CN101436108B - 轨迹球光标动作控制方法及装置 - Google Patents

轨迹球光标动作控制方法及装置 Download PDF

Info

Publication number
CN101436108B
CN101436108B CN2007101245434A CN200710124543A CN101436108B CN 101436108 B CN101436108 B CN 101436108B CN 2007101245434 A CN2007101245434 A CN 2007101245434A CN 200710124543 A CN200710124543 A CN 200710124543A CN 101436108 B CN101436108 B CN 101436108B
Authority
CN
China
Prior art keywords
scale
trace ball
cursor
rotation
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007101245434A
Other languages
English (en)
Other versions
CN101436108A (zh
Inventor
胡锐
袁满
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Mindray Bio Medical Electronics Co Ltd
Original Assignee
Shenzhen Mindray Bio Medical Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Mindray Bio Medical Electronics Co Ltd filed Critical Shenzhen Mindray Bio Medical Electronics Co Ltd
Priority to CN2007101245434A priority Critical patent/CN101436108B/zh
Publication of CN101436108A publication Critical patent/CN101436108A/zh
Application granted granted Critical
Publication of CN101436108B publication Critical patent/CN101436108B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Input By Displaying (AREA)

Abstract

本发明公开了一种轨迹球光标动作控制方法及装置,包括以下步骤:A1、实时检测轨迹球的转动速度或固定时间间隔内的位移;B1、根据轨迹球转动速度的变化或固定时间间隔内位移的变化实时设置轨迹球转动位移与光标在显示屏上的位移之间的标尺,使所述标尺随所述转动速度或固定时间间隔内位移的增加而变大。本发明兼顾了灵敏度和精度要求,并且有效抑制了轨迹球的误移动。

