圆齿轮产生偏心运动,该偏心运动使其跟随患者膝部的自然运动。ERF制动或致动装置364的输入/输出轴安装在一个齿轮上。
矫形器上的电子元件包含从传感器获取的数据、计算机逻辑以及ERF制动或致动装置的致动信号。以任何合适的方式,例如通过容纳在小型手持装置中的电池给这些电子元件供电。闪存可以用于存储操作软件并且记录患者的数据。可以实施诸如经由WI-FI的无线通信,从而允许不受约束地使用该装置。例如通过提供关节角度和力矩的实时显示,可以包括视觉输出以便于使用该装置。
图27示出电子元件的示意图。无线通信连接使得能够将来自装置的数据自由地连接。另外还允许对装置上的控制器进行动态编程。该系统能够以独立的模式工作,也能够以连接到个人计算机的数据方式工作。无线频带可以在2.4至2.5GHz的范围内,该范围称为用于工业、科学和医疗用途的ISM频带。无线信号可以传出超过50米,从而传输最高达625kbit/s的未编码数据率。用于无线连接的无线收发器组件尺寸小,低功耗。装置上的用户界面让使用者能够选择特定的控制模式而不需要到计算机去操作。该装置可以具备记录能力以跟踪其使用情况。医生或理疗师可以从该装置远程下载数据,而不需要患者回到医疗机构。
使用本发明的ERF制动或致动装置,矫形器能够具有实时功能。该装置由于具有取决于电场的输出力矩而易于控制,并且可以在大约几毫秒的时间内做出反应。由于具有这样的可控制性,因此可以针对每位患者的个人需要定制康复计划。由于具有闭环控制,来自传感器的反馈使得计算机能够计算每个具体训练的效率并且相应地实时改变训练方式,以实现最佳的康复效果。
装置上的电子系统的电源可以为例如锂离子电池,诸如用于膝上型计算机的锂离子电池。然而,ERF制动或致动装置的动力应该是分离的系统,并且可以是装置电池寿命中的限制性因素。3000至4000mAh和24V的镍金属混合电池重约500至600g,并且使得ERF制动装置能够以最大负载连续运转1.5至2小时。在装置正常工作的情况下,电池寿命估计至少为4至5小时。这些电池在形状和尺寸方面有很大的选择,包括AA、C和D型电池尺寸以及小的块状。20个AA型镍金属混合电池的500g电池组是进行几个小时的致动所必需的代表性电源组。电池可以位于装置中,或者可以置于佩带包中,例如置于带上。
ERF功率放大器是高度专业化的,标准的非定制的解决方案通常是不合适的,因为它们不能够满足需要的快速响应。ERF系统通常需要超过1kHz的带宽。然而,近来在变压器芯体材料和低电阻MOSFET晶体管领域的技术发展使得可以实现这样的设计,与先前可以获得的高压电源相比,该设计不仅尺寸上小得多,而且效率上高得多。现在在商业上(例如从Smart Technology Ltd.公司)可以获得各种基于微控制器的开关式电源系统,这些系统能够产生更高的输出功率同时保持较小的机械引脚以及较低的重量。这些系统是为ERF的控制进行特别设计的,本领域的技术人员容易认识到,这些系统可以针对矫形器的需求而定制。定制使得能够提供为装置的功率需求提供尺寸最小的解决方案并且使用最佳形状的外壳。
由于ERF制动或致动装置在由人佩带或操作的装置中使用,因此安全性是一个考虑因素。如目前采用ERF LID 3354S所进行的设计那样,多个同心的圆柱体ERF制动装置可以在1mA的电流下以估计最大5000伏的直流电压工作。即使所需的电压较高,低电流和低功率特性也在人操作的装置的安全工作裕量内。全部制动和致动元件都封闭在接地的金属外壳内以避免意外接触。另外,全部高压导向、开关和金属部件都具有足够的绝缘性并且操作者不能接触到。另外设置有快速动作应急断路装置,如本领域所公知的那样,如果电流升高到额定最大电流之上,该断路装置就起作用并且将电压降低为零。为了进一步避免伤害,制动或致动装置以及相关器件或机构与使用者没有任何金属接触,全部带电元件都采用具有较高介电常数的材料绝缘。通过利用具有超常耐磨特性的弹簧加载的FEFLON密封件将ERF的泄漏将至最低或者完全避免。密封件在磨损时提供自调节,从而为更长的使用时间提供一致的性能。通过使用O型圈而避免盖子与外壳之间的泄漏。如果任何密封件失效,ERF为无毒的并且可以采用普通的肥皂和清洁剂进行清洗。
该矫形器结构紧凑并便于携带,并且可佩带的康复装置。使用者可以在普通的椅子上,在站立时,或者甚至在走动中使用该矫形器。该装置的使用只受到使用者能力的限制。因此,较虚弱的患者可以使用它进行阻力训练,较强壮的患者可以使用它进行重量训练和适当的步态训练。使用者可以利用自己的任何时间采用该装置进行训练,在家里或者在工作中,或者在每天的日常活动中。
另外,在给出本文提出的指导之后,根据本领域的技术人员所公知的原则,本发明的矫形器的各方面可以与其它制动装置或致动装置使用,例如DC电机、磁流变流体制动装置、摩擦制动装置、电动气动致动器、电磁致动装置、电滞制动装置、涡电流制动装置、气动制动装置、液压致动装置、音圈致动装置、电活性聚合物致动装置、超声波电机以及压电致动装置。
尽管上面具体地结合膝部进行了描述,但是本发明的矫形器可以用于人体的任何关节,诸如肘部等。参见图28,利用矫正关节可以组成全部或部分人体衣装,这已经用于虚拟现实,用于降低肌肉疲劳或增强肌肉运动,并且用于微重力补偿中(诸如在外太空参观中帮助减少肌肉和骨骼损耗)。
除非所附权利要求书中提到,否则本发明不受到上面的具体图示和描述的限制。

