CN101422352B - Interactive coronary artery virtual angioscope implementation method - Google Patents
Interactive coronary artery virtual angioscope implementation method Download PDFInfo
- Publication number
- CN101422352B CN101422352B CN2008100800020A CN200810080002A CN101422352B CN 101422352 B CN101422352 B CN 101422352B CN 2008100800020 A CN2008100800020 A CN 2008100800020A CN 200810080002 A CN200810080002 A CN 200810080002A CN 101422352 B CN101422352 B CN 101422352B
- Authority
- CN
- China
- Prior art keywords
- catheter
- dimensional
- images
- ivus
- intravascular ultrasound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000002452 interceptive effect Effects 0.000 title claims abstract description 20
- 210000004351 coronary vessel Anatomy 0.000 title claims abstract description 19
- 238000002608 intravascular ultrasound Methods 0.000 claims abstract description 91
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 27
- 238000002586 coronary angiography Methods 0.000 claims abstract description 16
- 238000012800 visualization Methods 0.000 claims abstract description 11
- 230000002792 vascular Effects 0.000 claims abstract description 5
- 239000013598 vector Substances 0.000 claims description 43
- 238000003384 imaging method Methods 0.000 claims description 38
- 238000002604 ultrasonography Methods 0.000 claims description 38
- 241000270295 Serpentes Species 0.000 claims description 18
- 238000000605 extraction Methods 0.000 claims description 11
- 238000005516 engineering process Methods 0.000 claims description 10
- 238000002583 angiography Methods 0.000 claims description 8
- 230000005484 gravity Effects 0.000 claims description 8
- 239000000523 sample Substances 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 5
- 239000012528 membrane Substances 0.000 claims description 5
- 238000005457 optimization Methods 0.000 claims description 4
- 230000011218 segmentation Effects 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 230000001186 cumulative effect Effects 0.000 claims description 3
- 238000007619 statistical method Methods 0.000 claims description 3
- 230000003902 lesion Effects 0.000 abstract description 6
- 208000029078 coronary artery disease Diseases 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 238000011161 development Methods 0.000 abstract description 3
- 238000003745 diagnosis Methods 0.000 abstract description 3
- 238000011156 evaluation Methods 0.000 abstract description 3
- 230000003143 atherosclerotic effect Effects 0.000 abstract description 2
- 238000002059 diagnostic imaging Methods 0.000 abstract description 2
- 238000012549 training Methods 0.000 abstract description 2
- 230000000007 visual effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 6
- 230000000747 cardiac effect Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 230000017531 blood circulation Effects 0.000 description 3
- 238000010968 computed tomography angiography Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 238000003759 clinical diagnosis Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 208000031225 myocardial ischemia Diseases 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 241000270292 Colubridae Species 0.000 description 1
- 206010062325 Congenital arterial malformation Diseases 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 210000002302 brachial artery Anatomy 0.000 description 1
- 238000007675 cardiac surgery Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 238000007887 coronary angioplasty Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 238000001839 endoscopy Methods 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 210000003709 heart valve Anatomy 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000002537 thrombolytic effect Effects 0.000 description 1
- 231100000216 vascular lesion Toxicity 0.000 description 1
Images
Landscapes
- Apparatus For Radiation Diagnosis (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
一种交互式冠状动脉虚拟血管镜的实现方法,属医学成像技术领域。目的是解决冠状动脉可视化诊治问题。技术方案是:它是通过将由近似正交的X射线冠状动脉造影图像获得的管腔三维几何形态信息与由血管内超声获得的管腔横截面数据相融合,得到血管的三维模型,然后运用虚拟现实建模语言交互地描述血管模型,实现内镜漫游模式的冠状动脉可视化。本发明实现了对三维血管模型的交互式访问和显示,为冠状动脉粥样硬化病变的发展、冠心病的可视化诊治、对介入治疗效果评价等的研究,以及医务人员的培训提供了一个理想的平台。
The invention discloses a method for realizing an interactive coronary artery virtual angioscope, which belongs to the technical field of medical imaging. The purpose is to solve the problem of visualization diagnosis and treatment of coronary artery. The technical solution is: it obtains the three-dimensional model of the blood vessel by combining the three-dimensional geometric shape information of the lumen obtained from the approximately orthogonal X-ray coronary angiography image with the cross-sectional data of the lumen obtained by intravascular ultrasound, and then uses virtual The Reality Modeling Language interactively describes the vascular model, enabling visualization of coronary arteries in endoscopic walk-through mode. The invention realizes the interactive visit and display of the three-dimensional blood vessel model, and provides an ideal solution for the development of coronary atherosclerotic lesions, the visual diagnosis and treatment of coronary heart disease, the evaluation of interventional treatment effects, and the training of medical personnel. platform.
Description
技术领域technical field
本发明涉及一种基于多成像方法融合的交互式冠状动脉虚拟血管镜的实现方法,属医学成像技术领域。The invention relates to a realization method of an interactive coronary virtual angioscope based on fusion of multiple imaging methods, which belongs to the technical field of medical imaging.
背景技术Background technique
虚拟内窥镜技术(Virtual Endoscope,VE)是利用医学影像作为原始数据,综合利用数字图像处理、计算机图形学、科学计算可视化、虚拟现实等技术,重建三维图像,形成虚拟人体组织;然后把视点置入重建出的器官空腔内,借助导航或漫游技术以及伪彩技术来逼真地模拟腔道内镜检查。Virtual Endoscope technology (Virtual Endoscope, VE) uses medical images as raw data, comprehensively utilizes digital image processing, computer graphics, scientific computing visualization, virtual reality and other technologies to reconstruct three-dimensional images to form virtual human tissues; Put it into the reconstructed organ cavity, and use navigation or roaming technology and pseudo-color technology to realistically simulate cavity endoscopy.
目前临床普遍采用的冠状动脉介入影像手段是X射线冠状动脉造影(CAG,Coronary ArteryAngiography)和血管内超声(IVUS,Intravascular Ultrasound),二者是同时进行的,血管造影和血管内超声分别同步显示导管超声探头在管腔内的部位和相应血管壁的结构形态。CAG和IVUS具有优势和不足互补的特点:CAG反映血管腔被造影剂充填后的投影轮廓,能诊断缺血性心脏病及冠状动脉畸形等疾病,而且对冠状动脉内溶栓、PTCA(经皮腔内冠状动脉成形术)等介入手术治疗具有重要意义,但不能提供血管壁的结构信息和病变程度;IVUS可清晰显示血管横断面,根据斑块声学特征进行组织学分型,发现CAG不能显示的血管病变,观察分叉处或血管重叠处的模糊病变等。但是由于采用高频超声探头,影响了探测深度,只能对某一段病变血管进行测量,不能进入严重狭窄的管腔,并且无法确定截面的轴向位置和空间方向。Coronary Artery Angiography (CAG, Coronary Artery Angiography) and Intravascular Ultrasound (IVUS, Intravascular Ultrasound) are commonly used clinically for coronary artery intervention imaging. The position of the ultrasound probe in the lumen and the structure of the corresponding vessel wall. CAG and IVUS have the characteristics of complementary advantages and disadvantages: CAG reflects the projection contour of the vascular cavity filled with contrast agent, can diagnose diseases such as ischemic heart disease and coronary artery malformation, and is effective for intracoronary thrombolysis, PTCA (percutaneous Interventional surgery such as intraluminal coronary angioplasty) is of great significance, but it cannot provide structural information of the vessel wall and the degree of lesion; IVUS can clearly display the cross-section of the vessel, perform histological classification according to the acoustic characteristics of the plaque, and find the plaques that cannot be displayed by CAG Vascular lesions, observe bifurcations or blurry lesions where vessels overlap, etc. However, due to the use of high-frequency ultrasonic probes, the detection depth is affected, and only a certain section of diseased blood vessels can be measured, and the severely narrowed lumen cannot be entered, and the axial position and spatial direction of the cross-section cannot be determined.
