CN101417396A - Turbine hollow blade rabbet processing locating clamping method and device - Google Patents

Turbine hollow blade rabbet processing locating clamping method and device Download PDF

Info

Publication number
CN101417396A
CN101417396A CNA2008102324423A CN200810232442A CN101417396A CN 101417396 A CN101417396 A CN 101417396A CN A2008102324423 A CNA2008102324423 A CN A2008102324423A CN 200810232442 A CN200810232442 A CN 200810232442A CN 101417396 A CN101417396 A CN 101417396A
Authority
CN
China
Prior art keywords
blade
point
positioning
anchor
anchor point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008102324423A
Other languages
Chinese (zh)
Other versions
CN101417396B (en
Inventor
梅雪松
姜歌东
陶涛
王恪典
王文君
杨帆
刘志会
王煜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN2008102324423A priority Critical patent/CN101417396B/en
Publication of CN101417396A publication Critical patent/CN101417396A/en
Application granted granted Critical
Publication of CN101417396B publication Critical patent/CN101417396B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

本发明公开了一种涡轮空心叶片榫头加工定位夹紧方法和夹具,在定位点的选择中,采用基于微分几何的夹具精度理论、定位点的形封闭准则,借助叶片型面三维模型在叶片上选取最优的五个定位点,使得在利用包括基准点在内的六个点定位时,叶片定位精度最高;在夹紧点的选择中,避开薄弱环节,将辅助夹紧点选择在刚度较好、面积较大的榫头顶端和叶片安装板上,尽量减小空心叶片叶身的受力和变形。在此基础上,设计了包括夹具主体、定位销、榫头顶端辅助夹具、叶片安装板辅助夹具构成的叶片榫头加工专用夹具。该夹具能够保证涡轮空心叶片榫头加工中的准确定位和有效夹紧,在复杂曲面空心叶片加工过程中可提高效率、降低成本和消除对人的健康危害。

Figure 200810232442

The invention discloses a positioning and clamping method and a fixture for processing a tenon of a turbine hollow blade. In selecting the positioning point, the clamp precision theory based on differential geometry and the form-closed criterion of the positioning point are adopted. Select the optimal five positioning points, so that when using six points including the reference point for positioning, the positioning accuracy of the blade is the highest; in the selection of the clamping point, avoid weak links, and select the auxiliary clamping point at the rigidity The top of the tenon and the blade mounting plate with a better and larger area minimize the force and deformation of the hollow blade body. On this basis, a special fixture for blade tenon processing is designed, which consists of the fixture main body, positioning pins, tenon top auxiliary fixtures, and blade mounting plate auxiliary fixtures. The fixture can ensure accurate positioning and effective clamping in the processing of hollow turbine blade tenons, and can improve efficiency, reduce costs and eliminate human health hazards in the processing of hollow blades with complex curved surfaces.

Figure 200810232442

Description

涡轮空心叶片榫头加工定位夹紧方法和夹具 Hollow Turbine Blade Tenon Machining Positioning Clamping Method and Fixture

技术领域 technical field

本发明属于涡轮叶片加工定位方法和专用夹具设计,具体涉及一种燃气轮机涡轮空心动叶片榫头加工的定位、夹紧方法及夹具。The invention belongs to a machining and positioning method for turbine blades and a special fixture design, in particular to a positioning and clamping method and a fixture for machining the tenon of a hollow moving blade of a gas turbine turbine.

背景技术 Background technique

燃气轮机是一种将气体或液体燃料(如天然气、燃油)燃烧产生的热能转化为机械功的旋转式叶轮动力机械装置,广泛应用于能源、航空、交通、国防等领域,是适应我国能源结构调整和航空工业发展的关键重大装备。高温涡轮叶片处于燃气轮机中温度最高(1400℃以上)、应力最复杂、环境最恶劣的部位,其价值占产品整机的近50%,是燃气轮机中的关键部件。采用冷却叶片结构是提高燃气轮机效率的最有效措施,目前涡轮高温级动叶片多采用叶身内部有异型孔冷却通道、叶身表面上尤其是在进气边开有密布小孔的冷却结构形式。由于叶身曲面比较复杂而且整体中空,如何保证叶片机械加工中的准确定位和合理夹紧也就成为确保叶片在高温、高速旋转等恶劣环境下使用寿命的关键。A gas turbine is a rotary impeller power mechanical device that converts the heat energy generated by the combustion of gas or liquid fuel (such as natural gas, fuel oil) into mechanical work. It is widely used in energy, aviation, transportation, national defense and other fields. And the key major equipment for the development of aviation industry. The high-temperature turbine blade is the part with the highest temperature (above 1400°C), the most complex stress, and the harshest environment in the gas turbine. Its value accounts for nearly 50% of the whole product and is a key component in the gas turbine. The use of cooling blade structure is the most effective measure to improve the efficiency of gas turbines. At present, the high-temperature stage moving blades of turbines mostly adopt cooling structures with special-shaped hole cooling channels inside the blade body and densely distributed small holes on the surface of the blade body, especially on the intake side. Since the curved surface of the blade body is relatively complex and hollow as a whole, how to ensure accurate positioning and reasonable clamping in the machining of the blade becomes the key to ensure the service life of the blade in harsh environments such as high temperature and high speed rotation.