Claims (43)

1、一种用于产生力矩或力输出以及为力矩或力输入提供阻力的电流变流体致动器,包括:
外壳,其包括绝缘壳体,其中输入/输出轴可旋转地安装在壳体中;
多个可旋转部件,它们呈弓形地设置在壳体内并且与输入/输出轴连接;
多个可旋转电极,它们形成为多个圆柱段,每个电极安装在相关的可旋转部件上,用于与可旋转部件一起旋转;
圆柱形接地电极,其固定在壳体上并且与可旋转电极同心,接地电极与可旋转电极之间设有间隙;
电流变流体,其设置在所述间隙内;以及
多个线性致动元件,它们设置在相关的可旋转部件内,用于驱动相关可旋转部件旋转。
2、根据权利要求1所述的致动器,其特征在于,线性致动元件顺序地操作,以提供可旋转部件的步进式旋转。
3、根据权利要求1所述的致动器,其特征在于,线性致动元件与可旋转电极相配合地操作,其中,通过激发电流变流体而锁定一部分电极的旋转,以及允许一个可旋转电极旋转,以提供可旋转部件的步进式旋转。
4、根据权利要求1所述的致动器,其特征在于,电流变流体可被激活,以便经由可旋转电极上的剪切应力为轴上的输入力矩提供阻力。
5、根据权利要求1所述的致动器,其特征在于,还包括多个滚动触头,所述滚动触头可操作而给可旋转电极、接地电极以及线性致动元件供电。
6、根据权利要求5所述的致动器,其特征在于,滚动触头在一个从输入/输出轴径向延伸的轴上排列,并且滚动触头可在可旋转部件表面上的触头上滚动。
7、根据权利要求1所述的致动器,其特征在于,还包括棘轮机构,所述棘轮机构可操作以控制线性致动元件的旋转方向。
8、根据权利要求7所述的致动器,其特征在于,棘轮机构包括:棘轮,其安装在输入/输出轴上,棘轮具有两排相反的齿;以及棘齿凸轮,其可操作以在顺时针模式中啮合一排齿,并且在逆时针模式中啮合另一排齿。
9、根据权利要求8所述的致动器,其特征在于,棘轮机构可以在自由旋转模式中操作。
10、根据权利要求8所述的致动器,其特征在于,棘齿凸轮通过弹性轴安装为可进行枢转运动,该弹性轴安装在凸轮从动元件中,以导致棘齿凸轮枢转。
11、根据权利要求8所述的致动器,其特征在于,凸轮从动元件可操作而沿外部元件所致动的正弦路线移动,以调节旋转方向。
12、根据权利要求1所述的致动器,其特征在于,线性致动元件包括电磁体。
13、根据权利要求1所述的致动器,其特征在于,线性致动元件包括螺线管。
14、根据权利要求1所述的致动器,其特征在于,线性致动元件包括压电致动器。
15、根据权利要求1所述的致动器,其特征在于,线性致动元件包括电活性聚合物。
16、一种用于为力矩或力输入提供阻力的电流变流体制动装置,包括:
外壳,其包括绝缘壳体,其中轴可旋转地安装在壳体中;
一个或多个圆柱形可旋转电极,其安装在轴上,用于与轴一起旋转;
一个或多个圆柱形接地电极,其固定在壳体上并且与可旋转电极相对并同心地设置,接地电极与可旋转电极之间设有间隙;以及
电流变流体,其设置在所述间隙内。
17、根据权利要求16所述的流体制动装置,其特征在于,圆柱形可旋转电极由单个一体的部件构成。
18、根据权利要求16所述的流体制动装置,其特征在于,圆柱形接地电极由单个一体的部件构成。
19、一种用于为力矩或力输入提供阻力的电流变流体制动装置,包括:
外壳,其包括绝缘壳体,其中轴可旋转地安装在壳体中;
一个或多个可旋转电极,它们安装在轴上,用于与轴一起旋转;
一个或多个接地电极,其固定在壳体上并且与可旋转电极相对地设置,接地电极与可旋转电极之间设有间隙;
所述可旋转电极包括圆形板,该圆形板在内周安装在旋转中心座上,所述旋转中心座安装在轴上,所述接地电极包括圆形板,该圆形板在外周固定在嵌入件上,可旋转电极和接地电极交错并可以作为整体插入壳体中;以及
电流变流体,其设置在接地电极与可旋转电极之间的间隙内。
20、根据权利要求19所述的制动装置,其特征在于,制动装置还包括对准机构,所述对准机构可操作以调节可旋转电极与接地电极之间的间隙大小。
21、根据权利要求20所述的制动装置,其特征在于,所述对准机构是可从壳体外部触及的。
