CN101417396A - Turbine hollow blade rabbet processing locating clamping method and device - Google Patents
Turbine hollow blade rabbet processing locating clamping method and device Download PDFInfo
- Publication number
- CN101417396A CN101417396A CNA2008102324423A CN200810232442A CN101417396A CN 101417396 A CN101417396 A CN 101417396A CN A2008102324423 A CNA2008102324423 A CN A2008102324423A CN 200810232442 A CN200810232442 A CN 200810232442A CN 101417396 A CN101417396 A CN 101417396A
- Authority
- CN
- China
- Prior art keywords
- blade
- point
- positioning
- anchor
- anchor point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title abstract description 18
- 239000013598 vector Substances 0.000 claims description 26
- 239000011159 matrix material Substances 0.000 claims description 19
- 238000005457 optimization Methods 0.000 claims description 13
- 238000009826 distribution Methods 0.000 claims description 10
- 238000003672 processing method Methods 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims 5
- 230000006978 adaptation Effects 0.000 claims 2
- 238000012217 deletion Methods 0.000 claims 2
- 230000037430 deletion Effects 0.000 claims 2
- 230000008707 rearrangement Effects 0.000 claims 1
- 239000000383 hazardous chemical Substances 0.000 abstract 1
- 231100000206 health hazard Toxicity 0.000 abstract 1
- 238000003754 machining Methods 0.000 description 7
- 239000000956 alloy Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000013178 mathematical model Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 241001417523 Plesiopidae Species 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Joining Of Building Structures In Genera (AREA)
Abstract
本发明公开了一种涡轮空心叶片榫头加工定位夹紧方法和夹具,在定位点的选择中,采用基于微分几何的夹具精度理论、定位点的形封闭准则,借助叶片型面三维模型在叶片上选取最优的五个定位点,使得在利用包括基准点在内的六个点定位时,叶片定位精度最高;在夹紧点的选择中,避开薄弱环节,将辅助夹紧点选择在刚度较好、面积较大的榫头顶端和叶片安装板上,尽量减小空心叶片叶身的受力和变形。在此基础上,设计了包括夹具主体、定位销、榫头顶端辅助夹具、叶片安装板辅助夹具构成的叶片榫头加工专用夹具。该夹具能够保证涡轮空心叶片榫头加工中的准确定位和有效夹紧,在复杂曲面空心叶片加工过程中可提高效率、降低成本和消除对人的健康危害。
The invention discloses a positioning and clamping method and a fixture for processing a tenon of a turbine hollow blade. In selecting the positioning point, the clamp precision theory based on differential geometry and the form-closed criterion of the positioning point are adopted. Select the optimal five positioning points, so that when using six points including the reference point for positioning, the positioning accuracy of the blade is the highest; in the selection of the clamping point, avoid weak links, and select the auxiliary clamping point at the rigidity The top of the tenon and the blade mounting plate with a better and larger area minimize the force and deformation of the hollow blade body. On this basis, a special fixture for blade tenon processing is designed, which consists of the fixture main body, positioning pins, tenon top auxiliary fixtures, and blade mounting plate auxiliary fixtures. The fixture can ensure accurate positioning and effective clamping in the processing of hollow turbine blade tenons, and can improve efficiency, reduce costs and eliminate human health hazards in the processing of hollow blades with complex curved surfaces.
Description
技术领域 technical field
本发明属于涡轮叶片加工定位方法和专用夹具设计,具体涉及一种燃气轮机涡轮空心动叶片榫头加工的定位、夹紧方法及夹具。The invention belongs to a machining and positioning method for turbine blades and a special fixture design, in particular to a positioning and clamping method and a fixture for machining the tenon of a hollow moving blade of a gas turbine turbine.
背景技术 Background technique
燃气轮机是一种将气体或液体燃料(如天然气、燃油)燃烧产生的热能转化为机械功的旋转式叶轮动力机械装置,广泛应用于能源、航空、交通、国防等领域,是适应我国能源结构调整和航空工业发展的关键重大装备。高温涡轮叶片处于燃气轮机中温度最高(1400℃以上)、应力最复杂、环境最恶劣的部位,其价值占产品整机的近50%,是燃气轮机中的关键部件。采用冷却叶片结构是提高燃气轮机效率的最有效措施,目前涡轮高温级动叶片多采用叶身内部有异型孔冷却通道、叶身表面上尤其是在进气边开有密布小孔的冷却结构形式。由于叶身曲面比较复杂而且整体中空,如何保证叶片机械加工中的准确定位和合理夹紧也就成为确保叶片在高温、高速旋转等恶劣环境下使用寿命的关键。A gas turbine is a rotary impeller power mechanical device that converts the heat energy generated by the combustion of gas or liquid fuel (such as natural gas, fuel oil) into mechanical work. It is widely used in energy, aviation, transportation, national defense and other fields. And the key major equipment for the development of aviation industry. The high-temperature turbine blade is the part with the highest temperature (above 1400°C), the most complex stress, and the harshest environment in the gas turbine. Its value accounts for nearly 50% of the whole product and is a key component in the gas turbine. The use of cooling blade structure is the most effective measure to improve the efficiency of gas turbines. At present, the high-temperature stage moving blades of turbines mostly adopt cooling structures with special-shaped hole cooling channels inside the blade body and densely distributed small holes on the surface of the blade body, especially on the intake side. Since the curved surface of the blade body is relatively complex and hollow as a whole, how to ensure accurate positioning and reasonable clamping in the machining of the blade becomes the key to ensure the service life of the blade in harsh environments such as high temperature and high speed rotation.