目前,在叶片榫头的加工中,发动机生产厂家大都沿袭一种加工生产方式:即采用低温合金包容箱型夹具对复杂曲面的叶片进行加工。该工艺根据经验选定叶片上的定位点,采用箱型夹具定位叶片后,将低熔点合金灌入箱体与叶片之间的空隙,形成一个整体,利用箱体规则的外形进行夹紧和加工,这样就在避免了叶身受力同时达到精确加工的目的。利用低温合金包容箱型法进行叶片榫头加工有很多优点,例如定位准确、加工过程对加工力无特殊要求、夹持稳定。但是,其缺点也是显而易见,由于使用的低熔点合金对人体具有毒性,长期下来对操作工人的健康损害很大。同时,低温合金包容箱型夹具加工效率比较低、生产周期比较长、成本非常高,制约了叶片大规模加工生产。At present, in the processing of blade tenons, most engine manufacturers follow a processing and production method: that is, use low-temperature alloy containing box-shaped fixtures to process blades with complex curved surfaces. This process selects the positioning point on the blade based on experience, and after positioning the blade with a box-shaped fixture, pours the low melting point alloy into the gap between the box and the blade to form a whole, and uses the regular shape of the box for clamping and processing , so as to avoid the force on the blade body and achieve the purpose of precise machining. There are many advantages in using low-temperature alloy containing box method to process blade tenons, such as accurate positioning, no special requirements for processing force in the processing process, and stable clamping. However, its disadvantages are also obvious. Because the low melting point alloy used is toxic to the human body, it will cause great damage to the health of the operating workers in the long run. At the same time, the low-temperature alloy containing box-shaped fixture has relatively low processing efficiency, relatively long production cycle, and very high cost, which restricts large-scale processing and production of blades.

发明内容 Contents of the invention

为了克服现有低温合金包容箱型法所存在的不足,本发明提出了一种新的涡轮空心叶片榫头加工定位夹紧方法和夹具。这种方法基于微分几何的夹具精度理论、定位的形封闭理论,选取榫头加工时叶片定位精度最高五个定位点,将辅助夹紧点选择在榫头顶端和叶片安装板侧面,使得榫头加工时叶片定位精度和受力变形同时得到控制,并在此基础上设计了涡轮空心叶片榫头加工专用夹具。In order to overcome the shortcomings of the existing low-temperature alloy containing box method, the present invention proposes a new machining, positioning and clamping method and fixture for hollow turbine blade tenons. This method is based on the fixture accuracy theory of differential geometry and the shape-closed theory of positioning, selects five positioning points with the highest blade positioning accuracy during tenon processing, and selects the auxiliary clamping point at the top of the tenon and the side of the blade mounting plate, so that the blade will The positioning accuracy and force deformation are controlled at the same time, and on this basis, a special fixture for machining the tenon of the turbine hollow blade is designed.

为达到以上目的,本发明是采取如下技术方案予以实现的:To achieve the above object, the present invention is achieved by taking the following technical solutions:

一种涡轮空心叶片榫头加工定位夹紧方法,包括叶片型面定位点的选择和根据所选定位点进行叶片型面定位夹紧及叶片榫头顶端和叶片安装板的辅助夹紧;其中,叶片型面定位点的选择,首先在叶片安装板叶片上面一侧选择一个第五定位点作为基准点,然后利用给定的叶片型面设计数据,建立叶片定位点的精度约束数学模型;得到选取定位点的点集空间,然后确定基于位置精度最好的定位点选择优化准则;再根据定位点的形封闭要求确定优化约束条件;最后优化选取并确定叶片型面的五个定位点:上面的第一至第四定位点和下面的第六定位点;根据所确定的第一到第六定位点来相应安排夹具主体上的第一到第六定位销,使得六个定位销圆头分别位于叶片第一到第六定位点的法线方向,确保叶片放入并与定位销相接触后,定位销垂直于叶片定位点切平面;夹具主体上设置定位销位于远离叶片榫头的叶片顶端,并在叶片榫头端面采用与夹具主体分离的榫头端面辅助夹具将叶片左右夹紧;在叶片安装板上下两侧采用与夹具主体连为一体的安装板辅助夹具实现叶片上下方向夹紧。A method for positioning and clamping the tenon of a turbine hollow blade, including the selection of the positioning point of the blade profile, the positioning and clamping of the blade profile according to the selected positioning point, and the auxiliary clamping of the top of the tenon of the blade and the blade mounting plate; For the selection of surface positioning points, first select a fifth positioning point on the upper side of the blade of the blade mounting plate as a reference point, and then use the given blade surface design data to establish a precision-constrained mathematical model of the blade positioning point; obtain the selected positioning point The point set space, and then determine the optimal criterion for selecting the positioning point based on the best position accuracy; then determine the optimization constraints according to the shape closure requirements of the positioning point; finally, optimize and determine the five positioning points of the blade profile: the first above to the fourth positioning point and the sixth positioning point below; arrange the first to sixth positioning pins on the fixture body according to the determined first to sixth positioning points, so that the round heads of the six positioning pins are respectively located at the sixth positioning point of the blade. The normal direction of the first to the sixth positioning point ensures that after the blade is placed and in contact with the positioning pin, the positioning pin is perpendicular to the tangent plane of the blade positioning point; The tenon end face uses the tenon end face auxiliary clamp separated from the main body of the clamp to clamp the blade left and right; on the upper and lower sides of the blade mounting plate, the mounting plate auxiliary clamp integrated with the main body of the clamp is used to clamp the blade up and down.