22、根据权利要求19所述的制动装置,其特征在于,可旋转电极通过锁固定在旋转中心座上,所述锁配合在可旋转电极上的键槽中。
23、一种用于关节的矫形器,包括:
框架,其可拆除地固定在使用者的肢体上,所述框架包括可以设置在肢体关节处的铰链组件;
根据权利要求1所述的电流变致动器;以及
齿轮组件,其安装在电流变流体制动器的轴上,以将输入/输出力或力矩与铰链组件连接。
24、一种用于关节的矫形器,包括:
框架,其可拆除地固定在使用者的肢体上,所述框架包括可以设置在肢体关节处的铰链组件;
根据权利要求16所述的电流变流体制动装置;以及
齿轮组件,其安装在电流变流体制动器的轴上,以将输入/输出力或力矩与铰链组件连接。
25、一种用于关节的矫形器,包括:
框架,其可拆除地固定在使用者的肢体上,所述框架包括可以设置在肢体关节处的铰链组件;
根据权利要求19所述的电流变流体制动装置;以及
齿轮组件,其安装在电流变流体制动器的轴上,以将输入/输出力或力矩与铰链组件连接。
26、根据权利要求23、24或25所述的矫形器,其特征在于,矫形器包括护膝,并且框架构造成安装在腿上。
27、根据权利要求23、24或25所述的矫形器,其特征在于,矫形器包括护肘,并且框架构造成安装在臂上。
28、根据权利要求23、24或25所述的矫形器,其特征在于,矫形器还包括传感系统,所述传感系统包括可操作以测量关节的角度、速度和加速度的传感组件。
29、根据权利要求28所述的矫形器,其特征在于,传感组件可操作以提供矫形器的闭环控制。
30、根据权利要求23、24或25所述的矫形器,其特征在于,矫形器还包括传感系统,所述传感系统包括可操作以测量轴上的力矩的传感组件。
31、根据权利要求30所述的矫形器,其特征在于,传感组件可操作以提供矫形器的闭环控制。
32、根据权利要求23、24或25所述的矫形器,其特征在于,矫形器还包括设置在关节相对侧的第二电流变流体装置。
33、根据权利要求23、24或25所述的矫形器,其特征在于,矫形器还包括可操作以控制电流变流体装置的控制组件。
34、根据权利要求33所述的矫形器,其特征在于,控制组件可操作以提供远程通信。
35、根据权利要求23、24或25所述的矫形器,其特征在于,矫形器在由电池电源提供的电力下工作。
36、根据权利要求35所述的矫形器,其特征在于,一个或多个电池设置在矫形器内部。
37、根据权利要求35所述的矫形器,其特征在于,一个或多个电池设置在矫形器外部。
38、一种用于关节的矫形器,包括:
框架,其可拆除地固定在使用者的肢体上,所述框架包括可以设置在肢体关节处的铰链组件;
动力装置,其在铰链组件处安装在框架上,并且可操作地产生输出力或力矩或者阻止输入力或力矩;以及
齿轮组件,其安装在动力装置的轴上,以将输入/输出力或力矩与铰链组件连接。
39、根据权利要求38所述的矫形器,其特征在于,动力装置包括电流变流体制动装置。
40、根据权利要求38所述的矫形器,其特征在于,动力装置包括电流变流体致动器。
41、根据权利要求39所述的矫形器,其特征在于,动力装置还包括电流变流体致动器。
42、根据权利要求40所述的矫形器,其特征在于,动力装置包括电流变流体制动装置。
43、根据权利要求38所述的矫形器,其特征在于,动力装置是选自如下组的制动或致动装置:DC电机、磁流变流体装置、摩擦装置、电动气动装置、电磁装置、电滞装置、涡电流装置、气动装置、液压装置、音圈装置、电活性聚合物装置、超声波电机以及压电装置。
CN 200580046036 2004-11-09 2005-11-09 电流变流体制动及致动装置以及使用该装置的矫形器 Pending CN101443572A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US62625604P 2004-11-09 2004-11-09
US60/626,365 2004-11-09
US60/626,256 2004-11-09