目前,在叶片榫头的加工中,发动机生产厂家大都沿袭一种加工生产方式:即采用低温合金包容箱型夹具对复杂曲面的叶片进行加工。该工艺根据经验选定叶片上的定位点,采用箱型夹具定位叶片后,将低熔点合金灌入箱体与叶片之间的空隙,形成一个整体,利用箱体规则的外形进行夹紧和加工,这样就在避免了叶身受力同时达到精确加工的目的。利用低温合金包容箱型法进行叶片榫头加工有很多优点,例如定位准确、加工过程对加工力无特殊要求、夹持稳定。但是,其缺点也是显而易见,由于使用的低熔点合金对人体具有毒性,长期下来对操作工人的健康损害很大。同时,低温合金包容箱型夹具加工效率比较低、生产周期比较长、成本非常高,制约了叶片大规模加工生产。At present, in the processing of blade tenons, most engine manufacturers follow a processing and production method: that is, use low-temperature alloy containing box-shaped fixtures to process blades with complex curved surfaces. This process selects the positioning point on the blade based on experience, and after positioning the blade with a box-shaped fixture, pours the low melting point alloy into the gap between the box and the blade to form a whole, and uses the regular shape of the box for clamping and processing , so as to avoid the force on the blade body and achieve the purpose of precise machining. There are many advantages in using low-temperature alloy containing box method to process blade tenons, such as accurate positioning, no special requirements for processing force in the processing process, and stable clamping. However, its disadvantages are also obvious. Because the low melting point alloy used is toxic to the human body, it will cause great damage to the health of the operating workers in the long run. At the same time, the low-temperature alloy containing box-shaped fixture has relatively low processing efficiency, relatively long production cycle, and very high cost, which restricts large-scale processing and production of blades.
发明内容 Contents of the invention
为了克服现有低温合金包容箱型法所存在的不足,本发明提出了一种新的涡轮空心叶片榫头加工定位夹紧方法和夹具。这种方法基于微分几何的夹具精度理论、定位的形封闭理论,选取榫头加工时叶片定位精度最高五个定位点,将辅助夹紧点选择在榫头顶端和叶片安装板侧面,使得榫头加工时叶片定位精度和受力变形同时得到控制,并在此基础上设计了涡轮空心叶片榫头加工专用夹具。In order to overcome the shortcomings of the existing low-temperature alloy containing box method, the present invention proposes a new machining, positioning and clamping method and fixture for hollow turbine blade tenons. This method is based on the fixture accuracy theory of differential geometry and the shape-closed theory of positioning, selects five positioning points with the highest blade positioning accuracy during tenon processing, and selects the auxiliary clamping point at the top of the tenon and the side of the blade mounting plate, so that the blade will The positioning accuracy and force deformation are controlled at the same time, and on this basis, a special fixture for machining the tenon of the turbine hollow blade is designed.
为达到以上目的,本发明是采取如下技术方案予以实现的:To achieve the above object, the present invention is achieved by taking the following technical solutions:
一种涡轮空心叶片榫头加工定位夹紧方法,包括叶片型面定位点的选择和根据所选定位点进行叶片型面定位夹紧及叶片榫头顶端和叶片安装板的辅助夹紧;其中,叶片型面定位点的选择,首先在叶片安装板叶片上面一侧选择一个第五定位点作为基准点,然后利用给定的叶片型面设计数据,建立叶片定位点的精度约束数学模型;得到选取定位点的点集空间,然后确定基于位置精度最好的定位点选择优化准则;再根据定位点的形封闭要求确定优化约束条件;最后优化选取并确定叶片型面的五个定位点:上面的第一至第四定位点和下面的第六定位点;根据所确定的第一到第六定位点来相应安排夹具主体上的第一到第六定位销,使得六个定位销圆头分别位于叶片第一到第六定位点的法线方向,确保叶片放入并与定位销相接触后,定位销垂直于叶片定位点切平面;夹具主体上设置定位销位于远离叶片榫头的叶片顶端,并在叶片榫头端面采用与夹具主体分离的榫头端面辅助夹具将叶片左右夹紧;在叶片安装板上下两侧采用与夹具主体连为一体的安装板辅助夹具实现叶片上下方向夹紧。A method for positioning and clamping the tenon of a turbine hollow blade, including the selection of the positioning point of the blade profile, the positioning and clamping of the blade profile according to the selected positioning point, and the auxiliary clamping of the top of the tenon of the blade and the blade mounting plate; For the selection of surface positioning points, first select a fifth positioning point on the upper side of the blade of the blade mounting plate as a reference point, and then use the given blade surface design data to establish a precision-constrained mathematical model of the blade positioning point; obtain the selected positioning point The point set space, and then determine the optimal criterion for selecting the positioning point based on the best position accuracy; then determine the optimization constraints according to the shape closure requirements of the positioning point; finally, optimize and determine the five positioning points of the blade profile: the first above to the fourth positioning point and the sixth positioning point below; arrange the first to sixth positioning pins on the fixture body according to the determined first to sixth positioning points, so that the round heads of the six positioning pins are respectively located at the sixth positioning point of the blade. The normal direction of the first to the sixth positioning point ensures that after the blade is placed and in contact with the positioning pin, the positioning pin is perpendicular to the tangent plane of the blade positioning point; The tenon end face uses the tenon end face auxiliary clamp separated from the main body of the clamp to clamp the blade left and right; on the upper and lower sides of the blade mounting plate, the mounting plate auxiliary clamp integrated with the main body of the clamp is used to clamp the blade up and down.