上述方法中,所述叶片型面定位点的选择采用如下具体步骤:In the above method, the selection of the positioning point of the blade profile adopts the following specific steps:

第一步,根据工件位置误差与定位点误差关系,即定位点与工件接触点的法向量为ni,接触点坐标为Ri,则由工件任意点的位置扰动δq={δb,δθ}带来的定位点的位置误差为 δy i = h i T δq , 其中 h i T = - { n i T ( R i × n i ) T } 为定位点位置向量;因此,具有l个定位点的夹具的精度约束,即定位点的位置误差可以表述为:δy=GTδq,其中:δy={δy1,δy2,...,δyl},G=[h1,h2,...,hl]为定位点位置矩阵,每一个定位点位置矩阵G对应一个给定的夹具定位点分布;The first step, according to the relationship between the workpiece position error and the positioning point error, that is, the normal vector of the positioning point and the contact point of the workpiece is n i , and the coordinate of the contact point is R i , then the position disturbance of any point of the workpiece δq={δb, δθ} The position error of the positioning point is δy i = h i T δq , in h i T = - { no i T ( R i × no i ) T } is the position vector of the positioning point; therefore, the precision constraint of the fixture with l positioning points, that is, the position error of the positioning point can be expressed as: δy=G T δq, where: δy={δy 1 , δy 2 ,..., δy l }, G=[h 1 , h 2 ,...,h l ] is the positioning point position matrix, and each positioning point position matrix G corresponds to a given fixture positioning point distribution;

第二步,叶片模型中提供了叶片表面特征点的位置坐标,利用双三次B样条对特征点的位置坐标进行拟合,得到B样条表述的叶片型面控制节点;根据得到的B样条曲面控制节点,计算叶片表面特征点的法向量,从而得到选取定位点的点集空间gi=[Ri ni](1≤i≤N);In the second step, the position coordinates of the feature points on the blade surface are provided in the blade model, and the position coordinates of the feature points are fitted by bicubic B-splines to obtain the control nodes of the blade surface expressed by the B-splines; according to the obtained B-spline The surface control node is used to calculate the normal vector of the feature points on the blade surface, so as to obtain the point set space g i =[R i n i ](1≤i≤N) of the selected anchor points;

第三步:假设每个定位点的误差服从正态分布:δy≈N(0,Vy),其中Vy=diag{δ1,δ2...δl},定位点的位置方差矩阵为 V = Var ( δq ) = ( GV y - 1 G T ) - 1 , 令A=V-1,则使工件的位置精度最好的条件为max(det A);由于各定位元件的材料特性相同,因此不同定位点的δyi服从相同的分布δyi≈N(0,Vy),则有Step 3: Assume that the error of each positioning point obeys a normal distribution: δy≈N(0, V y ), where V y =diag{δ 1 , δ 2 ...δ l }, the position variance matrix of the positioning point for V = Var ( δq ) = ( GV the y - 1 G T ) - 1 , Assuming A=V -1 , the condition for making the position accuracy of the workpiece the best is max(det A); since the material properties of each positioning element are the same, the δy i of different positioning points obey the same distribution δy i ≈ N(0 , V y ), then there is

V = ( GV y - 1 G T ) - 1 = ( Gδ G T ) - 1 , A=V-1=GδGT=δGGT V = ( GV the y - 1 G T ) - 1 = ( Gδ G T ) - 1 , A=V -1 =GδG T =δGG T ,

因此工件位置精度最好的优化准则为:max(det A)=max(det(GGT));Therefore, the best optimization criterion for workpiece position accuracy is: max(det A)=max(det(GG T ));

第四步:对于给定的夹具定位点位置矩阵G=[h1,h2,...,hl],当工件上作用任意外力时,夹具定位点位置不改变,而且在每一个定位点上作用有法向正力,则这种状态下的定位点位置矩阵G=[h1,h2,...,hl]就满足形封闭。则在定位点位置矩阵G中任意选一个位置向量hc,沿其法向施加任意外力,对于所有hi,αi=-hi TA-1hc应满足ai>0;Step 4: For a given fixture positioning point position matrix G=[h 1 , h 2 , ..., h l ], when any external force acts on the workpiece, the position of the fixture positioning point does not change, and at each positioning point There is a normal positive force acting on the point, then the anchor point position matrix G=[h 1 , h 2 ,...,h l ] in this state satisfies the form closure. Then select a position vector h c arbitrarily in the anchor point position matrix G, and apply any external force along its normal direction. For all h i , α i =-h i T A -1 h c should satisfy a i >0;

第五步:在叶片型面特征点的点集空间gi=[Ri ni](1≤i≤N)中,以max(det A)为优化准则,在约束条件ai>0下优化选取具有最高精度的五个定位点,具体步骤如下:Step 5: In the point set space g i =[R i n i ](1≤i≤N) of the feature points of the blade profile, with max(det A) as the optimization criterion, under the constraint condition a i >0 Optimal selection of five positioning points with the highest precision, the specific steps are as follows:

a.初始化,计算已经确定的叶片安装板上定位点的位置向量h0,并计算点集gi=[Rini](1≤i≤N)中所有N个点的方向向量,对定位点位置矩阵G0初始化;得到G0={h0h1...hN},其中h0为已经确定的定位点,计算对应的A0和A0 -1;则在定位点位置矩阵G0中任意选一个位置向量hc,沿其法向施加任意外力,对于给定的hi(1≤i≤N),计算αi=-hi TA0 -1hc,并令k=N;a. Initialize, calculate the position vector h 0 of the determined positioning point on the blade mounting plate, and calculate the direction vectors of all N points in the point set g i =[R i n i ](1≤i≤N), for The positioning point position matrix G 0 is initialized; G 0 = {h 0 h 1 ... h N } is obtained, where h 0 is the determined positioning point, and the corresponding A 0 and A 0 -1 are calculated; then at the positioning point position Randomly select a position vector h c in the matrix G 0 , apply any external force along its normal direction, for a given h i (1≤i≤N), calculate α i =-h i T A 0 -1 h c , and Let k = N;

b.如果存在不满足形封闭的定位点,则在这些点中删除使得pj=hj TAm -1hj(m=N-k)最小的点j;如果所有的定位点都满足形封闭条件,则直接删除使pj=hj TAm -1hj(m=N-k)最小的定位点j,并令k=k-1;b. If there are anchor points that do not satisfy the shape closure, delete the point j that makes p j = h j T A m -1 h j (m=Nk) the smallest among these points; if all the anchor points satisfy the shape closure condition, then directly delete the anchor point j that makes p j =h j T A m -1 h j (m=Nk) the smallest, and make k=k-1;

c.将点集重新排序,新点集变为gi=[Ri ni](1≤i≤k),更新Gm={h0h1...hk}、Am、Am -1和αi=-hi TAm -1hc(m=N-k),再重复步骤b,如此反复,直到k=5。c. Reorder the point set, the new point set becomes g i =[R i n i ](1≤i≤k), update G m ={h 0 h 1 ...h k }, A m , A m -1 and α i =-h i T A m -1 h c (m=Nk), then repeat step b, and so on until k=5.