Description

轨迹球光标动作控制方法及装置
【技术领域】
本发明涉及一种光标动作的控制方法及装置,尤其涉及轨迹球式光标动作的控制方法及装置。
【背景技术】
在很多仪器中设计有通过轨迹球的转动来控制显示屏上的光标动作,例如医用超声诊断设备中普遍使用轨迹球来控制显示屏上的光标移动,目前市场上销售的绝大部分超声诊断仪的操作均由按键和轨迹球协同完成,用户普遍习惯用轨迹球对该类设备显示屏上的光标进行操控。在超声诊断仪的操作过程中常常会同时面临用光标进行高精度测量和显示屏上光标大范围转移两种应用。医用超声诊断设备利用超声波在人体组织内传播特性对人体组织进行成像,该图像信息具备解剖学特性。因此从该图像中可以观察各组织器官的形态,为疾病诊断提供依据。轨迹球在操作医用超声诊断设备过程中有两类典型的应用:一是利用轨迹球控制光标对超声图像中的组织内各个器官、病变的形态、大小进行测量,例如测量胆内结石的直径等等;二是利用轨迹球移动光标对分布在显示屏各处的参数选项、操作菜单进行选定,选定过程中需要不断在显示屏上各点频繁切换,此时要求用户拨动轨迹球次数尽量少就能够使光标到达显示屏上任意所需位置。前者需要轨迹球能够控制光标精确的锁定显示屏上任意最小像素点。这个要求可以分解成以下两点:1、轨迹球的分辨率与显示屏象素一致,才能保证轨迹球能够锁定最小象素,这个可以设置轨迹球最小分辨率和显示屏上光标位移的映射标尺解决;2、在锁定某个格点的过程中,光标移动一定要尽量稳定,不能偏移用户控制的方位,否则会增加医生锁定某点的难度;这就要求轨迹球对外界干扰有较强的抑制能力。后一种典型应用则需要轨迹球有较高的灵敏度,轨迹球只需要轻微拨动光标就能够在显示屏上移动较大位移。
系统在检测到轨迹球转动后,向光标发出移位指令,显示屏上的图形一般以象素点为单位构成,光标接到该指令后按照一定的标尺向轨迹球给的光标移动方向移动一个单位距离。这里,标尺由轨迹球的位置变动一个单位而光标在显示屏上移动的象素数目来定义的。如果这个标尺为一个象素,则轨迹球理论上可以锁定显示屏上任意象素点,可以认为精度高。增加这一标尺则可以提高轨迹球的灵敏度,使轨迹球转动更少圈数光标即能从显示屏一侧移动到另一侧,但是此举无疑会牺牲轨迹球的精度性能,使轨迹球无法操作光标锁定显示屏上的任意像素点;减小这一标尺,则会减小轨迹球的灵敏度,会导致由随机发生的电气和机械干扰产生的误移动也会被限制在较小范围内,从而表现出对干扰有较好的抑制作用。因此,在绝大多数情况下,轨迹球的高精度和高灵敏度是一对矛盾。同时兼顾精度和灵敏度这两种性能对轨迹球的机械、电气设计提出了很高的要求,尤其对体积较小的轨迹球难度更加大。以分辨率为800×600显示屏,采用直径为1英寸的轨迹球进行光标控制的应用情形为例,如果在保证轨迹球能够锁定显示屏上任意象素的前提下让轨迹球转2圈能够从屏幕左端到达屏幕右端,则轨迹球每波动一圈则要发送400个光标移动指令,即每拨动1/400转轨迹球就要移动一个像素,同时还得排除机械干扰保证轨迹球尽量平稳的运动,不存在误码,机械设计的难度可想而知。进而假设轨迹球的机械设计能够满足此要求,用户在操作轨迹球过程中,手指要移动0.2mm,轨迹球就发出一个光标移动指令。人手有时也很难控制到如此精度,稍有抖动光标就会发生误操作,很难精确锁定最小象素点。
【发明内容】
本发明的主要目的就是解决现有技术中的问题,提供一种轨迹球光标动作控制方法及装置,利用具有简单机械、电气结构的轨迹球做到兼顾轨迹球的精度和灵敏度两种性能。
为实现上述目的,本发明提供一种轨迹球光标动作控制方法,包括以下步骤:
A1、实时检测轨迹球的转动速度或固定时间间隔内的位移;
B1、根据轨迹球转动速度的变化或固定时间间隔内位移的变化实时设置轨迹球转动位移与光标在显示屏上的位移之间的标尺,使所述标尺随所述转动速度或固定时间间隔内位移的增加而变大。
对于轨迹球为机电轨迹球的情况,所述轨迹球包括球体、与球体相切的两根转轴、分别固定在两根转轴上的两个光栅码盘和分别用于探测两个光栅码盘转动的两组感光组件,所述每组感光组件输出两个正交的方波信号,所述步骤A1包括以下步骤:
A11、分别对所述两组感光组件输出的两组方波信号进行计数;
A12、按照一定的间隔时间获取步骤A11中的计数值。
其中对于每组方波信号,所述步骤A11进一步包括以下步骤:
A111、根据所述每组方波信号中的两路正交方波的相位变化判断轨迹球的转动方向;
A112、根据轨迹球的方向信息对该组方波信号进行计数,当轨迹球正向旋转时,每检测到该组方波信号产生一个相位变化,则加1,当轨迹球反向旋转时,每检测到该组方波信号产生一个相位变化,则减1。
在定时读出步骤A12中所述的计数值后,将计数值归零。
其中,所述步骤A111中,轨迹球的转动方向是通过将每组方波信号的当前相位和其前的三个相位比较得出。
为实现上述目的,本发明还提供一种轨迹球光标动作控制装置,包括:
检测单元,用于检测轨迹球的转动速度或固定时间间隔内的位移;
标尺设置单元,用于根据轨迹球转动速度的变化或固定时间间隔内位移的变化动态设置轨迹球转动位移与光标在显示屏上的位移之间的标尺,使所述标尺随所述转动速度的增加而变大。
本发明的有益效果是:本发明通过一个速度检测单元和一个标尺设置单元,根据轨迹球的转动速度(即被拨动的速度)为光标设置标尺,转动速度大,光标移动的标尺也大,这样有利于提高轨迹球的灵敏度,转动速度小时,光标移动的标尺也小,这样有利于提高轨迹球的移动精度,从而兼顾了灵敏度和精度要求,并且有效抑制了轨迹球的误移动。
【附图说明】
图1是常用医用超声诊断设备图形操作界面分布图;
图2是普通机电式轨迹球结构图;
图3是机电式轨迹球一组感光组件输出两路正交方波波形图;
图4是经整形后机电式轨迹球输出波形图;
图5是轨迹球一组感光组件输出信号形成的查询表示意图;
图6是本发明一种实施例方框示意图;
图7是本发明一种实施例中调整光标标尺的流程图;
图8是本发明一种实施例中轨迹球转动速度检测流程图。
【具体实施方式】
本发明的特征及优点将通过实施例结合附图进行详细说明。
在绝大多数超声诊断设备中,显示屏上的用户界面分布大致如图1所示,从人体的超声回波信息中提取的图像位于显示屏正中央,用户对超声诊断设备的操作菜单和各种信息、参数均位于显示屏的四周。医生在利用超声设备对病人进行诊断时,常常需要精确测量图像中病变组织的大小,尤其是病变组织中出现结石等症状时,此时移动光标测量结石的大小对光标提出很高的精度要求。除此之外,诊断中各个模式的切换需要在显示屏四周的菜单栏、信息栏中进行切换。此时需要轨迹球能够控制光标迅速地在整个显示屏上的区域大范围调动,从而对轨迹球的灵敏度提出较高的要求,这跟轨迹球的高精度测量应用是一对矛盾。针对这对矛盾发明人对用户的轨迹球使用习惯进行了研究。
用户在使用轨迹球控制光标的过程中,并非精确计算光标到达某一位置时轨迹球应该朝某方向移动多少距离后,才进行轨迹球的控制的。实际情况往往是:用户大致朝需要光标到达的某点方向拨动轨迹球,同时根据显示屏上光标的位置、移动方向、位移等反馈信息,不断修正轨迹球的拨动方向和起止。所以用户并不关注轨迹球移动的位移和光标在显示屏上移动位移的精确对应关系,这点应该是跟鼠标应用有所不同。用户进行高精度测量时,为了锁定显示屏上的某点,常常会习惯性的放慢光标移动速度,较为缓慢的拨动轨迹球,同时根据光标在显示屏上的反馈信息确定轨迹球的拨动方向和起止,并且越接近所需锁定的点,拨动轨迹球的速度越慢,直至锁定该点。此时只要能够对外界的干扰能够较好的抑制,光标移动稳定,用户就可以比较容易的将光标移动到所需锁定的像素点。当用户使用轨迹球控制光标在显示屏范围内长距离位置变换时,用户会习惯性的较快速度拨动轨迹球,并通过显示屏上的光标实际位置判断何时停止轨迹球滚动。此时用户并不关注屏幕上光标移动位移和轨迹球转的圈数的比例关系,而需要轨迹球转少量的圈数就能够到达所需位置,且对光标移动精度的要求也较小,因为周围各个菜单选项、参数选项均占用多个像素,锁定它们并不需要太高的精度,在操作过程中仍然是通过显示屏的光标信息来判断拨动轨迹球的起止。