上述方法中,所述叶片型面定位点的选择采用如下具体步骤:In the above method, the selection of the positioning point of the blade profile adopts the following specific steps:
第一步,根据工件位置误差与定位点误差关系,即定位点与工件接触点的法向量为ni,接触点坐标为Ri,则由工件任意点的位置扰动δq={δb,δθ}带来的定位点的位置误差为
第二步,叶片模型中提供了叶片表面特征点的位置坐标,利用双三次B样条对特征点的位置坐标进行拟合,得到B样条表述的叶片型面控制节点;根据得到的B样条曲面控制节点,计算叶片表面特征点的法向量,从而得到选取定位点的点集空间gi=[Ri ni](1≤i≤N);In the second step, the position coordinates of the feature points on the blade surface are provided in the blade model, and the position coordinates of the feature points are fitted by bicubic B-splines to obtain the control nodes of the blade surface expressed by the B-splines; according to the obtained B-spline The surface control node is used to calculate the normal vector of the feature points on the blade surface, so as to obtain the point set space g i =[R i n i ](1≤i≤N) of the selected anchor points;
第三步:假设每个定位点的误差服从正态分布:δy≈N(0,Vy),其中Vy=diag{δ1,δ2...δl},定位点的位置方差矩阵为
因此工件位置精度最好的优化准则为:max(det A)=max(det(GGT));Therefore, the best optimization criterion for workpiece position accuracy is: max(det A)=max(det(GG T ));
第四步:对于给定的夹具定位点位置矩阵G=[h1,h2,...,hl],当工件上作用任意外力时,夹具定位点位置不改变,而且在每一个定位点上作用有法向正力,则这种状态下的定位点位置矩阵G=[h1,h2,...,hl]就满足形封闭。则在定位点位置矩阵G中任意选一个位置向量hc,沿其法向施加任意外力,对于所有hi,αi=-hi TA-1hc应满足ai>0;Step 4: For a given fixture positioning point position matrix G=[h 1 , h 2 , ..., h l ], when any external force acts on the workpiece, the position of the fixture positioning point does not change, and at each positioning point There is a normal positive force acting on the point, then the anchor point position matrix G=[h 1 , h 2 ,...,h l ] in this state satisfies the form closure. Then select a position vector h c arbitrarily in the anchor point position matrix G, and apply any external force along its normal direction. For all h i , α i =-h i T A -1 h c should satisfy a i >0;
第五步:在叶片型面特征点的点集空间gi=[Ri ni](1≤i≤N)中,以max(det A)为优化准则,在约束条件ai>0下优化选取具有最高精度的五个定位点,具体步骤如下:Step 5: In the point set space g i =[R i n i ](1≤i≤N) of the feature points of the blade profile, with max(det A) as the optimization criterion, under the constraint condition a i >0 Optimal selection of five positioning points with the highest precision, the specific steps are as follows:
a.初始化,计算已经确定的叶片安装板上定位点的位置向量h0,并计算点集gi=[Rini](1≤i≤N)中所有N个点的方向向量,对定位点位置矩阵G0初始化;得到G0={h0h1...hN},其中h0为已经确定的定位点,计算对应的A0和A0 -1;则在定位点位置矩阵G0中任意选一个位置向量hc,沿其法向施加任意外力,对于给定的hi(1≤i≤N),计算αi=-hi TA0 -1hc,并令k=N;a. Initialize, calculate the position vector h 0 of the determined positioning point on the blade mounting plate, and calculate the direction vectors of all N points in the point set g i =[R i n i ](1≤i≤N), for The positioning point position matrix G 0 is initialized; G 0 = {h 0 h 1 ... h N } is obtained, where h 0 is the determined positioning point, and the corresponding A 0 and A 0 -1 are calculated; then at the positioning point position Randomly select a position vector h c in the matrix G 0 , apply any external force along its normal direction, for a given h i (1≤i≤N), calculate α i =-h i T A 0 -1 h c , and Let k = N;
b.如果存在不满足形封闭的定位点,则在这些点中删除使得pj=hj TAm -1hj(m=N-k)最小的点j;如果所有的定位点都满足形封闭条件,则直接删除使pj=hj TAm -1hj(m=N-k)最小的定位点j,并令k=k-1;b. If there are anchor points that do not satisfy the shape closure, delete the point j that makes p j = h j T A m -1 h j (m=Nk) the smallest among these points; if all the anchor points satisfy the shape closure condition, then directly delete the anchor point j that makes p j =h j T A m -1 h j (m=Nk) the smallest, and make k=k-1;
c.将点集重新排序,新点集变为gi=[Ri ni](1≤i≤k),更新Gm={h0h1...hk}、Am、Am -1和αi=-hi TAm -1hc(m=N-k),再重复步骤b,如此反复,直到k=5。c. Reorder the point set, the new point set becomes g i =[R i n i ](1≤i≤k), update G m ={h 0 h 1 ...h k }, A m , A m -1 and α i =-h i T A m -1 h c (m=Nk), then repeat step b, and so on until k=5.
一种实现前述方法的夹具,包括夹具主体,其特征在于,夹具主体上连接有实现叶片上下方向夹紧的安装板辅助夹具;夹具主体上设置有相应叶片第一到第六定位点的第一到第六定位销,使得六个定位销圆头分别位于叶片第一到第六定位点的法线方向,确保叶片放入并与定位销相接触后,定位销垂直于叶片定位点切平面;夹具主体上还设置有夹紧销,该夹紧销和一个与夹具主体分离的榫头端面辅助夹一起将叶片左右夹紧。A fixture for realizing the aforementioned method, comprising a fixture main body, characterized in that the fixture main body is connected with an auxiliary fixture for a mounting plate for clamping the blade up and down; the fixture main body is provided with first to sixth positioning points of corresponding blades to the sixth positioning pin, so that the round heads of the six positioning pins are respectively located in the normal direction of the first to sixth positioning points of the blade, to ensure that after the blade is put in and in contact with the positioning pin, the positioning pin is perpendicular to the tangent plane of the blade positioning point; The main body of the clamp is also provided with a clamping pin, which clamps the blade left and right together with a mortise end surface auxiliary clamp separated from the main body of the clamp.
上述夹具方案中,所述叶片的榫头端面辅助夹具和安装板辅助夹具均设有可调节及自适应接触设计的辅助夹件,该辅助夹件包括头部和杆部,头部的上平面与工件接触,内部平面与杆部顶端的球面相接触。所述杆部设有螺纹,可与叶片的榫头端面及安装板附助夹具配合实现位置调整。In the above fixture scheme, the tenon end face auxiliary fixture of the blade and the auxiliary fixture of the mounting plate are provided with an adjustable and adaptive contact designed auxiliary fixture, the auxiliary fixture includes a head and a rod, the upper plane of the head is in contact with the Workpiece contact, internal planes in contact with the spherical surface at the top of the stem. The rod is provided with threads, which can cooperate with the tenon end surface of the blade and the auxiliary clamp of the mounting plate to realize position adjustment.