一种实现前述方法的夹具,包括夹具主体,其特征在于,夹具主体上连接有实现叶片上下方向夹紧的安装板辅助夹具;夹具主体上设置有相应叶片第一到第六定位点的第一到第六定位销,使得六个定位销圆头分别位于叶片第一到第六定位点的法线方向,确保叶片放入并与定位销相接触后,定位销垂直于叶片定位点切平面;夹具主体上还设置有夹紧销,该夹紧销和一个与夹具主体分离的榫头端面辅助夹一起将叶片左右夹紧。A fixture for realizing the aforementioned method, comprising a fixture main body, characterized in that the fixture main body is connected with an auxiliary fixture for a mounting plate for clamping the blade up and down; the fixture main body is provided with first to sixth positioning points of corresponding blades to the sixth positioning pin, so that the round heads of the six positioning pins are respectively located in the normal direction of the first to sixth positioning points of the blade, to ensure that after the blade is put in and in contact with the positioning pin, the positioning pin is perpendicular to the tangent plane of the blade positioning point; The main body of the clamp is also provided with a clamping pin, which clamps the blade left and right together with a mortise end surface auxiliary clamp separated from the main body of the clamp.

上述夹具方案中,所述叶片的榫头端面辅助夹具和安装板辅助夹具均设有可调节及自适应接触设计的辅助夹件,该辅助夹件包括头部和杆部,头部的上平面与工件接触,内部平面与杆部顶端的球面相接触。所述杆部设有螺纹,可与叶片的榫头端面及安装板附助夹具配合实现位置调整。In the above fixture scheme, the tenon end face auxiliary fixture of the blade and the auxiliary fixture of the mounting plate are provided with an adjustable and adaptive contact designed auxiliary fixture, the auxiliary fixture includes a head and a rod, the upper plane of the head is in contact with the Workpiece contact, internal planes in contact with the spherical surface at the top of the stem. The rod is provided with threads, which can cooperate with the tenon end surface of the blade and the auxiliary clamp of the mounting plate to realize position adjustment.

本发明的优点是:提出基于微分几何的夹具精度理论、定位点的形封闭约束条件,借助叶片型面三维模型在叶片上选取最优的五个定位点,使得利用包括基准点在内的六个定位点定位时,叶片的定位精度最高;在夹紧点的选择中,尽量避开薄弱环节,将辅助夹紧点选择在榫头顶端和叶片型面与榫头过渡部的叶片安装板上,尽量减小空心叶片叶身的受力和变形;在此基础上,设计了涡轮空心叶片榫头加工专用夹具,该夹具具有垂直于定位平面的圆头定位销、细牙螺纹叶片顶端夹紧销和采用自适应接触设计的辅助夹具及夹件,能够保证夹具与夹件的相互配合,可以满足涡轮空心叶片榫头加工中的准确定位和有效夹紧要求。The advantages of the present invention are: the theory of fixture accuracy based on differential geometry and the shape-closed constraints of the positioning points are proposed, and the optimal five positioning points are selected on the blade with the help of the three-dimensional model of the blade surface, so that the six positioning points including the reference point can be used. When locating at one positioning point, the positioning accuracy of the blade is the highest; in the selection of the clamping point, try to avoid the weak link, and select the auxiliary clamping point on the top of the tenon and the blade mounting plate at the transition part of the blade profile and the tenon, as far as possible Reduce the force and deformation of the hollow blade body; on this basis, a special fixture for the tenon processing of the turbine hollow blade is designed. The fixture has a round head positioning pin perpendicular to the positioning plane, a fine thread Auxiliary fixtures and fixtures with self-adaptive contact design can ensure the mutual cooperation between fixtures and fixtures, and can meet the requirements of accurate positioning and effective clamping in the machining of tenons of turbine hollow blades.

附图说明 Description of drawings

下面结合附图及实施例对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.

图1为叶片结构。涡轮空心叶片包括榫头14、安装板15和叶片型面16,叶片是空心的,内部具有复杂的冷却管道,榫头14是叶片在涡轮上的安装基准。Figure 1 shows the blade structure. The hollow turbine blade includes a tenon 14, a mounting plate 15 and a blade profile 16. The blade is hollow and has complex cooling channels inside. The tenon 14 is the installation reference of the blade on the turbine.

图2为叶片六个定位点示意图。其中一个定位点d5在安装板15靠近叶片型面一侧中间位置,由优化所得到的五个定位点d1、d2、d3、d4(上面)、d6(下面)在叶片型面16上。Fig. 2 is a schematic diagram of six positioning points of the blade. One of the positioning points d5 is in the middle of the mounting plate 15 near the blade profile, and five positioning points d1, d2, d3, d4 (above) and d6 (below) obtained by optimization are on the blade profile 16 .

图3为本发明夹具结构图。其中图3(a)是夹具主体10及其上的相关定位、夹紧元件,包括与叶片型面定位点d1、d2、d3、d4、d6相对应的定位销1、2、3、4、6,叶片顶端夹紧销7,叶片安装板辅助夹具8上的夹件9、11、12、13;图3(b)是榫头端面辅助夹具19及其上的夹件20、21。Fig. 3 is a structure diagram of the fixture of the present invention. Figure 3(a) shows the clamp body 10 and related positioning and clamping elements on it, including positioning pins 1, 2, 3, 4, corresponding to the blade profile positioning points d1, d2, d3, d4, d6, 6. Blade top clamp pin 7, clips 9, 11, 12, 13 on the blade mounting plate auxiliary fixture 8; Fig. 3(b) is the tenon end surface auxiliary fixture 19 and the clips 20, 21 on it.