Publications (1)

Publication Number Publication Date
CN101443572A true CN101443572A (zh) 2009-05-27

Family

ID=40727161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200580046036 Pending CN101443572A (zh) 2004-11-09 2005-11-09 电流变流体制动及致动装置以及使用该装置的矫形器

Country Status (1)

Country Link
CN (1) CN101443572A (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102670342A (zh) * 2012-05-07 2012-09-19 北京航空航天大学 一种轴对称电流变液阻尼膝关节矫形器
CN103263336A (zh) * 2013-05-31 2013-08-28 四川旭康医疗电器有限公司 基于远程控制的电动式关节康复训练系统及其实现方法
CN103263337A (zh) * 2013-05-31 2013-08-28 四川旭康医疗电器有限公司 基于远程控制的关节康复训练系统及其实现方法
CN104552331A (zh) * 2015-01-14 2015-04-29 浙江工业大学 机器人关节的磁致超柔性驱动器
CN104936569A (zh) * 2012-11-01 2015-09-23 不列颠哥伦比亚理工大学 具有可拆卸地装于轮式基座的外骨骼组件的移动系统
CN105030484A (zh) * 2015-09-10 2015-11-11 河南科技大学 一种具有阻尼反馈的机械臂主从操纵设备
CN105283155A (zh) * 2013-04-10 2016-01-27 阿尔特拉弗莱克斯系统公司 双向阻尼和辅助单元
CN106137684A (zh) * 2014-08-07 2016-11-23 三星电子株式会社 驱动模块、运动辅助设备及控制运动辅助设备的方法
CN106253739A (zh) * 2015-06-05 2016-12-21 佳能株式会社 适于在磁场环境中使用的振动致动器以及医疗系统
CN106253740A (zh) * 2015-06-05 2016-12-21 佳能株式会社 容易进行导电性检查的振动致动器
CN106618970A (zh) * 2015-11-04 2017-05-10 三星电子株式会社 关节组件以及包括该关节组件的运动辅助装置
CN108705517A (zh) * 2018-06-16 2018-10-26 上海晓奥享荣汽车工业装备有限公司 一体化柔性抓取平台系统
CN108721009A (zh) * 2017-04-14 2018-11-02 香港中文大学 磁流变串联弹性驱动器
CN109070336A (zh) * 2015-12-24 2018-12-21 赛峰电子与防务公司 向使用者提供力辅助的外骨骼结构
CN110063872A (zh) * 2019-04-18 2019-07-30 杭州电子科技大学 一种手指辅助锻炼装置及其辅助锻炼方法
CN110621456A (zh) * 2017-03-21 2019-12-27 学校法人早稻田大学 机械装置的动力传递系统
CN111757797A (zh) * 2019-04-12 2020-10-09 深圳配天智能技术研究院有限公司 限位装置、机械臂及机器人
CN111743731A (zh) * 2020-07-06 2020-10-09 中南大学湘雅医院 一种新型肘关节功能康复装置
CN112847299A (zh) * 2019-11-26 2021-05-28 香港中文大学 人体关节能量回收装置及包括其的可穿戴电子设备
CN113893128A (zh) * 2021-09-23 2022-01-07 北京邮电大学 一种用于上肢可穿戴式康复机械臂的双模驱动关节
CN114099225A (zh) * 2021-09-06 2022-03-01 杭州程天科技发展有限公司 多功能全向型康复机器人及其手柄
CN114712052A (zh) * 2022-05-06 2022-07-08 燕山大学 一种步态矫正装置及方法
CN115004126A (zh) * 2019-12-18 2022-09-02 因文图斯工程有限公司 具有磁流变制动器装置的装置部件