本发明的优点是:提出基于微分几何的夹具精度理论、定位点的形封闭约束条件,借助叶片型面三维模型在叶片上选取最优的五个定位点,使得利用包括基准点在内的六个定位点定位时,叶片的定位精度最高;在夹紧点的选择中,尽量避开薄弱环节,将辅助夹紧点选择在榫头顶端和叶片型面与榫头过渡部的叶片安装板上,尽量减小空心叶片叶身的受力和变形;在此基础上,设计了涡轮空心叶片榫头加工专用夹具,该夹具具有垂直于定位平面的圆头定位销、细牙螺纹叶片顶端夹紧销和采用自适应接触设计的辅助夹具及夹件,能够保证夹具与夹件的相互配合,可以满足涡轮空心叶片榫头加工中的准确定位和有效夹紧要求。The advantages of the present invention are: the theory of fixture accuracy based on differential geometry and the shape-closed constraints of the positioning points are proposed, and the optimal five positioning points are selected on the blade with the help of the three-dimensional model of the blade surface, so that the six positioning points including the reference point can be used. When locating at one positioning point, the positioning accuracy of the blade is the highest; in the selection of the clamping point, try to avoid the weak link, and select the auxiliary clamping point on the top of the tenon and the blade mounting plate at the transition part of the blade profile and the tenon, as far as possible Reduce the force and deformation of the hollow blade body; on this basis, a special fixture for the tenon processing of the turbine hollow blade is designed. The fixture has a round head positioning pin perpendicular to the positioning plane, a fine thread Auxiliary fixtures and fixtures with self-adaptive contact design can ensure the mutual cooperation between fixtures and fixtures, and can meet the requirements of accurate positioning and effective clamping in the machining of tenons of turbine hollow blades.
附图说明 Description of drawings
下面结合附图及实施例对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
图1为叶片结构。涡轮空心叶片包括榫头14、安装板15和叶片型面16,叶片是空心的,内部具有复杂的冷却管道,榫头14是叶片在涡轮上的安装基准。Figure 1 shows the blade structure. The hollow turbine blade includes a
图2为叶片六个定位点示意图。其中一个定位点d5在安装板15靠近叶片型面一侧中间位置,由优化所得到的五个定位点d1、d2、d3、d4(上面)、d6(下面)在叶片型面16上。Fig. 2 is a schematic diagram of six positioning points of the blade. One of the positioning points d5 is in the middle of the
图3为本发明夹具结构图。其中图3(a)是夹具主体10及其上的相关定位、夹紧元件,包括与叶片型面定位点d1、d2、d3、d4、d6相对应的定位销1、2、3、4、6,叶片顶端夹紧销7,叶片安装板辅助夹具8上的夹件9、11、12、13;图3(b)是榫头端面辅助夹具19及其上的夹件20、21。Fig. 3 is a structure diagram of the fixture of the present invention. Figure 3(a) shows the clamp body 10 and related positioning and clamping elements on it, including positioning pins 1, 2, 3, 4, corresponding to the blade profile positioning points d1, d2, d3, d4, d6, 6. Blade top clamp pin 7,
图4为图3中叶片安装板辅助夹具的夹件与叶片安装板连接示意图。FIG. 4 is a schematic diagram of the connection between the clip and the blade mounting plate of the auxiliary fixture of the blade mounting plate in FIG. 3 .
图5为图3图4中夹件的结构示意图。图中17是夹件的头部,18是夹件的杆部。头部17的上平面与工件接触,内部平面与杆部18顶端的球面相接触,允许工件与夹件接触面有一定的角度误差。夹件杆部18具有螺纹,可与叶片安装板及榫头端面附助夹具8、19配合实现位置调整。FIG. 5 is a schematic structural view of the clip in FIG. 3 and FIG. 4 . Among the figure, 17 is the head of the clip, and 18 is the rod of the clip. The upper plane of the
图6为工件位置误差与定位点误差关系示意图。图中XYZ为固定坐标系,Ci为定位点,Ri为定位点与工件接触点的坐标,ni为接触点法向量。δq为工件上任意点的位置误差,δyi为工件位置误差所导致的定位点误差。Fig. 6 is a schematic diagram of the relationship between the workpiece position error and the positioning point error. In the figure, XYZ is a fixed coordinate system, C i is the positioning point, R i is the coordinate of the contact point between the positioning point and the workpiece, and n i is the normal vector of the contact point. δ q is the position error of any point on the workpiece, and δ yi is the positioning point error caused by the position error of the workpiece.
具体实施方式 Detailed ways
定位点的选取方案Selection scheme of anchor points
为了保证榫头14加工中的稳定定位,按照定位基准和设计基准尽量重合,首先在叶片安装板15上选择叶型设计基准点作为一个定位点d5,然后根据叶片型面16的三维数学模型,在其表面选择另外五个定位点d1、d2、d3、d4、d6。首先由工件位置扰动导致的定位点位置误差建立定位点的精度约束数学模型;然后利用双三次B样条拟合叶片型面上由设计得到的特征点的位置坐标,计算包含法向量的特征点的空间向量,得到待选的定位点点集空间;其次假设定位点的误差服从正态分布,根据统计学理论得到工件位置精度最好的优化准则;再次基于工件定位的形封闭理论,确定夹具定位点的优化约束条件;最后在叶片型面特征点的点集空间中,选择符合上述优化准则,满足型封闭约束条件下的具有最高精度的五个定位点。具体选择方法如下:In order to ensure the stable positioning of the
第一步:建立定位点的精度约束数学模型。The first step: establish the mathematical model of the precision constraint of the positioning point.
工件位置误差与定位点误差关系示意图如图7所示,其中定位点与工件接触点的法向量为ni,接触点坐标为Ri。则由工件任意点的位置扰动δq={δb,δθ}带来的定位点的位置误差为
因此,具有l个定位点的夹具的精度约束,即定位点的位置误差可以表述为:δy=GTδq,其中:δy={δy1,δy2,...,δyl},G=[h1,h2,...,hl]。Therefore, the accuracy constraint of a fixture with l positioning points, that is, the position error of the positioning points can be expressed as: δy=G T δq, where: δy={δy 1 , δy 2 ,...,δy l }, G= [h 1 , h 2 , . . . , h l ].
第二步:得到选取定位点的点集空间。Step 2: Obtain the point set space of the selected anchor point.
叶片模型中提供了叶片表面大量特征点的位置坐标,但是没有提供特征点的法向量。为了求得包含特征点法向量的特征点向量gi=[Ri ni],利用双三次B样条对特征点的位置坐标进行拟合,得到B样条表述的叶片型面控制节点;根据得到的B样条曲面控制节点,计算叶片表面特征点的法向量。从而得到选取定位点的点集空间。The position coordinates of a large number of feature points on the blade surface are provided in the blade model, but the normal vectors of the feature points are not provided. In order to obtain the feature point vector g i =[R i n i ] including the feature point normal vector, use the bicubic B-spline to fit the position coordinates of the feature point, and obtain the blade profile control node expressed by the B-spline; According to the obtained B-spline surface control nodes, the normal vectors of the blade surface feature points are calculated. Thus, the point set space of the selected anchor point is obtained.