图4为图3中叶片安装板辅助夹具的夹件与叶片安装板连接示意图。FIG. 4 is a schematic diagram of the connection between the clip and the blade mounting plate of the auxiliary fixture of the blade mounting plate in FIG. 3 .

图5为图3图4中夹件的结构示意图。图中17是夹件的头部,18是夹件的杆部。头部17的上平面与工件接触,内部平面与杆部18顶端的球面相接触,允许工件与夹件接触面有一定的角度误差。夹件杆部18具有螺纹,可与叶片安装板及榫头端面附助夹具8、19配合实现位置调整。FIG. 5 is a schematic structural view of the clip in FIG. 3 and FIG. 4 . Among the figure, 17 is the head of the clip, and 18 is the rod of the clip. The upper plane of the head 17 is in contact with the workpiece, and the inner plane is in contact with the spherical surface at the top of the rod 18, allowing a certain angle error between the contact surface of the workpiece and the clamp. The rod part 18 of the clamp has threads, and can cooperate with the auxiliary clamps 8 and 19 on the blade mounting plate and the end surface of the tenon to realize position adjustment.

图6为工件位置误差与定位点误差关系示意图。图中XYZ为固定坐标系,Ci为定位点,Ri为定位点与工件接触点的坐标,ni为接触点法向量。δq为工件上任意点的位置误差,δyi为工件位置误差所导致的定位点误差。Fig. 6 is a schematic diagram of the relationship between the workpiece position error and the positioning point error. In the figure, XYZ is a fixed coordinate system, C i is the positioning point, R i is the coordinate of the contact point between the positioning point and the workpiece, and n i is the normal vector of the contact point. δ q is the position error of any point on the workpiece, and δ yi is the positioning point error caused by the position error of the workpiece.

具体实施方式 Detailed ways

定位点的选取方案Selection scheme of anchor points

为了保证榫头14加工中的稳定定位,按照定位基准和设计基准尽量重合,首先在叶片安装板15上选择叶型设计基准点作为一个定位点d5,然后根据叶片型面16的三维数学模型,在其表面选择另外五个定位点d1、d2、d3、d4、d6。首先由工件位置扰动导致的定位点位置误差建立定位点的精度约束数学模型;然后利用双三次B样条拟合叶片型面上由设计得到的特征点的位置坐标,计算包含法向量的特征点的空间向量,得到待选的定位点点集空间;其次假设定位点的误差服从正态分布,根据统计学理论得到工件位置精度最好的优化准则;再次基于工件定位的形封闭理论,确定夹具定位点的优化约束条件;最后在叶片型面特征点的点集空间中,选择符合上述优化准则,满足型封闭约束条件下的具有最高精度的五个定位点。具体选择方法如下:In order to ensure the stable positioning of the mortise 14 during processing, the positioning reference and the design reference should coincide as much as possible, first select the blade design reference point on the blade mounting plate 15 as a positioning point d5, and then according to the three-dimensional mathematical model of the blade surface 16, in Select another five anchor points d1, d2, d3, d4, d6 on its surface. Firstly, the precision-constrained mathematical model of the positioning point is established based on the position error of the positioning point caused by the disturbance of the workpiece position; then, the bi-cubic B-spline is used to fit the position coordinates of the feature points obtained from the design on the blade profile, and the feature points including the normal vector are calculated The space vector of the positioning point is obtained to obtain the point set space of the positioning point to be selected; secondly, assuming that the error of the positioning point obeys the normal distribution, the optimal criterion for the best position accuracy of the workpiece is obtained according to the statistical theory; again, based on the shape-closed theory of the positioning of the workpiece, the positioning of the fixture is determined Finally, in the point set space of the feature points of the blade profile, select five positioning points with the highest precision that meet the above optimization criteria and satisfy the shape closure constraint conditions. The specific selection method is as follows:

第一步:建立定位点的精度约束数学模型。The first step: establish the mathematical model of the precision constraint of the positioning point.

工件位置误差与定位点误差关系示意图如图7所示,其中定位点与工件接触点的法向量为ni,接触点坐标为Ri。则由工件任意点的位置扰动δq={δb,δθ}带来的定位点的位置误差为 δy i = h i T δq , 其中 h i T = - { n i T ( R i × n i ) T } . The schematic diagram of the relationship between the workpiece position error and the positioning point error is shown in Figure 7, where the normal vector of the positioning point and the contact point of the workpiece is n i , and the coordinate of the contact point is R i . Then the position error of the positioning point caused by the position disturbance δq={δb, δθ} of any point of the workpiece is δy i = h i T δq , in h i T = - { no i T ( R i × no i ) T } .

因此,具有l个定位点的夹具的精度约束,即定位点的位置误差可以表述为:δy=GTδq,其中:δy={δy1,δy2,...,δyl},G=[h1,h2,...,hl]。Therefore, the accuracy constraint of a fixture with l positioning points, that is, the position error of the positioning points can be expressed as: δy=G T δq, where: δy={δy 1 , δy 2 ,...,δy l }, G= [h 1 , h 2 , . . . , h l ].

第二步:得到选取定位点的点集空间。Step 2: Obtain the point set space of the selected anchor point.

叶片模型中提供了叶片表面大量特征点的位置坐标,但是没有提供特征点的法向量。为了求得包含特征点法向量的特征点向量gi=[Ri ni],利用双三次B样条对特征点的位置坐标进行拟合,得到B样条表述的叶片型面控制节点;根据得到的B样条曲面控制节点,计算叶片表面特征点的法向量。从而得到选取定位点的点集空间。The position coordinates of a large number of feature points on the blade surface are provided in the blade model, but the normal vectors of the feature points are not provided. In order to obtain the feature point vector g i =[R i n i ] including the feature point normal vector, use the bicubic B-spline to fit the position coordinates of the feature point, and obtain the blade profile control node expressed by the B-spline; According to the obtained B-spline surface control nodes, the normal vectors of the blade surface feature points are calculated. Thus, the point set space of the selected anchor point is obtained.