针对用户使用习惯,本发明总结出一种方法对轨迹球的光标进行处理。该方法依据轨迹球的转动速度动态设置轨迹球转动位移与光标在显示屏上的位移之间的标尺(该标尺决定了轨迹球每移动一个最小分辨率,光标在显示屏上所移动的距离),同时兼顾用户高精度测量和大范围转移光标两方面的应用。当用户实施高精度测量时,移动轨迹球会习惯性减慢速度,此时通过对速度的感应,将标尺设置的较小,轨迹球灵敏度减小,最小可到一个显示像素,从而对电气、机械干扰进行抑制;当用户实施大范围转移光标时,移动轨迹球会习惯性的加快速度,此时将标尺设置的较大,增加轨迹球灵敏度,从而使轨迹球移动单位距离对应的光标能够移动更远的距离。
对于通常使用的机电式轨迹球,其结构请参考图2,主要包含以下组件:球体101,其直径由轨迹球设计规格决定;两套垂直放置的光栅码盘组102和103,分别负责x、y轴的移动,即两个光栅码盘分别对应X方向和Y方向两个方向的移动;两组用于将X、Y轴的移动转化为高低电平输出的感光组件104和105;输出波形整形电路106。球体101是用户界面,用户通过拨动球体来发出光标控制指令。一套光栅组件如102则由一根轴113和垂直固定在其一端的光栅码盘111组成,轴113的中间与球体101相切。当用户用手拨动球体时,球体带动轴进而转动码盘,从而将用户的光标控制指令转化为光栅码盘的旋转,并通过光栅码盘上的栅格将球体的移动进行量化。其中光栅码盘是一个齿轮状的圆盘,轮齿对光线进行遮挡,齿间的间隙通过光线。感光组件104和105用于将码盘的转动的机械信号量化为随时间变化的高低电平,从而将用户指令转换为电信号。每组感光组件包括两个光源,各对应一个接收端。光栅码盘置于光源和接收端中间,通过控制光栅码盘的齿宽和齿间间隙使两个接收端依次输出高低电平,保证两路接受端输出的是一组正交的方波信号,即相差为90°(如图3所示)的两个方波信号。但是此时输出的方波信号上升沿下降沿均很宽,极其容易受到外界干扰从而导致错误的电平出现。而输出波形整形电路106中用施密特触发器将该方波整形,加快了上升下降沿,并对外界干扰有一定的抑制作用,最终输出波形如图4所示。将输出正交方波转换为二进制数,发现当轨迹球往正方向运动时,输出(x1,x2)会依次经历(1,1)、(0、1)、(0,0)、(1,0)和(1,1)的循环。如果往反方向运动则依次经历(1,1)、(1,0)、(0,0)、(0、1)、(1,1)的循环。将这些循环状态统计成如图5所示的查询表,将轨迹球每次输出的最近的两个相位状态关系与该查询表进行对照就可以判断光标的移动方向。
在本发明的一种实施例中轨迹球光标动作控制装置如图6所示,包括检测单元和标尺设置单元,检测单元用于检测轨迹球的转动速度或固定时间间隔内的位移;标尺设置单元,用于根据轨迹球转动速度的变化或固定时间间隔内位移的变化动态设置轨迹球转动位移与光标在显示屏上的位移之间的标尺,使所述标尺随所述转动速度的增加而变大。由于在具体使用中轨迹球在转动时分为X方向和Y方向,所以检测单元也分别对轨迹球在两个方向的转动进行检测。对于某个方向(例如X方向)上的一组正交的方波信号来说,所述检测单元又包括方向信息判断单元、位移计数器、定时器和速度计算单元。方向信息判断单元用于根据所述该组方波信号的相位变化判断轨迹球的转动方向,所述位移计数器根据轨迹球的方向信息对该组方波信号进行计数,定时器用于设定时间间隔,位移计数器按照定时器设定的时间间隔输出计数值,速度计算单元用于根据计数值和时间间隔计算轨迹球的转动速度。所述方向信息判断单元可以包括四个寄存器和比较模块,四个寄存器分别记录该组方波信号最近的四个相位状态,比较模块将这四个相位状态与上文提到的查询表进行比对,则可以判断轨迹球的移动方向。对于另一个方向上的一组正交的方波信号,也是同样处理。
根据轨迹球的转动速度控制光标动作的流程图如图7所示,包括以下步骤:
设置位移计数器对每组方波信号进行计数,该信息不会立即反映到显示屏的光标移动上,而是随着轨迹球继续转动位移计数器中不断累积光标位移信息。同时设置一个定时器,使程序每隔一个固定时间段读取一次位移计数器的信息进行下一步处理,并将位移计数器清空。