此外介入成像检测还包括冠状动脉血管镜,它是利用光纤技术的一种微小内窥镜成像技术。但该技术在临床上并未得到广泛接受,原因包括:只能提供管腔表面的形态学资料,不能观察到管壁内的病变深部结构,也不能进行狭窄程度和血流的定量分析;不能用于显像主动脉-冠状动脉开口处的病变和前降支及回旋支近端的病变;从侧孔进入的血流会使视野模糊;导管缺乏可操纵性,限制了显像范围;检查过程中需要暂时堵塞血流,会导致心肌缺血的发生等。In addition, interventional imaging detection also includes coronary angioscopy, which is a tiny endoscopic imaging technology using fiber optic technology. However, this technique has not been widely accepted clinically. The reasons include: it can only provide morphological data on the surface of the lumen, and cannot observe the deep structure of the lesion in the vessel wall, nor can it perform quantitative analysis of the degree of stenosis and blood flow; It is used to visualize the lesion at the opening of the aorta-coronary artery and the proximal end of the anterior descending and circumflex branches; the blood flow entering from the side hole will blur the field of vision; the lack of maneuverability of the catheter limits the scope of imaging; check The process needs to temporarily block the blood flow, which will lead to the occurrence of myocardial ischemia and so on.
目前,无创性的心血管影像检查主要包括CTA(CT Angiography)和MRCA(Magnetic ResonanceCoronary Angiography)。但是心脏CT检查的主要局限性在于容易产生伪像,影响图像质量。对于MRCA,由于冠脉血管本身较细、扭曲和结构较复杂,且有心脏搏动和呼吸的影响,冠脉周围脂肪组织和心肌组织等信号可影响其显像的结果。同时MR检查过程中虽然没有放射线,相对安全,但有噪音的影响,一些金属植入物(如人工金属瓣、心脏起搏器等)的安全性也受到关注。总之,由于成像原理所造成的不足和技术上的局限,使得到目前为止CTA和MRCA一般仅可作为对心脏综合评价的一种选择方法,或作为冠心病导管造影检查的筛查措施,减少不必要的创伤性检查,以及对心脏手术或介入治疗效果的无创性随访研究,在对冠心病的临床诊治上并不能完全取代介入性的影像检查方法。At present, non-invasive cardiovascular imaging mainly includes CTA (CT Angiography) and MRCA (Magnetic Resonance Coronary Angiography). However, the main limitation of cardiac CT examination is that it is easy to produce artifacts and affect the image quality. For MRCA, because the coronary vessels themselves are thin, tortuous and complex in structure, and have the influence of heartbeat and respiration, signals such as fat tissue and myocardial tissue around the coronary arteries can affect the imaging results. At the same time, although there is no radiation during the MR examination process, it is relatively safe, but it is affected by noise, and the safety of some metal implants (such as artificial metal valves, cardiac pacemakers, etc.) has also attracted attention. In short, due to the deficiency and technical limitations caused by the imaging principle, so far CTA and MRCA can only be used as a selection method for the comprehensive evaluation of the heart, or as a screening measure for coronary heart disease catheter angiography to reduce unnecessary Necessary invasive examinations, as well as non-invasive follow-up studies on the effects of cardiac surgery or interventional therapy, cannot completely replace interventional imaging methods in the clinical diagnosis and treatment of coronary heart disease.
综上所述,介入性的CAG和IVUS仍然是临床诊治冠心病的主要影像方法,而且二者具有优势与不足互补的特点。目前还没有一种基于CAG和IVUS图像融合的交互式冠状动脉虚拟血管镜系统,能够实现内镜漫游模式的冠状动脉可视化。In summary, interventional CAG and IVUS are still the main imaging methods for clinical diagnosis and treatment of coronary heart disease, and the two have complementary advantages and disadvantages. At present, there is no interactive coronary virtual angioscopy system based on CAG and IVUS image fusion, which can realize coronary artery visualization in endoscopic roaming mode.
发明内容Contents of the invention
本发明的目的是克服现有技术的不足、提供一种能够实现内镜漫游模式的冠状动脉可视化的交互式冠状动脉虚拟血管镜的实现方法。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a method for realizing an interactive coronary virtual angioscope capable of realizing coronary artery visualization in endoscopic roaming mode.
本发明所称问题是以下述技术方案实现的:The said problem of the present invention is realized with following technical scheme:
一种交互式冠状动脉虚拟血管镜的实现方法,它是通过将由近似正交的X射线冠状动脉造影图像获得的管腔三维几何形态信息与由血管内超声获得的管腔横截面数据相融合,得到血管的三维模型,然后运用虚拟现实建模语言(VRML)交互地描述血管模型,实现内镜漫游模式的冠状动脉可视化,具体步骤如下:A realization method of an interactive coronary virtual angioscope, which fuses the three-dimensional geometric shape information of the lumen obtained from an approximately orthogonal X-ray coronary angiography image with the cross-sectional data of the lumen obtained by intravascular ultrasound, Obtain the three-dimensional model of the blood vessel, and then use the virtual reality modeling language (VRML) to interactively describe the blood vessel model to realize the visualization of the coronary artery in the endoscopic roaming mode. The specific steps are as follows:
A、同时采集感兴趣血管段的血管内超声IVUS和X射线冠状动脉造影CAG图像:A. Simultaneous acquisition of intravascular ultrasound IVUS and X-ray coronary angiography CAG images of the vessel segment of interest:
将机械式超声导管探头置于感兴趣血管段的远端,在匀速等距回撤导引钢丝的过程中,利用血管内超声成像仪以心电ECG门控的方式采集等距的IVUS图像序列,即以心电信号的R波作为触发,仅在每个心动周期内相同的心脏相位处采集图像,可解决冠状动脉IVUS图像序列中的运动伪影问题。同时,利用C型臂单面X射线血管造影机在导管回撤路径的起点拍摄记录相同心脏状态的两幅近似垂直角度的CAG图像;Place the mechanical ultrasound catheter probe at the distal end of the vessel segment of interest, and use the intravascular ultrasound imager to acquire isometric IVUS image sequences in the manner of ECG gating during the uniform and equidistant retraction of the guide wire , that is, the R wave of the ECG signal is used as a trigger, and images are only collected at the same cardiac phase in each cardiac cycle, which can solve the problem of motion artifacts in coronary IVUS image sequences. At the same time, use the C-arm single-sided X-ray angiography machine to shoot two approximately vertical CAG images at the starting point of the catheter retraction path to record the same heart state;
B、利用采集的IVUS和CAG图像建立血管的三维模型;B, using the collected IVUS and CAG images to establish a three-dimensional model of blood vessels;
C、运用虚拟现实建模语言实现冠状动脉血管重建结果的内镜漫游模式的可视化。C. The virtual reality modeling language is used to realize the visualization of the endoscopic walk-through mode of the coronary artery reconstruction results.