第三步:确定基于位置精度最好的优化准则。Step 3: Determine the best optimization criterion based on location accuracy.

假设每个定位点的误差服从正态分布:δy≈N(0,Vy),其中Vy=diag{δ1,δ2...δl}。根据统计学理论,定位点的位置方差矩阵 V = Var ( δq ) = ( GV y - 1 G T ) - 1 . 令A=V-1,则使工件的位置精度最好的条件为max(det A)。It is assumed that the error of each positioning point follows a normal distribution: δy≈N(0, V y ), where V y =diag{δ 1 , δ 2 ... δ l }. According to statistical theory, the position variance matrix of the anchor point V = Var ( δq ) = ( GV the y - 1 G T ) - 1 . Assuming A=V -1 , the condition for making the position accuracy of the workpiece the best is max(det A).

对于实际情况,由于各定位元件的材料特性相同,因此不同定位点的δyi服从相同的分布δyi≈N(0,Vy),则有 V = ( GV y - 1 G T ) - 1 = ( Gδ G T ) - 1 , A=V-1=GδGT=δGGT,因此工件位置精度最好的优化准则为:max(det A)=max(det(GGT))。For the actual situation, since the material properties of each positioning element are the same, the δy i of different positioning points obey the same distribution δy i ≈ N(0, V y ), then V = ( GV the y - 1 G T ) - 1 = ( Gδ G T ) - 1 , A=V -1 =GδG T =δGG T , so the best optimization criterion for the workpiece position accuracy is: max(det A)=max(det(GG T )).

第四步:确定基于形封闭的优化约束条件。Step 4: Determine the optimization constraints based on shape closure.

对于给定的夹具定位点分布G=[h1,h2,...,hl],如果当工件上作用任意外力时,夹具定位点位置不改变,而且在每一个定位点上作用有法向正力,则这种状态下的定位点分布G=[h1,h2,...,hl]就满足形封闭。如果夹具定位点满足形封闭条件。则在定位点位置矩阵G中任意选一个位置向量hc,沿其法向施加任意外力,对于所有hi,αi=-hi TA-1hc应满足ai>0。For a given fixture positioning point distribution G=[h 1 , h 2 ,...,h l ], if any external force acts on the workpiece, the position of the fixture positioning point does not change, and there is a force acting on each positioning point normal positive force, then the distribution of anchor points in this state G=[h 1 , h 2 ,..., h l ] satisfies the shape closure. If the anchor point of the fixture satisfies the shape closure condition. Then select a position vector h c arbitrarily in the anchor point position matrix G, and apply any external force along its normal direction. For all h i , α i =-h i T A -1 h c should satisfy a i >0.

第五步:优化叶片型面上的五个定位点。Step 5: Optimize the five anchor points on the blade profile.

在叶片型面特征点的点集空间gi=[Rini](1≤i≤N)中,以max(det A)为优化准则,在约束条件αi>0下选取具有最高精度的五个定位点。具体的优化过程如下:In the point set space g i =[R i n i ](1≤i≤N) of the feature points of the blade profile, with max(det A) as the optimization criterion, under the constraint condition α i >0, select of the five positioning points. The specific optimization process is as follows:

Step a:初始化。计算已经确定的叶片安装板上定位点的位置向量h0,并计算点集gi=[Rini](1≤i≤N)中所有N个点的方向向量,对G0初始化;得到G0={h0h1...hN}(其中h0为已经确定的定位点)后,计算对应的A0和A0 -1;则在定位点位置矩阵G0中任意选一个位置向量hc,沿其法向施加任意外力,对于给定的hi(1≤i≤N),计算αi=-hi TA0 -1hc,并令k=N;Step a: Initialize. Calculate the position vector h 0 of the determined positioning point on the blade mounting plate, and calculate the direction vectors of all N points in the point set g i =[R i n i ](1≤i≤N), and initialize G 0 ; After obtaining G 0 = {h 0 h 1 ... h N } (wherein h 0 is the determined anchor point), calculate the corresponding A 0 and A 0 -1 ; then choose arbitrarily in the anchor point position matrix G 0 A position vector h c , any external force is applied along its normal direction, for a given h i (1≤i≤N), calculate α i =-h i T A 0 -1 h c , and let k=N;

Step b:如果存在不满足形封闭的定位点,则在这些点中删除使得pj=hj TAm -1hj(m=N-k)最小的点j;如果所有的定位点都满足性封闭条件,则直接删除使pj=hj TAm -1hj(m=N-k)最小的定位点j,并令k=k-1;Step b: If there are anchor points that do not satisfy shape closure, delete the point j that makes p j = h j T A m -1 h j (m=Nk) the smallest among these points; if all anchor points satisfy the Closed conditions, then directly delete the anchor point j that makes p j =h j T A m -1 h j (m=Nk) the smallest, and make k=k-1;

Step c:将点集重新排序,新点集变为gi=[Ri ni](1≤i≤k),更新Gm={h0 h1...hk}、Am、Am -1和αi=-hi TAm -1hc(m=N-k),再重复Step b。如此反复,直到k=5。Step c: Reorder the point set, the new point set becomes g i =[R i n i ](1≤i≤k), update G m ={h 0 h 1 ...h k }, A m , A m -1 and α i =-h i T A m -1 h c (m=Nk), and then repeat Step b. Repeat this until k=5.