第三步:确定基于位置精度最好的优化准则。Step 3: Determine the best optimization criterion based on location accuracy.
假设每个定位点的误差服从正态分布:δy≈N(0,Vy),其中Vy=diag{δ1,δ2...δl}。根据统计学理论,定位点的位置方差矩阵
对于实际情况,由于各定位元件的材料特性相同,因此不同定位点的δyi服从相同的分布δyi≈N(0,Vy),则有
第四步:确定基于形封闭的优化约束条件。Step 4: Determine the optimization constraints based on shape closure.
对于给定的夹具定位点分布G=[h1,h2,...,hl],如果当工件上作用任意外力时,夹具定位点位置不改变,而且在每一个定位点上作用有法向正力,则这种状态下的定位点分布G=[h1,h2,...,hl]就满足形封闭。如果夹具定位点满足形封闭条件。则在定位点位置矩阵G中任意选一个位置向量hc,沿其法向施加任意外力,对于所有hi,αi=-hi TA-1hc应满足ai>0。For a given fixture positioning point distribution G=[h 1 , h 2 ,...,h l ], if any external force acts on the workpiece, the position of the fixture positioning point does not change, and there is a force acting on each positioning point normal positive force, then the distribution of anchor points in this state G=[h 1 , h 2 ,..., h l ] satisfies the shape closure. If the anchor point of the fixture satisfies the shape closure condition. Then select a position vector h c arbitrarily in the anchor point position matrix G, and apply any external force along its normal direction. For all h i , α i =-h i T A -1 h c should satisfy a i >0.
第五步:优化叶片型面上的五个定位点。Step 5: Optimize the five anchor points on the blade profile.
在叶片型面特征点的点集空间gi=[Rini](1≤i≤N)中,以max(det A)为优化准则,在约束条件αi>0下选取具有最高精度的五个定位点。具体的优化过程如下:In the point set space g i =[R i n i ](1≤i≤N) of the feature points of the blade profile, with max(det A) as the optimization criterion, under the constraint condition α i >0, select of the five positioning points. The specific optimization process is as follows:
Step a:初始化。计算已经确定的叶片安装板上定位点的位置向量h0,并计算点集gi=[Rini](1≤i≤N)中所有N个点的方向向量,对G0初始化;得到G0={h0h1...hN}(其中h0为已经确定的定位点)后,计算对应的A0和A0 -1;则在定位点位置矩阵G0中任意选一个位置向量hc,沿其法向施加任意外力,对于给定的hi(1≤i≤N),计算αi=-hi TA0 -1hc,并令k=N;Step a: Initialize. Calculate the position vector h 0 of the determined positioning point on the blade mounting plate, and calculate the direction vectors of all N points in the point set g i =[R i n i ](1≤i≤N), and initialize G 0 ; After obtaining G 0 = {h 0 h 1 ... h N } (wherein h 0 is the determined anchor point), calculate the corresponding A 0 and A 0 -1 ; then choose arbitrarily in the anchor point position matrix G 0 A position vector h c , any external force is applied along its normal direction, for a given h i (1≤i≤N), calculate α i =-h i T A 0 -1 h c , and let k=N;
Step b:如果存在不满足形封闭的定位点,则在这些点中删除使得pj=hj TAm -1hj(m=N-k)最小的点j;如果所有的定位点都满足性封闭条件,则直接删除使pj=hj TAm -1hj(m=N-k)最小的定位点j,并令k=k-1;Step b: If there are anchor points that do not satisfy shape closure, delete the point j that makes p j = h j T A m -1 h j (m=Nk) the smallest among these points; if all anchor points satisfy the Closed conditions, then directly delete the anchor point j that makes p j =h j T A m -1 h j (m=Nk) the smallest, and make k=k-1;
Step c:将点集重新排序,新点集变为gi=[Ri ni](1≤i≤k),更新Gm={h0 h1...hk}、Am、Am -1和αi=-hi TAm -1hc(m=N-k),再重复Step b。如此反复,直到k=5。Step c: Reorder the point set, the new point set becomes g i =[R i n i ](1≤i≤k), update G m ={h 0 h 1 ...h k }, A m , A m -1 and α i =-h i T A m -1 h c (m=Nk), and then repeat Step b. Repeat this until k=5.