上述交互式冠状动脉虚拟血管镜的实现方法,所述利用采集的IVUS和CAG图像建立血管的三维模型的具体步骤如下:The implementation method of the above-mentioned interactive coronary artery virtual angioscope, the specific steps of using the collected IVUS and CAG images to establish a three-dimensional model of blood vessels are as follows:
a、根据两个近似垂直角度的CAG图像,三维重建出超声导管的回撤路径;a. Based on two CAG images at approximately vertical angles, three-dimensionally reconstruct the retraction path of the ultrasound catheter;
b、从CAG图像中三维重建出血管管腔:b. Three-dimensional reconstruction of the vessel lumen from the CAG image:
将重建出的3D导管路径向左右两个CAG成像平面反投影,得到对应的2D路径,对于2D路径上的每个点,通过在垂直于路径的方向上,寻找灰度梯度的两个极大值,得到血管管腔左右边缘,然后在假设管腔的横截面是椭圆的前提下,完成整个血管管腔的三维重建,该结果用于后续确定各帧超声图像的空间方向;Back-project the reconstructed 3D catheter path to the left and right CAG imaging planes to obtain the corresponding 2D path. For each point on the 2D path, find the two maxima of the gray gradient in the direction perpendicular to the path value, get the left and right edges of the vessel lumen, and then complete the three-dimensional reconstruction of the entire vessel lumen under the assumption that the cross-section of the lumen is an ellipse, and the result is used to determine the spatial direction of each frame of ultrasound images;
c、血管内超声图像序列中血管壁轮廓的提取:c. Extraction of vessel wall contours in intravascular ultrasound image sequences:
在首帧图像中手动选择血管壁内、外膜轮廓上的几个特征点,以连接这些点所形成的多边形作为初始位置,通过snake变形获得血管壁内、外膜的轮廓,分割出血管壁和可能存在的斑块,对于后续帧,则将前一帧的提取结果作为snake的初始位置,完成对连续多帧IVUS图像的分割;Manually select several feature points on the contour of the inner and outer membranes of the vessel wall in the first frame image, and use the polygon formed by connecting these points as the initial position, obtain the outline of the inner and outer membranes of the vessel wall through snake deformation, and segment the vessel wall and possible plaques, for subsequent frames, the extraction result of the previous frame is used as the initial position of the snake to complete the segmentation of continuous multi-frame IVUS images;
d、确定各帧血管内超声图像的轴向位置:d. Determine the axial position of each frame of the intravascular ultrasound image:
按照IVUS图像的采集顺序和间距,沿重建出的3D导管回撤路径将各帧IVUS图像顺序排列,确定出各帧图像的轴向位置;According to the collection order and spacing of IVUS images, arrange the IVUS images of each frame in order along the reconstructed 3D catheter retraction path, and determine the axial position of each frame of images;
e、确定各帧血管内超声图像的空间方位:e. Determine the spatial orientation of each frame of the intravascular ultrasound image:
在重建后的3D导管路径上建立各帧超声图像的局部坐标系,即Frenet-Serret标架,三个坐标轴分别为单位切矢量t、单位主法矢量n和单位副法矢量b,导管的位置位于IVUS图像的中心;The local coordinate system of each frame of ultrasound images is established on the reconstructed 3D catheter path, that is, the Frenet-Serret frame. The three coordinate axes are the unit tangent vector t, the unit principal normal vector n and the unit secondary normal vector b. The position is at the center of the IVUS image;
将各帧超声图像绕导管旋转至其正确的方向以确定血管内超声图像的空间方位:Rotate each frame of the ultrasound image around the catheter to its correct orientation to determine the spatial orientation of the IVUS image:
用ρ表示血管壁轮廓的重心偏离导管位置的离心向量,把从CAG图像重建出的血管管腔的椭圆轮廓投影到对应的超声图像上,用μ来表示血管管腔椭圆轮廓中心线偏离导管位置的离心向量,ε为向量ρ的模,θ为ρ与μ的夹角,用统计优化方法确定超声图像序列的空间方位,目的是使θ最小:Use ρ to represent the centrifugal vector where the center of gravity of the vessel wall contour deviates from the catheter position, project the elliptical contour of the vessel lumen reconstructed from the CAG image onto the corresponding ultrasound image, and use μ to represent the deviation from the centerline of the vessel lumen ellipse contour from the catheter position The centrifugal vector of , ε is the modulus of vector ρ, θ is the angle between ρ and μ, the spatial orientation of the ultrasonic image sequence is determined by statistical optimization method, the purpose is to minimize θ:
设定一个固定宽度w的移动窗口,在该窗口中进行统计分析,对于N帧组成的超声图像序列,存在nw=N-(w-1)个移动窗口,在每个窗口位置m处,累计偏心距离∑εm、加权偏心夹角平均值θm以及偏心夹角的加权标准偏差σ(θm)可分别由下式计算:Set a moving window with a fixed width w, and perform statistical analysis in this window. For an ultrasound image sequence composed of N frames, there are n w =N-(w-1) moving windows, and at each window position m, The cumulative eccentric distance ∑ε m , the average weighted eccentricity angle θ m and the weighted standard deviation σ(θ m ) of the eccentricity angle can be calculated by the following formulas:
利用这些数值,在每一个窗口位置处,计算可靠性权重因子:rm=∑εm/σ(εm),在偏心距离较大的位置给予较大的权重因子,同时限制σ(θm)较大的位置,通过下式计算出一个校正偏心角θcorr:Using these values, at each window position, calculate the reliability weighting factor: r m =∑ε m /σ(ε m ), give a larger weighting factor at the position with a larger eccentricity distance, and limit σ(θ m ) larger position, a corrected eccentricity angle θ corr is calculated by the following formula:
并将其应用到序列的所有图像中,从而获得各帧图像的空间方位;And apply it to all images of the sequence to obtain the spatial orientation of each frame image;
f、利用基于NURBS曲面拟合的表面提取法完成血管管腔内外表面的绘制。f. Using the surface extraction method based on NURBS surface fitting to complete the drawing of the inner and outer surfaces of the blood vessel lumen.
上述交互式冠状动脉虚拟血管镜的实现方法,所述运用虚拟现实建模语言实现冠状动脉血管重建结果的内镜漫游模式的可视化的具体步骤如下:The implementation method of the above-mentioned interactive coronary virtual angioscope, the specific steps of using the virtual reality modeling language to realize the visualization of the endoscopic roaming mode of the coronary artery reconstruction results are as follows:
①漫游路径的计算:①Calculation of roaming path:
根据超声导管回撤路径的三维重建结果,以沿导管的第i帧IVUS图像采集点的坐标Pi为当前视点位置,Pi+1为下一个视点位置,以z轴负半轴的方向矢量
②将IVUS像素数据插入到虚拟场景中,并采用半透明的显示方式显示;②Insert the IVUS pixel data into the virtual scene and display it in a semi-transparent display mode;
③开发交互式的用户图形接口。③Develop an interactive graphical user interface.
上述交互式冠状动脉虚拟血管镜的实现方法,所述超声导管回撤路径的三维重建方法是:首先建立CAG系统在两个近似垂直角度的透视投影成像模型,再根据在造影过程中同步记录的距离和角度参数,得到成像系统的几何变换矩阵,然后采用三维snake模型技术,snake直接在空间中变形,完成导管回撤路径的三维重建;The realization method of the above-mentioned interactive coronary virtual angioscope, the three-dimensional reconstruction method of the ultrasonic catheter retraction path is: first establish the perspective projection imaging model of the CAG system at two approximately vertical angles, and then according to the synchronously recorded during the angiography process The distance and angle parameters are used to obtain the geometric transformation matrix of the imaging system, and then the three-dimensional snake model technology is used to directly deform the snake in space to complete the three-dimensional reconstruction of the catheter retraction path;
上述交互式冠状动脉虚拟血管镜的实现方法,所述冠状动脉造影图像的两个采集角度之间夹角的取值范围为60°至120°,且仅在超声导管回撤路径的起点拍摄一对造影图像。In the implementation method of the above-mentioned interactive coronary virtual angioscope, the value range of the included angle between the two acquisition angles of the coronary angiography image is 60° to 120°, and only one shot is taken at the starting point of the ultrasonic catheter retraction path. For contrast images.