夹紧点的选择方案Choice of clamping point

根据所确定的六个定位点d1、d2、d3、d4、d5、d6来相应安排夹具上的六个定位销1、2、3、4、5、6,使得六个圆头定位销分别位于叶片定位点d1、d2、d3、d4、d5、d6的法线方向,确保叶片放入并与定位销相接触后,定位销垂直于叶片定位点切平面。在夹紧点的选择中,尽量避开薄弱环节,将夹紧销7选择在相对较平整的叶片顶端,将与其相对应的横向辅助夹件20、21选择在刚度较大、面积较大、形状比较规则的榫头14顶端(图3(b));将纵向的辅助夹件9、11、12、13选择在形状较为规则、具有两个平行平面、刚度较大的叶片安装板15上(图4)。尽量减小空心叶片叶身的受力和变形。Arrange the six positioning pins 1, 2, 3, 4, 5, 6 on the fixture according to the determined six positioning points d1, d2, d3, d4, d5, d6, so that the six round head positioning pins are respectively located at The normal direction of the blade positioning points d1, d2, d3, d4, d5, and d6 ensures that after the blade is placed and in contact with the positioning pin, the positioning pin is perpendicular to the tangent plane of the blade positioning point. In the selection of the clamping point, try to avoid the weak links, select the clamping pin 7 at the top of the relatively flat blade, and select the corresponding lateral auxiliary clamps 20, 21 at the places with larger rigidity, larger area, The top of the tenon 14 with a relatively regular shape (Fig. Figure 4). Minimize the force and deformation of the hollow blade body.

叶片榫头加工夹具设计方案Design scheme of blade tenon processing fixture

所设计的涡轮叶片榫头加工夹具主要由夹具主体10、六个位置固定且不可调节的定位销1、2、3、4、5、6、顶端夹紧销7、叶片安装板辅助夹具8、榫头端面附助夹具19以及位置可自适应调节的辅助夹件组成。辅助夹件包括叶片安装板辅助夹件9、11、12、13和叶片榫头端部辅助夹件20、21。榫头端面附助夹具19与夹具主体10采用分体结构,以便于安装叶片;安装板辅助夹具8与夹具主体10采用一体化结构,以提高上下夹紧的刚度。顶端夹紧销7采用可精确移动的细牙螺杆结构,保证叶片顶端的准确夹紧。辅助夹件9、11、12、13、20、21采用自适应接触设计(图5),其头部17和杆部18之间为平面和球面配合,允许工件与辅助夹件接触面有一定的角度误差;辅助夹件杆部18为螺杆结构,可实现辅助夹件的位置调整。The designed tenon processing fixture for turbine blades is mainly composed of fixture main body 10, six fixed and non-adjustable positioning pins 1, 2, 3, 4, 5, 6, top clamping pin 7, blade mounting plate auxiliary fixture 8, tenon The end surface is composed of an auxiliary clamp 19 and an auxiliary clamp whose position can be adaptively adjusted. The auxiliary clips include blade mounting plate auxiliary clips 9 , 11 , 12 , 13 and blade tenon end auxiliary clips 20 , 21 . The auxiliary clamp 19 attached to the end surface of the tenon and the main body 10 of the clamp adopt a split structure to facilitate the installation of blades; the auxiliary clamp 8 of the mounting plate and the main body 10 of the clamp adopt an integrated structure to improve the rigidity of the upper and lower clamping. The top clamping pin 7 adopts a fine-toothed screw structure that can be moved precisely to ensure accurate clamping of the top of the blade. Auxiliary clamps 9, 11, 12, 13, 20, 21 adopt self-adaptive contact design (Fig. 5). The head 17 and rod 18 are fitted with plane and spherical surfaces, allowing a certain degree of contact surface between the workpiece and the auxiliary clamps. The angle error; the auxiliary clamp rod 18 is a screw structure, which can realize the position adjustment of the auxiliary clamp.

叶片榫头加工夹具的定位及夹紧过程Positioning and clamping process of blade tenon processing jig

如图3所示,在定位夹紧之前,将榫头端面辅助夹具19整体推离夹具主体10,并将叶片顶端夹紧销7、榫头顶端辅助夹件20、21和叶片安装板辅助夹件9、11、12、13分别调整到最远位置。将叶片型面16向里、榫头14端朝外,由夹具左端沿水平方向缓缓推入夹具主体10,并使叶片安装板15和叶片型面16分别与夹具上的六个定位销1-6接触,实现准确定位。首先调整叶片顶端夹紧销7与叶片紧密接触,然后将榫头端面辅助夹具19靠近夹具主体10,并调整榫头端部辅助夹件20、21的旋入螺杆,实现叶片左右夹紧。叶片左右被夹紧之后,分别调整叶片安装板辅助夹件9、11、12、13的旋入螺杆,实现叶片上下的稳定装夹紧固。As shown in Figure 3, before positioning and clamping, the tenon end surface auxiliary clamp 19 is pushed away from the clamp body 10 as a whole, and the blade top clamping pin 7, the tenon top auxiliary clamps 20, 21 and the blade mounting plate auxiliary clamp 9 , 11, 12, and 13 are adjusted to the furthest position respectively. With the blade profile 16 facing inward and the tenon 14 end facing outward, slowly push the left end of the clamp into the fixture main body 10 along the horizontal direction, and make the blade mounting plate 15 and the blade profile 16 respectively align with the six positioning pins 1- 6 contacts to achieve accurate positioning. First, adjust the clamping pin 7 at the top of the blade to be in close contact with the blade, then move the tenon end surface auxiliary clamp 19 close to the clamp body 10, and adjust the screw-in screws of the tenon end auxiliary clamps 20, 21 to achieve left and right clamping of the blade. After the left and right sides of the blade are clamped, respectively adjust the screw-in screws of the auxiliary clamps 9, 11, 12, and 13 of the blade mounting plate to realize the stable clamping and fastening of the blade up and down.