夹紧点的选择方案Choice of clamping point
根据所确定的六个定位点d1、d2、d3、d4、d5、d6来相应安排夹具上的六个定位销1、2、3、4、5、6,使得六个圆头定位销分别位于叶片定位点d1、d2、d3、d4、d5、d6的法线方向,确保叶片放入并与定位销相接触后,定位销垂直于叶片定位点切平面。在夹紧点的选择中,尽量避开薄弱环节,将夹紧销7选择在相对较平整的叶片顶端,将与其相对应的横向辅助夹件20、21选择在刚度较大、面积较大、形状比较规则的榫头14顶端(图3(b));将纵向的辅助夹件9、11、12、13选择在形状较为规则、具有两个平行平面、刚度较大的叶片安装板15上(图4)。尽量减小空心叶片叶身的受力和变形。Arrange the six positioning pins 1, 2, 3, 4, 5, 6 on the fixture according to the determined six positioning points d1, d2, d3, d4, d5, d6, so that the six round head positioning pins are respectively located at The normal direction of the blade positioning points d1, d2, d3, d4, d5, and d6 ensures that after the blade is placed and in contact with the positioning pin, the positioning pin is perpendicular to the tangent plane of the blade positioning point. In the selection of the clamping point, try to avoid the weak links, select the clamping pin 7 at the top of the relatively flat blade, and select the corresponding lateral auxiliary clamps 20, 21 at the places with larger rigidity, larger area, The top of the
叶片榫头加工夹具设计方案Design scheme of blade tenon processing fixture
所设计的涡轮叶片榫头加工夹具主要由夹具主体10、六个位置固定且不可调节的定位销1、2、3、4、5、6、顶端夹紧销7、叶片安装板辅助夹具8、榫头端面附助夹具19以及位置可自适应调节的辅助夹件组成。辅助夹件包括叶片安装板辅助夹件9、11、12、13和叶片榫头端部辅助夹件20、21。榫头端面附助夹具19与夹具主体10采用分体结构,以便于安装叶片;安装板辅助夹具8与夹具主体10采用一体化结构,以提高上下夹紧的刚度。顶端夹紧销7采用可精确移动的细牙螺杆结构,保证叶片顶端的准确夹紧。辅助夹件9、11、12、13、20、21采用自适应接触设计(图5),其头部17和杆部18之间为平面和球面配合,允许工件与辅助夹件接触面有一定的角度误差;辅助夹件杆部18为螺杆结构,可实现辅助夹件的位置调整。The designed tenon processing fixture for turbine blades is mainly composed of fixture main body 10, six fixed and non-adjustable positioning pins 1, 2, 3, 4, 5, 6, top clamping pin 7, blade mounting plate auxiliary fixture 8, tenon The end surface is composed of an auxiliary clamp 19 and an auxiliary clamp whose position can be adaptively adjusted. The auxiliary clips include blade mounting plate
叶片榫头加工夹具的定位及夹紧过程Positioning and clamping process of blade tenon processing jig
如图3所示,在定位夹紧之前,将榫头端面辅助夹具19整体推离夹具主体10,并将叶片顶端夹紧销7、榫头顶端辅助夹件20、21和叶片安装板辅助夹件9、11、12、13分别调整到最远位置。将叶片型面16向里、榫头14端朝外,由夹具左端沿水平方向缓缓推入夹具主体10,并使叶片安装板15和叶片型面16分别与夹具上的六个定位销1-6接触,实现准确定位。首先调整叶片顶端夹紧销7与叶片紧密接触,然后将榫头端面辅助夹具19靠近夹具主体10,并调整榫头端部辅助夹件20、21的旋入螺杆,实现叶片左右夹紧。叶片左右被夹紧之后,分别调整叶片安装板辅助夹件9、11、12、13的旋入螺杆,实现叶片上下的稳定装夹紧固。As shown in Figure 3, before positioning and clamping, the tenon end surface auxiliary clamp 19 is pushed away from the clamp body 10 as a whole, and the blade top clamping pin 7, the tenon top auxiliary clamps 20, 21 and the blade mounting plate
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102324423A CN101417396B (en) | 2008-11-27 | 2008-11-27 | Hollow Turbine Blade Tenon Machining Positioning Clamping Method and Fixture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102324423A CN101417396B (en) | 2008-11-27 | 2008-11-27 | Hollow Turbine Blade Tenon Machining Positioning Clamping Method and Fixture |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101417396A true CN101417396A (en) | 2009-04-29 |
CN101417396B CN101417396B (en) | 2010-06-09 |
Family
ID=40628498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008102324423A Expired - Fee Related CN101417396B (en) | 2008-11-27 | 2008-11-27 | Hollow Turbine Blade Tenon Machining Positioning Clamping Method and Fixture |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101417396B (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101856792A (en) * | 2010-06-21 | 2010-10-13 | 昆山致贸精密模具有限公司 | Jig for auxiliary processing special-shaped parts |
CN102029537A (en) * | 2010-11-11 | 2011-04-27 | 西北工业大学 | Precise positioning fixture for numerical control machining of thin-wall blade |
CN102229058A (en) * | 2011-06-21 | 2011-11-02 | 无锡桥联数控机床有限公司 | Self-adjusting auxiliary location support mechanism |
CN102513587A (en) * | 2011-12-28 | 2012-06-27 | 四川成发航空科技股份有限公司 | Method for machining flat groove on front edge of low-pressure air intake guide blade of aeroengine |
CN101694374B (en) * | 2009-10-20 | 2012-07-04 | 西安交通大学 | Rapid detecting device and detecting method of precision of blades of gas turbine |
CN102528499A (en) * | 2012-01-29 | 2012-07-04 | 无锡透平叶片有限公司 | Blade positioning and clamping device used for processing blade root of tenon tooth |
CN102632410A (en) * | 2012-04-10 | 2012-08-15 | 西北工业大学 | Resin pressing curved surface numerical control machining clamp for performing precision forging on blade tenon root |
CN102873558A (en) * | 2012-09-21 | 2013-01-16 | 西安交通大学 | Turbine blade clamp based on piezoelectric ceramics and quick posture adjusting method |
CN103170860A (en) * | 2013-03-28 | 2013-06-26 | 西北工业大学 | Hollow turbine blade wax mould cantilever-type clamp |
CN103600250A (en) * | 2013-11-21 | 2014-02-26 | 沈阳黎明航空发动机(集团)有限责任公司 | Self-adaptive blade clamping and positioning device |
CN104191264A (en) * | 2014-08-06 | 2014-12-10 | 哈尔滨汽轮机厂有限责任公司 | Clamping and positioning device for machining gas turbine power turbine guide vane datum face |
CN104289934A (en) * | 2014-08-25 | 2015-01-21 | 哈尔滨汽轮机厂有限责任公司 | Blade locating device for machining milling dowel of compression ignition guide blade of milling machine |
CN105289881A (en) * | 2015-12-03 | 2016-02-03 | 中国南方航空工业(集团)有限公司 | Spraying protection clamp for turbine blades |
CN105583672A (en) * | 2014-10-23 | 2016-05-18 | 沈阳黎明航空发动机(集团)有限责任公司 | Positioning method for integrated guide vane |
CN106002619A (en) * | 2016-06-23 | 2016-10-12 | 重庆江增船舶重工有限公司 | Turbine blade tenon tooth machining blade positioning device |
CN106271734A (en) * | 2016-08-29 | 2017-01-04 | 中航动力股份有限公司 | A kind of line cutting positioning fixture |