本发明将由两近似正交角度的单面造影图像得到的血管空间几何信息与由血管内超声图像获得的管腔横截面信息结合起来,充分利用两种成像手段的互补性,完成了血管的准确三维重建,并运用虚拟现实建模语言实现内镜漫游模式的冠状动脉可视化。本发明实现了对三维血管模型的交互式访问和显示,为冠状动脉粥样硬化病变的发展、冠心病的可视化诊治、对介入治疗效果评价等的研究,以及医务人员的培训提供了一个理想的平台。The present invention combines the geometrical information of blood vessel space obtained from two single-plane angiography images with approximately orthogonal angles and the lumen cross-section information obtained from intravascular ultrasound images, fully utilizes the complementarity of the two imaging methods, and completes the accurate detection of blood vessels. Three-dimensional reconstruction and visualization of coronary arteries in endoscopic roaming mode using virtual reality modeling language. The invention realizes the interactive visit and display of the three-dimensional blood vessel model, and provides an ideal solution for the development of coronary atherosclerotic lesions, the visual diagnosis and treatment of coronary heart disease, the evaluation of interventional treatment effects, and the training of medical personnel. platform.
附图说明Description of drawings
下面结合附图对本发明作进一步详述。The present invention will be described in further detail below in conjunction with the accompanying drawings.
图1是根据本发明方法的三维重建血管的流程图;Fig. 1 is the flow chart of three-dimensional reconstruction blood vessel according to the method of the present invention;
图2是根据本发明方法的CAG和IVUS图像采集示意图;Fig. 2 is a schematic diagram of CAG and IVUS image acquisition according to the method of the present invention;
图3是根据本发明方法的造影系统在两个角度的成像示意图;Fig. 3 is a schematic diagram of imaging at two angles of the imaging system according to the method of the present invention;
图4是根据本发明方法的各帧超声图像相对方位的确定示意图;Fig. 4 is a schematic diagram of determining the relative orientation of each frame of ultrasonic images according to the method of the present invention;
图5是根据本发明方法的超声图像偏心距离和偏心夹角示意图;Fig. 5 is a schematic diagram of the eccentric distance and eccentric angle of the ultrasonic image according to the method of the present invention;
图6是根据本发明方法的漫游视点位置的确定示意图;Fig. 6 is a schematic diagram of determining the roaming viewpoint position according to the method of the present invention;
图7是根据本发明方法的漫游视点方向的确定示意图。Fig. 7 is a schematic diagram of determining the direction of the roaming viewpoint according to the method of the present invention.
图中各符号为:Image A、Image B、成像平面;s1、s2、两次造影过程中X射线源焦点的位置;s1x1y1z1、以s1为原点的空间坐标系;s2x2y2z2、以s2为原点的空间坐标系;U1V1O1、成像平面A上的直角坐标系;U2V2O2、成像平面B上的直角坐标系;D1、s1到成像平面A的垂直距离;D2、s2到成像平面B的垂直距离;P、空间血管上的点;p1、P点在成像平面A上的投影;p2、P点在成像平面B上的投影;u1、p1在坐标系U1V1O1内的横坐标;v1、p1在坐标系U1V1O1内的纵坐标;u2、p2在坐标系U2V2O2内的横坐标;v2、p2在坐标系U2V2O2内的纵坐标;c(s)、表示3D导管路径的空间参数曲线;C、超声图像中导管的位置,它也是超声图像的中心;OC、椭圆截面轮廓的中心(即在假设血管横截面是椭圆时,基于CAG的三维重建中所对应的血管中心线位置);OI、从超声图像中提取出的管腔截面轮廓的重心;ρ、ρ=OI-C是超声轮廓的重心偏离导管的离心向量;μ、μ=OC-C是血管中心线偏离导管的离心向量;θ、ρ与μ的夹角;Pi、Pi+1、视点;位置矢量;旋转轴;φi、旋转角;z轴负半轴的方向矢量;待求的视点方向;y轴的单位矢量,也即VRML中默认的向上的方向;εi、在x-y平面内的旋转角。The symbols in the figure are: Image A, Image B, imaging plane; s 1 , s 2 , the position of the focal point of the X-ray source during the two imaging processes; s 1 x 1 y 1 z 1 , the space coordinates with s 1 as the origin system; s 2 x 2 y 2 z 2 , space coordinate system with s 2 as the origin; U 1 V 1 O 1 , rectangular coordinate system on imaging plane A; U 2 V 2 O 2 , rectangular coordinate system on imaging plane B Coordinate system; vertical distance from D 1 , s 1 to imaging plane A; vertical distance from D 2 , s 2 to imaging plane B; P, point on the space vessel; p 1 , projection of point P on imaging plane A; p 2 , the projection of point P on the imaging plane B; the abscissa of u 1 and p 1 in the coordinate system U 1 V 1 O 1 ; the ordinate of v 1 and p 1 in the coordinate system U 1 V 1 O 1 ; the abscissa of u 2 and p 2 in the coordinate system U 2 V 2 O 2 ; the ordinate of v 2 and p 2 in the coordinate system U 2 V 2 O 2 ; c(s), representing the space of the 3D catheter path Parameter curve; C, the position of the catheter in the ultrasound image, which is also the center of the ultrasound image; O C , the center of the ellipse cross-sectional contour (that is, when the cross-section of the blood vessel is assumed to be an ellipse, the corresponding vessel centerline in the three-dimensional reconstruction based on CAG position); O I , the center of gravity of the lumen cross-sectional profile extracted from the ultrasound image; ρ, ρ=O I -C is the centrifugal vector that the center of gravity of the ultrasound profile deviates from the catheter; μ, μ=O C -C is the center of the blood vessel The centrifugal vector of the line deviating from the catheter; the angle between θ, ρ and μ; P i , P i+1 , viewpoint; position vector; Rotation axis; φ i , rotation angle; The direction vector of the negative semi-axis of the z-axis; The direction of the viewpoint to be requested; The unit vector of the y-axis, which is the default upward direction in VRML; ε i , Rotation angle in the xy plane.
文中所用符号:t、单位切矢量;n、单位主法矢量;b、单位副法矢量;ε、向量ρ的模;w、移动窗口宽度;θm加权偏心夹角平均值;σ(θm)、偏心夹角的加权标准偏差;rm、可靠性权重因子;θcorr、校正偏心角。Symbols used in this paper: t, unit tangent vector; n, unit principal normal vector; b, unit secondary normal vector; ε, modulus of vector ρ; w , moving window width ; ), the weighted standard deviation of the included eccentricity angle; r m , the reliability weight factor; θ corr , the corrected eccentricity angle.
具体实施方式Detailed ways
下面结合附图详细说明本发明的步骤:The steps of the present invention are described in detail below in conjunction with accompanying drawings:
(1)图像采集:(1) Image acquisition:
采集设备包括C型臂单面X射线血管造影机和血管内超声成像仪。Acquisition equipment includes a C-arm single-sided X-ray angiography machine and an intravascular ultrasound imager.