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102670342A (zh) * 2012-05-07 2012-09-19 北京航空航天大学 一种轴对称电流变液阻尼膝关节矫形器
CN104936569A (zh) * 2012-11-01 2015-09-23 不列颠哥伦比亚理工大学 具有可拆卸地装于轮式基座的外骨骼组件的移动系统
CN105283155B (zh) * 2013-04-10 2018-01-30 阿尔特拉弗莱克斯系统公司 双向阻尼和辅助单元
US10596024B2 (en) 2013-04-10 2020-03-24 Ultraflex Systems, Inc. Bi-directional dampening and assisting unit
CN105283155A (zh) * 2013-04-10 2016-01-27 阿尔特拉弗莱克斯系统公司 双向阻尼和辅助单元
CN103263336A (zh) * 2013-05-31 2013-08-28 四川旭康医疗电器有限公司 基于远程控制的电动式关节康复训练系统及其实现方法
CN103263337A (zh) * 2013-05-31 2013-08-28 四川旭康医疗电器有限公司 基于远程控制的关节康复训练系统及其实现方法
CN103263337B (zh) * 2013-05-31 2015-09-16 四川旭康医疗电器有限公司 基于远程控制的关节康复训练系统
CN103263336B (zh) * 2013-05-31 2015-10-07 四川旭康医疗电器有限公司 基于远程控制的电动式关节康复训练系统
CN106137684A (zh) * 2014-08-07 2016-11-23 三星电子株式会社 驱动模块、运动辅助设备及控制运动辅助设备的方法
CN106137684B (zh) * 2014-08-07 2019-08-16 三星电子株式会社 驱动模块、运动辅助设备及控制运动辅助设备的方法
US10285892B2 (en) 2014-08-07 2019-05-14 Samsung Electronics Co., Ltd. Driving module, motion assistance apparatus including the driving module, and method of controlling the motion assistance apparatus
US11672722B2 (en) 2014-08-07 2023-06-13 Samsung Electronics Co., Ltd. Driving module, motion assistance apparatus including the driving module, and method of controlling the motion assistance apparatus
CN104552331A (zh) * 2015-01-14 2015-04-29 浙江工业大学 机器人关节的磁致超柔性驱动器
CN106253739A (zh) * 2015-06-05 2016-12-21 佳能株式会社 适于在磁场环境中使用的振动致动器以及医疗系统
US10396270B2 (en) 2015-06-05 2019-08-27 Canon Kabushiki Kaisha Vibration actuator that is easy in conduction inspection
CN106253740B (zh) * 2015-06-05 2019-10-18 佳能株式会社 容易进行导电性检查的振动致动器
CN106253740A (zh) * 2015-06-05 2016-12-21 佳能株式会社 容易进行导电性检查的振动致动器
CN106253739B (zh) * 2015-06-05 2019-07-02 佳能株式会社 适于在磁场环境中使用的振动致动器以及医疗系统
US10363105B2 (en) 2015-06-05 2019-07-30 Canon Kabushiki Kaisha Vibration actuator suitable for use in magnetic field environment and medical system
CN105030484A (zh) * 2015-09-10 2015-11-11 河南科技大学 一种具有阻尼反馈的机械臂主从操纵设备
CN106618970A (zh) * 2015-11-04 2017-05-10 三星电子株式会社 关节组件以及包括该关节组件的运动辅助装置
CN106618970B (zh) * 2015-11-04 2020-09-29 三星电子株式会社 关节组件以及包括该关节组件的运动辅助装置
CN109070336A (zh) * 2015-12-24 2018-12-21 赛峰电子与防务公司 向使用者提供力辅助的外骨骼结构
CN110621456A (zh) * 2017-03-21 2019-12-27 学校法人早稻田大学 机械装置的动力传递系统
CN110621456B (zh) * 2017-03-21 2022-05-03 学校法人早稻田大学 机械装置的动力传递系统
CN108721009B (zh) * 2017-04-14 2019-08-16 香港中文大学 磁流变串联弹性驱动器
CN108721009A (zh) * 2017-04-14 2018-11-02 香港中文大学 磁流变串联弹性驱动器
CN108705517A (zh) * 2018-06-16 2018-10-26 上海晓奥享荣汽车工业装备有限公司 一体化柔性抓取平台系统
CN111757797A (zh) * 2019-04-12 2020-10-09 深圳配天智能技术研究院有限公司 限位装置、机械臂及机器人
CN110063872A (zh) * 2019-04-18 2019-07-30 杭州电子科技大学 一种手指辅助锻炼装置及其辅助锻炼方法
CN112847299A (zh) * 2019-11-26 2021-05-28 香港中文大学 人体关节能量回收装置及包括其的可穿戴电子设备
CN112847299B (zh) * 2019-11-26 2022-10-14 香港中文大学 人体关节能量回收装置及包括其的可穿戴电子设备
CN115004126A (zh) * 2019-12-18 2022-09-02 因文图斯工程有限公司 具有磁流变制动器装置的装置部件
CN115004126B (zh) * 2019-12-18 2023-10-27 因文图斯工程有限公司 具有磁流变制动器装置的装置部件
CN111743731A (zh) * 2020-07-06 2020-10-09 中南大学湘雅医院 一种新型肘关节功能康复装置
CN114099225A (zh) * 2021-09-06 2022-03-01 杭州程天科技发展有限公司 多功能全向型康复机器人及其手柄
CN114099225B (zh) * 2021-09-06 2023-09-01 杭州程天科技发展有限公司 多功能全向型康复机器人及其手柄
CN113893128A (zh) * 2021-09-23 2022-01-07 北京邮电大学 一种用于上肢可穿戴式康复机械臂的双模驱动关节
CN114712052A (zh) * 2022-05-06 2022-07-08 燕山大学 一种步态矫正装置及方法