在步骤S11中,首先是定时器计时,延长一定的时间间隔。
在步骤S12中,判断定时器设定的时间间隔是否到达,如果定时器还没有计满时间,则继续执行步骤S11,当定时器计满时间溢出后,即执行步骤S13,读取位移计数器中的计数结果,在读出位移计数器中的计数值后同时执行步骤S14和步骤S15。
在步骤S14,清空位移计数器,即将位移计数器的计数值归零,从新开始计数。
在步骤S15,确定轨迹球的转动速度,每次从位移计数器中读出的数值就是在固定时间段内的轨迹球移动的位移量,即记录了轨迹球的速度信息,将位移量除以时间即可得到速度,然后执行步骤S16。
在步骤S16,判断轨迹球转动速度的快慢,然后执行步骤S17,根据轨迹球转动速度的快慢改变光标标尺,当轨迹球速度很慢的时候,认为此时用户需要低速、精度较高精度的测量,则将标尺改小,甚至可以强制当位移寄存器中的值小于某特定值时,光标只在显示屏上移动一个象素点;当轨迹球速度较快时,认为此时用户需要大范围移动光标,增大标尺,令其在轨迹球转同样转数时,比低速运行时移动的位移要远,用户仅需要转动少数几次轨迹球光标即可以从显示屏一侧到另一侧。当轨迹球的转速处于快速和慢速的过渡带时,由于考虑到如果整个标尺变化的太不连续,则会给用户一种光标突然跳跃感增加的感觉,此时标尺处于高速和低速之间,是一个与速度相关,渐渐变化的量,可以在最大标尺和最小标尺之间插值产生。
在步骤S18,根据设定的光标标尺控制光标移动,设置的标尺大,轨迹球每移动一个最小分辨率对应的光标在屏幕上移动的位移量大,则光标每接收到一个移位指令在显示屏上移动的位移量大,设置的标尺小,轨迹球每移动一个最小分辨率对应的光标在屏幕上移动的位移量小,则光标每接收到一个移位指令在显示屏上移动的位移量小。
实际使用中,高低速以及过渡速度段的标尺均需要根据特定轨迹球型号进行设定,反复评估使用手感后最终确定。
在步骤S16中,根据轨迹球的转动速度分配光标标尺时,可采用以下方式中的任意一种:
1、当所述转动速度小于或等于第一速度阈值时,为光标设置的标尺为第一标尺;当所述转动速度大于第一速度阈值且小于第二速度阈值时,为光标设置的标尺为第二标尺;当所述转动速度大于或等于第二速度阈值时,为光标设置的标尺为第三标尺;且所述第一标尺<第二标尺<第三标尺;
2、所述标尺与所述转动速度呈一定的函数关系,例如L=f(V),其中L为标尺,V为轨迹球的转动速度;
3、当所述转动速度小于或等于第一速度阈值时,为光标设置的标尺为第一标尺;当所述转动速度大于或等于第二速度阈值时,为光标设置的标尺为第三标尺;当所述转动速度大于第一速度阈值且小于第二速度阈值时,所述标尺与所述转动速度呈一定的函数关系;且所述第一标尺小于第三标尺。
上述步骤中,除了根据转动速度设置光标的标尺外,还可以根据固定时间内的轨迹球的位移量来设置光标的标尺,标尺的设置方法可以用上述方法中的一种。
上述步骤中,位移计数器负责统计轨迹球的位移情况,统计方案可以有多种,专利申请号为“01115745.3”、发明名称为“增加鼠标在显示屏上移动解析度的方法”的中国专利申请文件中公开了一种对轨迹球的位移统计方案。另一种方案如图8所示,包括以下步骤:
在步骤S21,首先方向信息判断单元根据轨迹球的两组感光组件输出的两组正交方波信号确定当前的相位并记录,然后执行步骤S22;
在步骤S22,将当前的相位与其之前的相位进行比较,执行步骤S23,将比较结果和图5的查询表比较,判断轨迹球的转动方向,然后执行步骤S24;
在步骤S24,位移计数器根据轨迹球转动的方向信息进行计数,具体为:在每个方向上,对于每组方波信号,当轨迹球正向旋转时,每检测到两组方波信号产生一个相位变化,则加1,当轨迹球反向旋转时,每检测到两组方波信号产生一个相位变化,则减1。对于机电式轨迹球,在检测转动速度时将球体的位移和其转动方向相结合,避免了一些固有的机械误差,使检测到的转动速度更准确。