CN107866685A (en) * | 2016-09-27 | 2018-04-03 | 通用电气公司 | For the tool holder component for the component for handling gas-turbine unit |
CN108372337A (en) * | 2016-12-20 | 2018-08-07 | 中国航空工业集团公司北京航空制造工程研究所 | A kind of positioning of blade and fixing device and its realize blade positioning and fixed method |
CN108581346A (en) * | 2018-08-14 | 2018-09-28 | 中国航发南方工业有限公司 | Hollow blade soldering fixture |
CN109048289A (en) * | 2018-10-16 | 2018-12-21 | 中国航发湖南动力机械研究所 | Blade of aviation engine assembly tool |
CN109332654A (en) * | 2018-12-07 | 2019-02-15 | 中国航发南方工业有限公司 | A kind of blade of aviation engine pedestal preparation facilities |
CN110977070A (en) * | 2019-11-11 | 2020-04-10 | 中国航发沈阳黎明航空发动机有限责任公司 | Fixing device and method for blade tenon in linear cutting |
CN111451560A (en) * | 2020-04-30 | 2020-07-28 | 中国航发航空科技股份有限公司 | Clamp for blade shroud thinning part of turbine blade of aero-engine and machining method thereof |
CN111695286A (en) * | 2020-06-22 | 2020-09-22 | 中国航发沈阳发动机研究所 | Design method of aero-engine turbine blade sampling clamp |
CN112045533A (en) * | 2020-09-21 | 2020-12-08 | 中国航发沈阳黎明航空发动机有限责任公司 | Clamping mechanism for grinding bottom of rotor blade tenon |
CN112276618A (en) * | 2020-10-20 | 2021-01-29 | 成都和鸿科技有限公司 | Method for machining tenon of blade of gas compressor |
CN113787223A (en) * | 2021-09-29 | 2021-12-14 | 中国航发航空科技股份有限公司 | Blade circumferential arc hammer foot-shaped tenon machining device and machining method thereof |
CN113857560A (en) * | 2021-11-09 | 2021-12-31 | 浙江畅尔智能装备股份有限公司 | Broaching machining process of blade tenon |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6652369B2 (en) * | 2001-12-13 | 2003-11-25 | General Electric Company | Fixture for clamping a gas turbine component and its use in shaping the gas turbine component |
US6890248B2 (en) * | 2003-02-28 | 2005-05-10 | General Electric Company | Apparatus and method for consistently retaining a gas turbine engine blade in a predetermined position and orientation |
US7328496B2 (en) * | 2003-10-31 | 2008-02-12 | General Electric Company | Apparatus for rebuilding gas turbine engine blades |
CN201109035Y (en) * | 2007-09-24 | 2008-09-03 | 沈阳黎明航空发动机(集团)有限责任公司 | Special-purpose fixture |
-
2008
- 2008-11-27 CN CN2008102324423A patent/CN101417396B/en not_active Expired - Fee Related
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101694374B (en) * | 2009-10-20 | 2012-07-04 | 西安交通大学 | Rapid detecting device and detecting method of precision of blades of gas turbine |
CN101856792A (en) * | 2010-06-21 | 2010-10-13 | 昆山致贸精密模具有限公司 | Jig for auxiliary processing special-shaped parts |
CN102029537A (en) * | 2010-11-11 | 2011-04-27 | 西北工业大学 | Precise positioning fixture for numerical control machining of thin-wall blade |
CN102229058B (en) * | 2011-06-21 | 2013-01-23 | 无锡桥联数控机床有限公司 | Self-adjusting auxiliary location support mechanism |
CN102229058A (en) * | 2011-06-21 | 2011-11-02 | 无锡桥联数控机床有限公司 | Self-adjusting auxiliary location support mechanism |
CN102513587A (en) * | 2011-12-28 | 2012-06-27 | 四川成发航空科技股份有限公司 | Method for machining flat groove on front edge of low-pressure air intake guide blade of aeroengine |
CN102513587B (en) * | 2011-12-28 | 2014-02-12 | 四川成发航空科技股份有限公司 | Machining Method of Front Edge Flat Groove of Air-engine Low Pressure Intake Guide Vane |
CN102528499A (en) * | 2012-01-29 | 2012-07-04 | 无锡透平叶片有限公司 | Blade positioning and clamping device used for processing blade root of tenon tooth |
CN102632410A (en) * | 2012-04-10 | 2012-08-15 | 西北工业大学 | Resin pressing curved surface numerical control machining clamp for performing precision forging on blade tenon root |
CN102632410B (en) * | 2012-04-10 | 2014-03-12 | 西北工业大学 | Resin pressing curved surface numerical control machining clamp for performing precision forging on blade tenon root |
CN102873558A (en) * | 2012-09-21 | 2013-01-16 | 西安交通大学 | Turbine blade clamp based on piezoelectric ceramics and quick posture adjusting method |
CN102873558B (en) * | 2012-09-21 | 2014-12-10 | 西安交通大学 | Turbine blade clamp based on piezoelectric ceramics and quick posture adjusting method |
CN103170860B (en) * | 2013-03-28 | 2015-06-10 | 西北工业大学 | Hollow turbine blade wax mould cantilever-type clamp |
CN103170860A (en) * | 2013-03-28 | 2013-06-26 | 西北工业大学 | Hollow turbine blade wax mould cantilever-type clamp |
CN103600250A (en) * | 2013-11-21 | 2014-02-26 | 沈阳黎明航空发动机(集团)有限责任公司 | Self-adaptive blade clamping and positioning device |
CN103600250B (en) * | 2013-11-21 | 2015-11-04 | 沈阳黎明航空发动机(集团)有限责任公司 | A kind of blade self adaptation clamping and positioning device |
CN104191264B (en) * | 2014-08-06 | 2016-06-15 | 哈尔滨汽轮机厂有限责任公司 | A kind of processing Gas Turbine Power turbine guide vane sheet reference plane clamping and positioning device |
CN104191264A (en) * | 2014-08-06 | 2014-12-10 | 哈尔滨汽轮机厂有限责任公司 | Clamping and positioning device for machining gas turbine power turbine guide vane datum face |
CN104289934B (en) * | 2014-08-25 | 2016-07-27 | 哈尔滨汽轮机厂有限责任公司 | A kind of blade locking device for milling machine processing combustion pressure guide vane milling pin |
CN104289934A (en) * | 2014-08-25 | 2015-01-21 | 哈尔滨汽轮机厂有限责任公司 | Blade locating device for machining milling dowel of compression ignition guide blade of milling machine |
CN105583672B (en) * | 2014-10-23 | 2018-01-23 | 沈阳黎明航空发动机(集团)有限责任公司 | A kind of localization method of conjuncted guide vane |
CN105583672A (en) * | 2014-10-23 | 2016-05-18 | 沈阳黎明航空发动机(集团)有限责任公司 | Positioning method for integrated guide vane |
CN105289881A (en) * | 2015-12-03 | 2016-02-03 | 中国南方航空工业(集团)有限公司 | Spraying protection clamp for turbine blades |