参看图2,IVUS和CAG成像是同时进行的。常规经右股动脉或上臂的肱动脉穿刺,行选择性冠脉造影。在X射线透视图像的指导下插入高频超声探头导管,至血管远端。将超声探头与超声成像仪连接去除伪影后,经马达控制匀速等距地回撤导管。当探头导管以1800转/分作360°旋转时连续获得30帧/秒的实时血管切面图像。采用临床常用的、让病人在导管回撤过程中屏住呼吸的方法,减小呼吸运动的影响。采用ECG门控的方式采集超声图像,从而减小心脏运动的影响。Referring to Figure 2, IVUS and CAG imaging are performed simultaneously. Routine puncture through the right femoral artery or the brachial artery of the upper arm for selective coronary angiography. Under the guidance of the X-ray fluoroscopy image, insert the high-frequency ultrasound probe catheter to the distal end of the blood vessel. After the ultrasound probe was connected to the ultrasound imager to remove artifacts, the catheter was retracted at a constant speed and equidistant by motor control. When the probe catheter rotates 360° at 1800 r/min, real-time vascular section images of 30 frames per second are obtained continuously. The commonly used clinical method of allowing the patient to hold his breath during the withdrawal of the catheter is adopted to reduce the influence of respiratory movement. Ultrasound images are acquired by means of ECG gating, thereby reducing the influence of cardiac motion.
仅在导管回撤路径的起点,采用ECG门控的方式,在相应的心脏相位处拍摄一对近似垂直角度的造影图像。由于采用机械式超声导管探头,超声换能器位于一可弯曲的轴心头端,轴心在外鞘管内旋转,而鞘管是固定不动的,因此可保证回撤路径的稳定。成像过程中记录造影角度和X射线源焦点至接收屏的距离。Only at the starting point of the catheter retraction path, a pair of contrast images with approximately vertical angles are taken at the corresponding cardiac phases by means of ECG gating. Due to the mechanical ultrasonic catheter probe, the ultrasonic transducer is located at the head end of a flexible shaft, and the shaft rotates in the outer sheath while the sheath is fixed, so the stability of the withdrawal path can be guaranteed. During the imaging process, the imaging angle and the distance from the focus of the X-ray source to the receiving screen were recorded.
(2)造影图像中导管路径和管腔边缘的提取和三维重建:(2) Extraction and three-dimensional reconstruction of catheter path and lumen edge in contrast images:
本发明首先建立CAG系统在两个近似垂直角度的透视投影成像模型(附图3)。之后,根据在造影过程中同步记录的距离和角度参数,得到成像系统的几何变换矩阵。然后利用三维snake模型技术,完成导管路径的三维重建。The present invention first establishes the perspective projection imaging model of the CAG system at two approximately vertical angles (accompanying drawing 3). Afterwards, according to the distance and angle parameters recorded synchronously during the imaging process, the geometric transformation matrix of the imaging system is obtained. Then use the 3D snake model technology to complete the 3D reconstruction of the catheter path.
snake模型又称活动轮廓模型(active contour model),是由Kass等在1987年提出的一种变形模型技术(Kass M,Witkin A,Terzopoulos T.Snakes:active contour models.International Journal of Computer Vision,1987,1(4):321-331),近年来在图像处理领域中应用十分广泛,完成图像分割、匹配和运动跟踪。The snake model, also known as the active contour model, is a deformation model technology proposed by Kass et al. in 1987 (Kass M, Witkin A, Terzopoulos T. Snakes: active contour models. International Journal of Computer Vision, 1987 , 1(4):321-331), it has been widely used in the field of image processing in recent years to complete image segmentation, matching and motion tracking.
具体实现方法为:snake的初始位置采用手动取点获得,即在导管的一个投影上手动选取若干采样点(一般选取回撤路径的起点、终点和3~4个中间点即可),然后根据外极约束得到这些点在另一投影上的对应点。由这几组对应点分别求出它们的三维坐标,用直线段连接这些3D点,所得折线作为3D snake的初始位置。The specific implementation method is: the initial position of the snake is obtained by manually picking points, that is, a number of sampling points are manually selected on a projection of the catheter (generally, the starting point, the end point and 3 to 4 intermediate points of the retraction path can be selected), and then according to The epipolar constraints get the corresponding points of these points on another projection. Calculate their three-dimensional coordinates from these groups of corresponding points, connect these 3D points with straight line segments, and use the obtained polyline as the initial position of the 3D snake.
snake模型的能量函数为:The energy function of the snake model is:
其中c(s)=(x(s),y(s),z(s)),s∈[0,1]是表示导管的三次B样条曲线。式(1)中内部能量Eint的表达式为:where c(s)=(x(s), y(s), z(s)), s∈[0,1] is a cubic B-spline curve representing the catheter. The expression of internal energy E int in formula (1) is:
Eint(c(s))=(α|c′(s)|2+β|c"(s)|2)/2 (2)E int (c(s))=(α|c′(s)| 2 +β|c”(s)| 2 )/2 (2)
其中c′(s)和c″(s)分别为c(s)的一阶和二阶导数。内部能量保证曲线的连续和光滑。Where c'(s) and c"(s) are the first and second derivatives of c(s) respectively. The internal energy ensures the continuity and smoothness of the curve.
外部能量函数Eext是保证snake收敛的外部力,包括两部分,分别对应于左右投影,保证三维曲线在两个角度成像平面上的投影恰好位于对应的导管投影处:The external energy function E ext is the external force to ensure the convergence of the snake. It consists of two parts, corresponding to the left and right projections respectively, to ensure that the projection of the three-dimensional curve on the two-angle imaging plane is exactly located at the corresponding catheter projection:
其中IL(u1,v1)和IL(u1,v1)分别是左投影点的灰度和灰度梯度值;IR(u2,v2)和IR(u2,v2)分别是右投影点的灰度和灰度梯度。由于造影图像中,血管的灰度值比背景小,所以权重系数γ取正值。根据透视投影成像的几何关系和外极线约束关系,可推导出u1、v1、u2和v2都是空间点三维坐标c=(x1,y1,z1)的函数:where I L (u 1 , v 1 ) and IL(u 1 , v 1 ) are the grayscale and grayscale gradient value of the left projected point respectively; I R (u 2 , v 2 ) and I R (u 2 , v 2 ) are the grayscale and grayscale gradient of the right projected point, respectively. Since the gray value of the blood vessel is smaller than the background in the contrast image, the weight coefficient γ takes a positive value. According to the geometric relationship of perspective projection imaging and the constraint relationship of epipolar lines, it can be deduced that u 1 , v 1 , u 2 and v 2 are all functions of the three-dimensional coordinates of space points c=(x 1 , y 1 , z 1 ):
[u1v1]T=FL(c),[u2v2]T=FR(c) (4)[u 1 v 1 ] T = F L (c), [u 2 v 2 ] T = F R (c) (4)
之后,通过使式(1)的能量函数最小化,snake曲线的最终位置就确定了导管的三维轴线。该方法避免了基于外极约束的两个角度间的逐点匹配,提高了重建精度和运算速度。Then, by minimizing the energy function of equation (1), the final position of the snake curve determines the three-dimensional axis of the catheter. This method avoids the point-by-point matching between two angles based on the outer pole constraint, and improves the reconstruction accuracy and operation speed.
按照成像系统的几何变换矩阵,将重建出的3D导管路径向左右两个CAG成像平面反投影,得到对应的2D路径。对于2D路径上的每个点,通过在垂直于路径的方向上,寻找灰度梯度的两个极大值,完成对血管管腔左右边缘的提取。之后,在假设管腔的横截面是椭圆的前提下,完成整个管腔的三维重建,该结果为后续确定各帧超声图像的空间方向所用。According to the geometric transformation matrix of the imaging system, the reconstructed 3D catheter path is back-projected to the left and right CAG imaging planes to obtain the corresponding 2D path. For each point on the 2D path, the left and right edges of the vessel lumen are extracted by looking for two maximum values of the gray gradient in the direction perpendicular to the path. Afterwards, on the premise that the cross section of the lumen is assumed to be an ellipse, the three-dimensional reconstruction of the entire lumen is completed, and the result is used for subsequent determination of the spatial direction of each frame of ultrasound images.