Similar Documents

Publication Publication Date Title
CN101443572A (zh) 电流变流体制动及致动装置以及使用该装置的矫形器
US8142370B2 (en) Electro-rheological fluid brake and actuator devices and orthotic devices using the same
US20200069441A1 (en) Exoskeleton, orthosis, wearable device or mobile robots using magnetorheological fluid clutch apparatus
US10906168B2 (en) Electrolaminate clutches for an exosuit system
EP3341089B1 (en) Strength training device using magnetorheological fluid clutch apparatus
US20090017993A1 (en) Variable Resistance Exercise and Rehabilitation Hand Device
US9149938B1 (en) Robotic exoskeleton with adaptive viscous user coupling
CN101213730B (zh) 加速度产生装置及模拟力觉产生装置
Chen et al. Design and characterization of a magneto-rheological series elastic actuator for a lower extremity exoskeleton
US10626944B2 (en) Magneto-rheological series elastic actuator
Andrade et al. Optimal design and torque control of an active magnetorheological prosthetic knee
KR102329220B1 (ko) 인공 근육
Nikitczuk et al. Rehabilitative knee orthosis driven by electro-rheological fluid based actuators
US20210129323A1 (en) Variable stiffness actuator with electrically modulated stiffness
CN101642908A (zh) 用于实现遥操作机器人控制的人机接口装置的被动力/力矩反馈驱动器
Blumenschein et al. A cable-based series elastic actuator with conduit sensor for wearable exoskeletons
US8579842B2 (en) Enhanced friction of micropatterned surfaces immersed in magnetorheological fluid
EP2957393B1 (en) Robotic exoskeleton with adaptive viscous user coupling
Ohba et al. An elastic link mechanism integrated with a magnetorheological fluid for elbow orthotics
CN113524143B (zh) 一种变刚度膝关节及下肢外骨骼机器人
Kikuchi et al. Development of isokinetic exercise system using high performance MR fluid brake
Khose et al. Concept and Simulation of a Portable Pneumatic Exoskeleton for Orthopedic Rehabilitation of the Elbow
Azangbebil A study of a piezoelectric energy harvesting system using magnetorheological fluids
Stücheli On the Design of Compact Adjustable Impedance Elements
Bullough Smart Fluid Machines

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20090527

C20 Patent right or utility model deemed to be abandoned or is abandoned