在本发明的优选实施例中,在两组方波信号的相位状态循环中相位关系每改变一次则向位移计数器发送一个加1或者是减1指令。当定时器计时达到设定的时间间隔时,读取位移计数器计数结果,然后根据所测得的轨迹球的转动速度为光标分配标尺,同时向显示屏上的光标发送一个移位指令。控制光标按照当前设置的标尺在显示屏上移动,光标的移动距离可以认为是轨迹球的转动位移乘以当前标尺。
由上文所述可知,通过动态设置轨迹球转动位移和显示屏光标位移之间的标尺,可以使轨迹球能够操纵光标锁定显示屏上任意像素,并且抑制了轨迹球操作中的误移动,即使轨迹球操作中常常由于人手或者是轨迹球自身部件发生抖动从而导致轨迹球发生一些误移动,由于此时这些误移动随机发生,在定时器所限定时间内造成的误移动较小,因此本发明会将所有这些误移动看作轨迹球低速转动,将此速度下的标尺都处理成单个象素的移动,即将误操作对光标的影响减到最低。即便误操作产生,光标最多也只能偏离一个像素点,仍然可以较为稳定的接近并锁定显示屏上某像素点。
但是在轨迹球使用过程中,常常会受到各方面的干扰,导致用户并不能很容易的锁定显示屏上某象素点。这些干扰主要来自于电气干扰和机械干扰。由以上原理描述发现,只需要判断轨迹球输出信号的当前相位状态与前一相位的关系就可以获得用户的光标移动指令,所以这两个状态中任意一个受到干扰,就会位移计数器错误的计数,和导致光标发生错误的移动。在电气系统中,轨迹球由电气干扰的导致误操作概率是存在的,从而给锁定显示屏上最小象素点造成困难。同时,轨迹球是将机械信号转化为光信号,进而转化为电信号的设备,因此机械部分运行的稳定性也是至关重要的。由于规则球体101和轴113、114之间不可能做到绝对紧密配合,其间必有间隙;球的表面光洁度也影响着其与轴的传动,轨迹球使用过程中球体101的受力是变化和不均匀的,综合这些原因,实际使用中轨迹球的机械部分很难做到完全稳定的运行,会随机出现一些轴和球之间的突然性相对运动,从而导致光标失控而偏离用户移动的方向。
为解决此问题,在本发明的另一实施例中,在判断轨迹球的转动方向时,不只将当前的相位与其之前的相位进行比较,而是将当前的相位与其之前的三个相位进行比较,只有都符合时,才确定方向信息,位移计数器按照采用此方案确定的方向信息进行计数。如果其中有一个不符合,则作为误动作将四个相位中最早的相位数据丢弃,等待下一个相位状态再进行判断。
经过上述处理的轨迹球信号在高精度测量时对电气干扰和机械干扰均有较大程度的抑制。由于该处理方法中需要对轨迹球最近的四个相位状态进行判断,如果四个状态不满足上述查询表的循环机制,则丢弃最早的点,等待下一个相位状态来临再作判断。因此如果在这四个状态中有由于电气干扰带来的误码产生,则会被丢弃,轨迹球并不会发生误动作。一旦有误码,绝大多数误码不能够满足四个状态相位关系,因此绝大多数误码会被丢弃,轨迹球并不对光标发出移位指令,位移计数器也不进行计数。机械运动对轨迹球的干扰主要是由于轨迹球操作过程中,由于各种力学因素导致轨迹球发出误码,由于是对四个状态进行判断也能够丢弃大多数误码,从而有效抑制了电气干扰和机械干扰。
本发明还可以通过在轨迹球的球体附近设置一速度传感器来检测轨迹球的转动速度。
本发明还可以适用于其他类型的轨迹球,例如不采用光栅码盘的轨迹球,这类轨迹球的表面设计有均匀的黑色凸起或黑色凹点或者微型镜面,可通过光电系统通过探测黑色凸起或黑色凹点或者微型镜面来检测轨迹球的移动位移和转动方向。
本发明低速时对机械干扰、电气干扰均有较强的抑制;可以同时兼容光标高速大范围转移和低速高精度测量两方面的应用,整个方案均可由软件实现,不增加轨迹球机械设计的难度,不增加轨迹球电路部分设计的复杂程度,所以更容易根据用户手感调整参数,更容易应用于小尺寸轨迹球的开发中。
由于轨迹球的操作过程中用户主要通过显示屏的光标反馈判断拨动轨迹器的方向和位移,所以本发明通过扩展后可以针对各类采用轨迹球的设备中常用操作时用户的操作习惯,动态更改标尺,提升轨迹球手感。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (6)