(3)血管内超声图像序列中血管壁轮廓的提取:(3) Extraction of the vessel wall contour in the intravascular ultrasound image sequence:
本发明采用结合动态规划的snake模型完成对IVUS图像序列中血管壁内外膜轮廓的提取。操作者只需在首帧中手动选择目标轮廓上的几个特征点,连接这些点所形成的多边形作为snake的初始位置。对于后续帧,将前一帧的提取结果作为下一帧snake的初始位置,完成对连续多帧IVUS图像的分割,可大大节省计算时间。The present invention uses a snake model combined with dynamic programming to complete the extraction of the contour of the inner and outer membranes of the blood vessel wall in the IVUS image sequence. The operator only needs to manually select several feature points on the target contour in the first frame, and the polygon formed by connecting these points is used as the initial position of the snake. For subsequent frames, the extraction result of the previous frame is used as the initial position of the snake in the next frame to complete the segmentation of continuous multi-frame IVUS images, which can greatly save calculation time.
(4)IVUS与CAG数据的融合:(4) Fusion of IVUS and CAG data:
这里主要需解决两个问题:确定各IVUS帧的3D轴向位置和空间方位。There are two main problems to be solved here: determine the 3D axial position and spatial orientation of each IVUS frame.
(4.1)超声图像三维轴向位置的确定:(4.1) Determination of the three-dimensional axial position of the ultrasound image:
在采集超声图像的过程中,采用马达驱动的方式,匀速等距的从远端向近端连续拉出导管。调节拉出导管的速度,即可根据需要调节切面间距。采用CAG图像重建出导管的轴线之后,根据已知的切面间距依轴向将各帧IVUS图像顺序排列,即可确定出各帧图像的轴向位置。During the process of acquiring ultrasound images, the catheter is continuously pulled out from the distal end to the proximal end at a uniform speed and at equal intervals by means of motor drive. By adjusting the speed at which the catheter is pulled out, the distance between the cut planes can be adjusted as required. After the axis of the catheter is reconstructed from the CAG image, the axial position of each frame of the IVUS image can be determined by arranging each frame of the IVUS image sequentially in the axial direction according to the known section spacing.
(4.2)各帧超声图像空间方位的确定(4.2) Determination of the spatial orientation of each frame of ultrasound images
本发明利用一种非迭代的统计最优化方法来计算各帧超声图像的空间方位。首先在重建后的3D导管路径上建立各帧超声图像的局部坐标系,即Frenet-Serret标架,三个坐标轴分别为单位切矢量t、单位主法矢量n和单位副法矢量b(附图4),坐标原点是IVUS图像中导管的位置。在完成导管路径的三维重建后,可得到其3D曲线方程c(s),根据微分几何的知识,t、n和b可根据曲线方程计算如下:The present invention uses a non-iterative statistical optimization method to calculate the spatial orientation of each frame of ultrasonic images. First, the local coordinate system of each frame of ultrasound images is established on the reconstructed 3D catheter path, that is, the Frenet-Serret frame, and the three coordinate axes are the unit tangent vector t, the unit principal normal vector n and the unit secondary normal vector b (attached Figure 4), the coordinate origin is the position of the catheter in the IVUS image. After completing the three-dimensional reconstruction of the catheter path, its 3D curve equation c(s) can be obtained. According to the knowledge of differential geometry, t, n and b can be calculated according to the curve equation as follows:
其中“×”表示向量的叉乘;“·”表示向量的点乘;c′(s)和c″(s)分别为c(s)的一阶和二阶导数。Among them, “×” represents the cross product of vectors; “·” represents the point product of vectors; c′(s) and c″(s) are the first-order and second-order derivatives of c(s) respectively.
导管的位置位于IVUS图像的中心,分割出的目标轮廓的重心一般不与导管位置重合,如附图5所示,其中C点表示导管,OC为椭圆轮廓的中心(即在假设血管横截面是椭圆时,基于CAG的三维重建中所对应的血管中心线位置),01为从超声图像中提取出的血管截面轮廓的重心。采用离心向量ρ表示轮廓的重心偏离导管位置的程度:ρ=OI-C。The position of the catheter is located in the center of the IVUS image, and the center of gravity of the segmented target contour generally does not coincide with the position of the catheter, as shown in Figure 5, where point C represents the catheter, and O C is the center of the ellipse contour (that is, in the hypothetical vessel cross-section When is an ellipse, the position of the centerline of the blood vessel in the three-dimensional reconstruction based on CAG), 0 1 is the center of gravity of the blood vessel cross-sectional contour extracted from the ultrasound image. The degree to which the center of gravity of the profile deviates from the position of the catheter is represented by the centrifugal vector ρ: ρ=O I −C.
由于血管中心线和导管路径不重合,在血管同一位置处的超声图像轮廓和基于造影图像重建出的椭圆轮廓方位不一致,把椭圆轮廓投影到对应的超声图像上。同样采用椭圆轮廓的离心向量μ来表示血管中心线偏离导管位置的程度:μ=OC-C。Since the centerline of the blood vessel does not coincide with the path of the catheter, the contour of the ultrasound image at the same position of the blood vessel is inconsistent with the orientation of the ellipse contour reconstructed based on the contrast image, and the ellipse contour is projected onto the corresponding ultrasound image. The centrifugal vector μ of the ellipse contour is also used to represent the degree of deviation of the centerline of the blood vessel from the position of the catheter: μ=O C −C.
超声图像的匹配误差可用向量ρ的模ε和ρ与μ的夹角θ表示。本发明利用统计优化方法确定超声图像序列的绝对方位,目的是使椭圆轮廓和超声轮廓的离心向量间的夹角θ最小。设定一个固定宽度w的移动窗口,在该窗口中进行统计分析。对于N帧组成的超声图像序列,存在nw=N-(w-1)个移动窗口。在每个窗口位置m处,累计偏心距离∑εm、加权偏心夹角平均值θm以及偏心夹角的加权标准偏差σ(θm)可分别由下式计算:The matching error of the ultrasonic image can be expressed by the modulus ε of the vector ρ and the angle θ between ρ and μ. The present invention uses a statistical optimization method to determine the absolute orientation of the ultrasonic image sequence, with the aim of minimizing the angle θ between the elliptical contour and the centrifugal vector of the ultrasonic contour. Set a moving window with a fixed width w, in which the statistical analysis is performed. For an ultrasound image sequence consisting of N frames, there are n w =N-(w-1) moving windows. At each window position m, the cumulative eccentric distance ∑ε m , the average weighted eccentricity angle θ m and the weighted standard deviation σ(θ m ) of the eccentricity angle can be calculated by the following formulas:
利用这些数值,在每一个窗口位置处,计算可靠性权重因子:rm=∑εm/σ(εm)。在偏心距离较大的位置给予较大的权重因子,同时限制σ(θm)较大的位置。通过下式计算出一个校正偏心角θcorr:Using these values, at each window position, a reliability weighting factor is calculated: r m =Σε m /σ(ε m ). A larger weight factor is given to a position with a larger eccentricity distance, and a position with a larger σ(θ m ) is restricted at the same time. A corrected eccentricity angle θ corr is calculated by the following formula:
并将其应用到序列的所有图像中,从而获得各帧图像的空间方位。And apply it to all images in the sequence to obtain the spatial orientation of each frame image.