CN106002619A (en) * | 2016-06-23 | 2016-10-12 | 重庆江增船舶重工有限公司 | Turbine blade tenon tooth machining blade positioning device |
CN106271734A (en) * | 2016-08-29 | 2017-01-04 | 中航动力股份有限公司 | A kind of line cutting positioning fixture |
CN106271734B (en) * | 2016-08-29 | 2019-06-18 | 中航动力股份有限公司 | A kind of wire cutting positioning fixture |
CN107866685A (en) * | 2016-09-27 | 2018-04-03 | 通用电气公司 | For the tool holder component for the component for handling gas-turbine unit |
US10227874B2 (en) | 2016-09-27 | 2019-03-12 | General Electric Company | Tooling fixture assembly for processing a component of a gas turbine engine |
CN108372337A (en) * | 2016-12-20 | 2018-08-07 | 中国航空工业集团公司北京航空制造工程研究所 | A kind of positioning of blade and fixing device and its realize blade positioning and fixed method |
CN108581346A (en) * | 2018-08-14 | 2018-09-28 | 中国航发南方工业有限公司 | Hollow blade soldering fixture |
CN108581346B (en) * | 2018-08-14 | 2020-05-19 | 中国航发南方工业有限公司 | Hollow blade anchor clamps for brazing |
CN109048289A (en) * | 2018-10-16 | 2018-12-21 | 中国航发湖南动力机械研究所 | Blade of aviation engine assembly tool |
CN109332654A (en) * | 2018-12-07 | 2019-02-15 | 中国航发南方工业有限公司 | A kind of blade of aviation engine pedestal preparation facilities |
CN110977070A (en) * | 2019-11-11 | 2020-04-10 | 中国航发沈阳黎明航空发动机有限责任公司 | Fixing device and method for blade tenon in linear cutting |
CN110977070B (en) * | 2019-11-11 | 2020-12-08 | 中国航发沈阳黎明航空发动机有限责任公司 | Fixing device and method for blade tenon in linear cutting |
CN111451560A (en) * | 2020-04-30 | 2020-07-28 | 中国航发航空科技股份有限公司 | Clamp for blade shroud thinning part of turbine blade of aero-engine and machining method thereof |
CN111695286A (en) * | 2020-06-22 | 2020-09-22 | 中国航发沈阳发动机研究所 | Design method of aero-engine turbine blade sampling clamp |
CN111695286B (en) * | 2020-06-22 | 2023-10-20 | 中国航发沈阳发动机研究所 | Design method of sampling clamp for turbine blade of aeroengine |
CN112045533A (en) * | 2020-09-21 | 2020-12-08 | 中国航发沈阳黎明航空发动机有限责任公司 | Clamping mechanism for grinding bottom of rotor blade tenon |
CN112276618A (en) * | 2020-10-20 | 2021-01-29 | 成都和鸿科技有限公司 | Method for machining tenon of blade of gas compressor |
CN113787223A (en) * | 2021-09-29 | 2021-12-14 | 中国航发航空科技股份有限公司 | Blade circumferential arc hammer foot-shaped tenon machining device and machining method thereof |
CN113857560A (en) * | 2021-11-09 | 2021-12-31 | 浙江畅尔智能装备股份有限公司 | Broaching machining process of blade tenon |
CN113857560B (en) * | 2021-11-09 | 2023-11-28 | 浙江畅尔智能装备股份有限公司 | Broaching processing technology for blade tenon |
Also Published As
Publication number | Publication date |
---|---|
CN101417396B (en) | 2010-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101417396B (en) | Hollow Turbine Blade Tenon Machining Positioning Clamping Method and Fixture | |
CN102873558B (en) | Turbine blade clamp based on piezoelectric ceramics and quick posture adjusting method | |
CN107944143B (en) | Assembly error obtaining method facing actual working condition | |
CN105843174B (en) | A kind of spline curve interpolation parameters computational methods | |
CN104866666A (en) | Robust adjusting method of surface precision on cable network reflective surface based on finite element model correction | |
CN106125674B (en) | A kind of high-precision real time profile error estimation | |
CN103513573B (en) | A kind of 300MW unit effectively stablizes the optimum controling method of main steam temperature | |
CN107545080B (en) | A virtual pre-assembly method of steel bridge based on BIM model | |
WO2019033820A1 (en) | Optimization model for quick boundary searching for static voltage stability region of electric power system | |
CN103399996A (en) | Multi-target topological optimization design method for flexible mechanism for fast servo tool rest | |
CN107369167A (en) | A kind of robot self-calibrating method based on biplane constraint error model | |
CN104993491A (en) | Linear power flow calculation method with voltage and reactive power being taken into consideration | |
CN115983153A (en) | Water cooling system pressure flow simulation method based on component flow resistance characteristics | |
CN106650155B (en) | A method for optimal arrangement of large-scale vibration engineering control devices | |
CN107968399A (en) | A kind of method of fast search Static Voltage Stability Region Boundary | |
CN109558680B (en) | Bridge multi-target equivalent static wind load calculation method based on POD technology | |
CN115439545A (en) | Positioning method, device and storage medium for machining film cooling hole of turbine blade | |
Dong et al. | Geometrical modeling to improve the accuracy of drilled cooling holes on turbine blades | |
CN103454106B (en) | The static test of a kind of paddle change system of wind turbines executing agency | |
CN115509133B (en) | Internal combustion engine transfer function identification method based on torque estimation | |
CN115238614B (en) | Method for correcting elongation of actuating mechanism of flexible-wall spray pipe | |
CN112149286B (en) | Thermodynamic property numerical simulation method and system based on equivalent particle hypothesis | |
CN107060890A (en) | A kind of parametric modeling method of turbo blade conjugate heat transfer computational fields geometrical model | |
CN112329291A (en) | Thermosetting coupling field calculation method of reflector antenna | |
CN118423000B (en) | Method for calculating drilling direction of excavation surface of tunnel plug section |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100609 Termination date: 20121127 |