1.轨迹球光标动作控制方法,所述轨迹球包括球体、与球体相切的两根转轴、分别固定在两根转轴上的两个光栅码盘和分别用于探测两个光栅码盘转动的两组感光组件,所述每组感光组件输出两个正交的方波信号,其特征在于包括以下步骤:
A1、分别对所述两组感光组件输出的两组方波信号进行计数,包括:根据所述每组方波信号中的两路正交方波的相位变化判断轨迹球的转动方向,根据轨迹球的方向信息对该组方波信号进行计数,当轨迹球正向旋转时,每检测到该组方波信号产生一个相位变化,则加1,当轨迹球反向旋转时,每检测到该组方波信号产生一个相位变化,则减1;
B1、按照一定的时间间隔获取步骤A1中的计数值,根据所述计数值计算轨迹球转动速度或固定时间间隔内的位移;
C1、根据轨迹球转动速度的变化或固定时间间隔内位移的变化实时设置轨迹球转动位移与光标在显示屏上的位移之间的标尺,使所述标尺随所述转动速度或固定时间间隔内位移的增加而变大。
2.如权利要求1所述的轨迹球光标动作控制方法,其特征在于:在定时读出所述的计数值后,将计数值归零。
3.如权利要求1所述的轨迹球光标动作控制方法,其特征在于:所述步骤A1中,轨迹球的转动方向是通过将该组方波信号的当前相位和其前的三个相位比较得出。
4.如权利要求1至3中任一项所述的轨迹球光标动作控制方法,其特征在于:在步骤C1中采用以下方式中的任意一种为所述光标设置标尺:
C11、当所述转动速度小于或等于第一速度阈值时,为光标设置的标尺为第一标尺;当所述转动速度大于第一速度阈值且小于第二速度阈值时,为光标设置的标尺为第二标尺;当所述转动速度大于或等于第二速度阈值时,为光标设置的标尺为第三标尺;且所述第一标尺<第二标尺<第三标尺;
C12、所述标尺与所述转动速度呈一定的函数关系;
C13、当所述转动速度小于或等于第一速度阈值时,为光标设置的标尺为第一标尺;当所述转动速度大于或等于第二速度阈值时,为光标设置的标尺为第三标尺;当所述转动速度大于第一速度阈值且小于第二速度阈值时,所述标尺与所述转动速度呈一定的函数关系;且所述第一标尺小于第三标尺。
5.轨迹球光标动作控制装置,所述轨迹球包括球体、与球体相切的两根转轴、分别固定在两根转轴上的两个光栅码盘和分别用于探测两个光栅码盘转动的两组感光组件,所述每组感光组件输出两个正交的方波信号;其特征在于所述轨迹球光标动作控制装置包括:
检测单元,用于检测轨迹球的转动速度或固定时间间隔内的位移;所述检测单元包括:
方向信息判断单元,用于根据所述两组感光组件输出的两组方波信号的相位变化判断轨迹球的转动方向;
位移计数器,用于分别对所述两组感光组件输出的两组方波信号进行计数;所述位移计数器根据轨迹球的方向信息对所述两组方波信号进行计数;对于每组方波信号,当轨迹球正向旋转时,每检测到该组方波信号产生一个相位变化,则加1,当轨迹球反向旋转时,每检测到该组方波信号产生一个相位变化,则减1;
定时器,用于设定时间间隔,所述位移计数器按照定时器设定的时间间隔定时输出计数值;
标尺设置单元,用于根据轨迹球转动速度的变化或固定时间间隔内位移的变化动态设置轨迹球转动位移与光标在显示屏上的位移之间的标尺,使所述标尺随所述转动速度的增加而变大。
6.如权利要求5所述的轨迹球光标动作控制装置,其特征在于:所述位移计数器在定时输出计数值后即清零。
CN2007101245434A 2007-11-14 2007-11-14 轨迹球光标动作控制方法及装置 Active CN101436108B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101245434A CN101436108B (zh) 2007-11-14 2007-11-14 轨迹球光标动作控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101245434A CN101436108B (zh) 2007-11-14 2007-11-14 轨迹球光标动作控制方法及装置