(5)血管腔内外表面的拟合(5) Fitting of the inner and outer surfaces of the vascular lumen
在对IVUS图像序列完成边缘提取并确定各帧的空间位置后,本发明采用NURBS(非均匀有理B样条)曲面拟合沿三维回撤路径正确排列的各横截面上的采样点,得到连续的三维血管表面。After completing the edge extraction on the IVUS image sequence and determining the spatial position of each frame, the present invention adopts NURBS (Non-Uniform Rational B-spline) surface to fit the sampling points on each cross-section correctly arranged along the three-dimensional retraction path to obtain continuous 3D vessel surface.
(6)交互式冠状动脉虚拟内窥镜系统(6) Interactive coronary virtual endoscopy system
利用虚拟现实造型语言来显示内镜漫游模式的重建结果,不仅可显示重建后血管段的整体外观,而且可显示长轴纵剖面图像。Using virtual reality modeling language to display the reconstruction results of the endoscopic roaming mode can not only display the overall appearance of the reconstructed vessel segment, but also display the long-axis longitudinal section image.
包括漫游路径的计算、重建出的管腔内外表面的绘制、虚拟场景中IVUS图像数据的显示以及交互式的用户图形接口的开发。Including the calculation of the roaming path, the drawing of the reconstructed inner and outer surfaces of the lumen, the display of IVUS image data in the virtual scene and the development of an interactive graphical user interface.
(6.1)漫游路径的计算(6.1) Calculation of roaming path
漫游路径是在目标血管腔内的一系列视点组成的序列。对于每个视点,都需要确定其位置和方向,其中方向采用观察者所在局部坐标系绕任意轴的旋转表示。A walk-through path is a sequence of viewpoints within the lumen of the target vessel. For each viewpoint, its position and orientation need to be determined, where the orientation is represented by the rotation of the observer's local coordinate system around an arbitrary axis.
视点位置的确定:在VRML中,漫游路径上一点Pi(即视点)的位置和方向用三元数来表示,其中是位置矢量,是旋转轴,φi是旋转角(如附图6所示)。Determination of the position of the viewpoint: In VRML, the position and direction of a point P i (namely the viewpoint) on the roaming path use a ternary number to represent, among them is the position vector, is the axis of rotation, and φ i is the angle of rotation (as shown in Figure 6).
虚拟观察者在目标血管内的漫游既可沿IVUS导管的回撤路径进行,也可沿管腔中心线进行。故
视点方向的确定:视点方向的初始值设定为沿z轴的负半轴,如附图6所示,其中
即垂直于与所决定的平面,如附图7所示,视点的初始方向绕旋转轴旋转φi角,即得到当前的视点方向即由当前视点Pi指向下一个视点Pi+1的方向,旋转角为:Right now perpendicular to and The determined plane, as shown in Figure 7, the initial direction of the viewpoint around the axis of rotation Rotate the φ i angle to get the current viewpoint direction That is, from the current viewpoint P i to the direction of the next viewpoint P i+1 , the rotation angle is:
由向量叉积的计算公式可知,的z分量为0,表示在x-y平面内,所以也可由y轴的单位矢量在x-y平面内旋转εi得到:According to the calculation formula of vector cross product, The z component of is 0, which means in the xy plane, so It can also be represented by the unit vector of the y-axis Rotating ε i in the xy plane gives:
其中Rz(εi)表示绕z轴的旋转矩阵,是VRML中默认的向上的方向。where R z (ε i ) represents the rotation matrix around the z axis, is the default up direction in VRML.
在漫游路径的终点,即对于视点集合{P0,P1,…,Pn-1}中的一点Pi,当i=n-1时,由于不存在Pi+1,故不可用前述方法计算旋转轴和旋转角,此时:
(6.2)VRML中IVUS像素数据的显示(6.2) Display of IVUS pixel data in VRML
本发明对虚拟场景中插入的IVUS像素数据采用半透明的显示方式,即一帧IVUS图像中各像素的透明度值不是同一个常数,而是取决于像素在图像中的位置和其灰度值。超声图像中除了血管壁和斑块以外,其它结构在虚拟内镜场景中都应该是不可见的,此时利用前面对超声图像的二维分割结果,将表示管腔和外膜以外回声信号的像素设置为全透明,允许漫游路径无阻挡地穿越这些区域。而对于管壁和斑块这些感兴趣区域,其透明度值取决于像素的灰度值,例如,亮回声信号表示可能存在的斑块,因此其不透明度值应设置为较高的数值;图像中的暗区可能表示其它血管的管腔或者没有产生回声的其它结构,其不透明度值应设为较低的数值。The present invention adopts a semi-transparent display mode for the IVUS pixel data inserted in the virtual scene, that is, the transparency value of each pixel in a frame of IVUS image is not the same constant, but depends on the position of the pixel in the image and its gray value. In the ultrasound image, except for the vessel wall and plaque, other structures should be invisible in the virtual endoscopic scene. At this time, using the previous two-dimensional segmentation results of the ultrasound image, the echo signal outside the lumen and adventitia will be represented The pixels of are set to be fully transparent, allowing the walk path to traverse these areas unobstructed. For regions of interest such as tube walls and plaques, the transparency value depends on the gray value of the pixel, for example, a bright echo signal indicates a possible plaque, so its opacity value should be set to a higher value; in the image Dark areas in may represent lumens of other vessels or other structures that are not echogenic, and should be set to a lower value for their opacity values.
(6.3)交互式的用户图形接口(6.3) Interactive graphical user interface
本发明在VRML环境中设计开发出一个简明清晰、方便灵活的用户控制面板,使其能够完成以下功能:①用户可随时开启和关闭控制面板,并且开启时,以尽量不遮挡目标场景为原则。②虚拟观察者沿漫游路径前进时,在某个视点处,用户可在不同的显示模式之间进行切换,例如:按照正确的方向和位置显示在该点获取的IVUS图像;或者仅显示该点处的管腔表面(可同时开启或关闭半透明的IVUS帧);或者显示完成了彩色编码的管腔表面,其中彩色编码表示量化测量结果等。同时,用户可以随时进入或退出虚拟内镜的观察模式,显示重建后血管段的整体外观,或者长轴纵切面图像。③可调整漫游的速度和方向,虚拟观察者可在管腔内的任意位置停留。The present invention designs and develops a concise, clear, convenient and flexible user control panel in the VRML environment, so that it can complete the following functions: ① The user can open and close the control panel at any time, and when opening, the target scene should not be blocked as much as possible. ②When the virtual observer advances along the roaming path, at a certain point of view, the user can switch between different display modes, for example: display the IVUS image acquired at this point in the correct direction and position; or only display this point The luminal surface at the location (the semi-transparent IVUS frame can be turned on or off at the same time); or the luminal surface that has been color-coded, where the color coding indicates quantitative measurement results, etc. At the same time, the user can enter or exit the observation mode of the virtual endoscope at any time to display the overall appearance of the reconstructed vessel segment, or the long-axis longitudinal section image. ③ The roaming speed and direction can be adjusted, and the virtual observer can stay at any position in the lumen.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100800020A CN101422352B (en) | 2008-12-10 | 2008-12-10 | Interactive coronary artery virtual angioscope implementation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100800020A CN101422352B (en) | 2008-12-10 | 2008-12-10 | Interactive coronary artery virtual angioscope implementation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101422352A CN101422352A (en) | 2009-05-06 |
CN101422352B true CN101422352B (en) | 2011-07-13 |
Family
ID=40613397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100800020A Expired - Fee Related CN101422352B (en) | 2008-12-10 | 2008-12-10 | Interactive coronary artery virtual angioscope implementation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101422352B (en) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102289814B (en) * | 2011-08-30 | 2012-12-26 | 北京理工大学 | Cardiac nuclear magnetic resonance image segmentation method |
CN102509267B (en) * | 2011-11-08 | 2013-11-06 | 华北电力大学(保定) | Retrospective off-line gating method for intravascular ultrasound image sequence |
CN103247071B (en) * | 2013-03-29 | 2015-11-11 | 哈尔滨工业大学深圳研究生院 | A kind of structure three-dimensional blood vessel model method and apparatus |
KR20160107528A (en) * | 2015-03-04 | 2016-09-19 | 삼성전자주식회사 | Apparatus and method for providing reliability for computer aided diagnosis |
CN106909770B (en) * | 2015-12-21 | 2020-11-03 | 佳能株式会社 | Medical image processing apparatus, control method thereof, and storage medium |
EP3432780A4 (en) * | 2016-03-21 | 2019-10-23 | Washington University | VISUALIZATION IN VIRTUAL REALITY OR IN INCREASED REALITY OF 3D MEDICAL IMAGES |
US11468111B2 (en) | 2016-06-01 | 2022-10-11 | Microsoft Technology Licensing, Llc | Online perspective search for 3D components |
CN107689072A (en) * | 2016-06-12 | 2018-02-13 | 中慧医学成像有限公司 | Three-dimensional image imaging method and system |
CN108428210B (en) * | 2017-02-15 | 2021-11-16 | 浙江京新术派医疗科技有限公司 | Blood vessel image reconstruction method and reconstruction device |
CN107330236B (en) * | 2017-05-11 | 2021-06-11 | 青岛大学附属医院 | Virtual endoscope system with improved roaming effect |
CN107468334B (en) * | 2017-08-01 | 2019-07-16 | 强联智创(北京)科技有限公司 | A kind of three-dimensional microtubular moulding aided design system and design method |
DE102017214447B4 (en) * | 2017-08-18 | 2021-05-12 | Siemens Healthcare Gmbh | Planar visualization of anatomical structures |
KR101910871B1 (en) * | 2017-08-31 | 2018-12-31 | 주식회사 화승알앤에이 | Method for interpreting a layout of a tube using three-dimensional coordinates and recording medium thereof |
CN107945169B (en) * | 2017-12-01 | 2022-02-15 | 中国人民解放军第三军医大学 | Coronary artery image analysis method |
DE102018108643A1 (en) * | 2018-04-11 | 2019-11-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | A position determining device for determining a position of an object within a tubular structure |
CN109087352B (en) * | 2018-08-16 | 2021-07-13 | 数坤(北京)网络科技股份有限公司 | Automatic discrimination method for heart coronary artery dominant type |
CN109584148A (en) * | 2018-11-27 | 2019-04-05 | 重庆爱奇艺智能科技有限公司 | A kind of method and apparatus handling two-dimentional interface in VR equipment |
CN109800814B (en) * | 2019-01-25 | 2022-08-09 | 西南科技大学 | Invariant characteristic quantity extraction method for blade curve measurement positioning |
CN112057167B (en) * | 2019-05-22 | 2022-05-24 | 深圳市德力凯医疗设备股份有限公司 | Ultrasonic navigation method and ultrasonic navigation equipment for vascular surgery |
CN110458853B (en) * | 2019-08-01 | 2021-02-26 | 北京灵医灵科技有限公司 | Ankle ligament separation method and system in medical image |
CN110522418B (en) * | 2019-08-30 | 2025-03-07 | 深圳市中科微光医疗器械技术有限公司 | A cardiovascular multimodal fusion analysis method, system, device and storage medium |
CN111009032B (en) * | 2019-12-04 | 2023-09-19 | 浙江理工大学 | Vascular three-dimensional reconstruction method based on improved epipolar line constraint matching |
CN112151180B (en) * | 2019-12-05 | 2024-03-08 | 苏州润迈德医疗科技有限公司 | Method and device for synthesizing mathematical model of blood vessel with stenosis |
CN111553979B (en) * | 2020-05-26 | 2023-12-26 | 广州雪利昂生物科技有限公司 | Operation auxiliary system and method based on three-dimensional reconstruction of medical image |
CN112529976B (en) * | 2020-11-26 | 2024-06-07 | 上海商汤智能科技有限公司 | Target display method and device, electronic equipment and storage medium |
CN112652052B (en) * | 2020-12-15 | 2022-07-22 | 山东大学 | A method and system for three-dimensional reconstruction of coronary artery based on vascular classification criteria |
CN113409275B (en) * | 2021-06-22 | 2022-07-01 | 青岛海信医疗设备股份有限公司 | Method for determining thickness of transparent layer behind fetal neck based on ultrasonic image and related device |
CN114145719B (en) * | 2022-02-08 | 2022-04-26 | 天津恒宇医疗科技有限公司 | Method and system for three-dimensional fusion of dual-mode coronary vessel images |
CN116831623B (en) * | 2023-08-29 | 2024-01-12 | 深圳开立生物医疗科技股份有限公司 | Ultrasound image correction method and device, electronic equipment and storage medium |
-
2008
- 2008-12-10 CN CN2008100800020A patent/CN101422352B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101422352A (en) | 2009-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101422352B (en) | Interactive coronary artery virtual angioscope implementation method | |
CN101283929B (en) | Rebuilding method of blood vessel three-dimensional model | |
US11707242B2 (en) | Methods and systems for dynamic coronary roadmapping | |
JP5474342B2 (en) | Anatomical modeling with 3-D images and surface mapping | |
US6148095A (en) | Apparatus and method for determining three-dimensional representations of tortuous vessels | |
CN1977765B (en) | Method and apparatus for ECG-synchronized optically-based image acquisition and transformation | |
JP6177314B2 (en) | Combined use of intraluminal data and extraluminal imaging | |
US9101286B2 (en) | Apparatus and methods for determining a dimension of a portion of a stack of endoluminal data points | |
US9095313B2 (en) | Accounting for non-uniform longitudinal motion during movement of an endoluminal imaging probe | |
US8855744B2 (en) | Displaying a device within an endoluminal image stack | |
US9144394B2 (en) | Apparatus and methods for determining a plurality of local calibration factors for an image | |
US6546271B1 (en) | Vascular reconstruction | |
US20140094691A1 (en) | Apparatus and methods for mapping a sequence of images to a roadmap image | |
CN101849813A (en) | 3D Cardiac Ultrasound Virtual Endoscopy System | |
US20100189337A1 (en) | Method for acquiring 3-dimensional images of coronary vessels, particularly of coronary veins | |
CN114145719B (en) | Method and system for three-dimensional fusion of dual-mode coronary vessel images | |
CN101849843A (en) | Three-dimensional echocardiography virtual endoscopic navigation method | |
CN107019513A (en) | Intravascular virtual endoscopic imaging system and working method based on electromagnetic positioning composite catheter | |
CN116883322A (en) | A three-dimensional ultrasound model is applied to cardiac parameter measurement and management methods and terminals | |
CN101849842A (en) | A method of performing three-dimensional cardiac ultrasound virtual endoscopy | |
CN116188677A (en) | Method, system and device for three-dimensional reconstruction of vascular interventional surgery area | |
CN112669449B (en) | CAG and IVUS precise linkage analysis method and system based on 3D reconstruction technology | |
Zheng et al. | Reconstruction of coronary vessels from intravascular ultrasound image sequences based on compensation of the in-plane motion | |
Subramanian et al. | Accurate 3D reconstruction of complex blood vessel geometries from intravascular ultrasound images: in vitro study | |
Lengyel et al. | Three-dimensional reconstruction and volume rendering of intravascular ultrasound slices imaged on a curved arterial path |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110713 Termination date: 20141210 |
|
EXPY | Termination of patent right or utility model |