Publications (2)

Publication Number Publication Date
CN101436108A CN101436108A (zh) 2009-05-20
CN101436108B true CN101436108B (zh) 2011-07-13

Family

ID=40710563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101245434A Active CN101436108B (zh) 2007-11-14 2007-11-14 轨迹球光标动作控制方法及装置

Country Status (1)

Country Link
CN (1) CN101436108B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101699375B (zh) * 2009-11-06 2013-01-23 华为终端有限公司 一种轨迹球的控制方法和装置
CN102609323B (zh) * 2012-02-22 2018-02-06 康佳集团股份有限公司 一种轨迹球灵敏度调节方法
CN111736713A (zh) * 2020-06-23 2020-10-02 徐州天彩电子科技有限公司 一种新型空中鼠标及获取空中鼠标位移的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1389784A (zh) * 2001-06-04 2003-01-08 胡赓白 增加鼠标在显示屏上移动解析度的方法
CN101008874A (zh) * 2006-01-24 2007-08-01 达方电子股份有限公司 鼠标及其光标控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1389784A (zh) * 2001-06-04 2003-01-08 胡赓白 增加鼠标在显示屏上移动解析度的方法
CN101008874A (zh) * 2006-01-24 2007-08-01 达方电子股份有限公司 鼠标及其光标控制方法

Also Published As

Publication number Publication date
CN101436108A (zh) 2009-05-20

Similar Documents

Publication Publication Date Title
Hazan Centre parties: Polarization and competition in European parliamentary democracies
US10741287B2 (en) System and method for motor and cognitive analysis
US4963858A (en) Changeable input ratio mouse
CN100547354C (zh) 用于绝对位置测量的绝对型圆容栅传感器测量装置
US8842097B2 (en) Command input device, mobile information device, and command input method
CN101206539A (zh) 在3d空间中输入信息的信息输入装置和方法以及介质
CN101436108B (zh) 轨迹球光标动作控制方法及装置
JP2001511925A (ja) コンピュータのための入力装置
CN102449590A (zh) 使用协作输入源和有效动态坐标重映射的双指针管理方法
KR20050077364A (ko) 공간에서 클릭 동작에 따른 포인팅 위치 조절 방법 및이를 위한 공간형 입력 장치
GB2473449A (en) An optical touchpad
US20240281085A1 (en) Stylus speed
KR20070060580A (ko) 가속도 센서를 이용한 문자인식 장치 및 방법
CN103492986A (zh) 输入设备、输入方法和记录介质
CN102043549A (zh) 触控面板及触碰点的侦测方法
Hongman et al. Acceleration and orientation multisensor pedometer application design and implementation on the android platform
CN102243081A (zh) 激光角位传感器
CN102411437A (zh) 对鼠标绕z轴旋转后的倾角进行补偿的方法及设备
WO2000070551A1 (en) Stylus pen for writing on the monitor
JPS5923362B2 (ja) 電子式スケ−ル
CN204318789U (zh) 一种超声诊断设备的控制装置
WO1991009362A1 (en) Pulse count type communication system
CN102063352B (zh) 测试指标器于显示装置所显示的光标的方法
CN101607138A (zh) 基于有限自动机模型的动作识别方法
Dzierżek The digital system of the position measurement

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20090520

Assignee: Shenzhen Mindray Animal Medical Technology Co.,Ltd.

Assignor: SHENZHEN MINDRAY BIO-MEDICAL ELECTRONICS Co.,Ltd.

Contract record no.: X2022440020009

Denomination of invention: Trackball cursor action control method and device

Granted publication date: 20110713

License type: Common License

Record date: 20220804