Claims (8)

1, a kind of turbine hollow blade tenon processing method for positioning and clamping is characterized in that, comprises the selection of blade profile anchor point and carries out the auxiliary clamping of the clamping of blade profile location and blade tenon top and blade installing plate according to selected site; Wherein, the selection of blade profile anchor point, at first a side selects one the 5th anchor point as datum mark on blade installing plate blade, utilizes given blade profile design data then, sets up the accuracy constraint Mathematical Modeling of blade anchor point; Obtain choosing the point set space of anchor point, determine the anchor point selection optimization criterion that the position-based precision is best then; Shape sealing according to anchor point requires to determine to optimize constraints again; Optimize at last and choose and five anchor points of definite blade profile: first to fourth top anchor point and the 6th following anchor point; According to first to the 6th alignment pin on the next corresponding arrangement jig main body of determined first to the 6th anchor point, make six alignment pin round ends lay respectively at the normal direction of blade first to the 6th anchor point, guarantee that blade is put into and with after alignment pin contacts, alignment pin is perpendicular to blade anchor point section; Holding pin is set on the jig main body is positioned at blade tip, and about the blade tenon end face adopts the tenon end face auxiliary clamp that separates with jig main body with blade, clamp away from blade tenon; Adopt the installing plate auxiliary clamp that is connected as a single entity with jig main body to realize that the blade above-below direction clamps in both sides up and down at the blade installing plate.
2, turbine hollow blade tenon processing method for positioning and clamping as claimed in claim 1 is characterized in that following concrete steps are adopted in the selection of described blade profile anchor point:
The first step, according to location of workpiece error and anchor point error relation, promptly the normal vector of anchor point and workpiece contact point is n i, the contact point coordinate is R i, then by the position disturbance δ of workpiece arbitrfary point qThe site error of=the anchor point that { δ b, δ θ } brings is δy i = h i T δq , Wherein h i T = - { n i T ( R i × n i ) T } Be the locating point position vector; Therefore, have the accuracy constraint of the anchor clamps of l anchor point, promptly the site error of anchor point can be expressed as: δ y=G Tδ q, wherein: δ y={ δ y 1, δ y 2..., δ y l, G=[h 1, h 2..., h l] be the locating point position matrix, the corresponding anchor clamps anchor point of each locating point position matrix G distributes;
Second goes on foot, and the position coordinates of blade surface characteristic point is provided in the leaf model, utilizes the cubic B batten that the position coordinates of characteristic point is carried out match, obtains the blade profile control node of B batten statement; B-spline surface control node according to obtaining calculates the normal vector of blade surface characteristic point, thereby obtains choosing the point set space g of anchor point i=[R in i] (1≤i≤N);
The 3rd step: the error Normal Distribution of supposing each anchor point: δ y ≈ N (0, V y), V wherein y=diag{ δ 1, δ 2... δ l, the position variance matrix of anchor point is V = Var ( δq ) = ( GV y - 1 G T ) - 1 , Make A=V -1, the best condition of positional precision that then makes workpiece is max (det A); Because the material behavior of each setting element is identical, so the δ y of different anchor points iObey identical distribution δ y i≈ N (0, V y), then have
V = ( GV y - 1 G T ) - 1 = ( GδG T ) - 1 ,A=V -1=GδG T=δGG T
Therefore the best optimization criterion of location of workpiece precision is: max (det A)=max (det (GG T));
The 4th step: for given anchor clamps locating point position matrix G=[h 1, h 2..., h l], when acting on any external force on the workpiece, the anchor clamps locating point position does not change, and effect has the positive power of normal direction, the locating point position matrix G=[h under the then this state on each anchor point 1, h 2..., h l] just satisfy the shape sealing, if the anchor clamps anchor point satisfies the shape sealing condition, then in locating point position matrix G, select a position vector h arbitrarily c, apply any external force along its normal direction, for all h i, a i=-h i τA -1h cShould satisfy a i0;
The 5th step: at the point set space of blade profile characteristic point g i=[R in i] (among 1≤i≤N), serve as to optimize criterion with max (det A), at constraints a iOptimize 0 time and to choose five anchor points with full accuracy.
3, turbine hollow blade tenon processing method for positioning and clamping as claimed in claim 2 is characterized in that the concrete steps that five anchor points with full accuracy are chosen in described optimization are as follows:
A. initialization, the position vector h of anchor point on the blade installing plate that calculating has been determined 0, and calculate point set g i=[R in i] (direction vectors of all N points among 1≤i≤N) are to locating point position matrix G 0Initialization; Obtain G 0={ h 0h 1... h N, h wherein 0Be the anchor point of having determined, calculate corresponding A 0And A 0 -1Then at locating point position matrix G 0In select a position vector h arbitrarily c, apply any external force along its normal direction, for given h i(1≤i≤N), calculate a i=-h i TA o -1h cAnd make k=N;
If b. there is the anchor point do not satisfy the shape sealing, then deletion makes p in these points j=h j TA m -1h j(m=N-k) Zui Xiao some j; If all anchor points all satisfy the shape sealing condition, then directly deletion makes p j=h j TA m -1h j(m=N-k) Zui Xiao anchor point j, and make k=k-1;
C. with the point set rearrangement, new point set becomes g i=[R in i] (1≤i≤k), upgrade G m={ h 0h 1... h k, A m, A m -1And a i=-h i TA m -1h c(m=N-k), repeating step b again, so repeatedly, up to k=5.
4, turbine hollow blade tenon processing method for positioning and clamping as claimed in claim 1, it is characterized in that, the tenon end face auxiliary clamp and the installing plate auxiliary clamp of described blade be equipped with can regulate and self adaptation contact the design auxiliary folder, should comprise head and bar portion by auxiliary folder, the last plane of head contacts with workpiece, and inner plane contacts with the sphere on bar portion top.
5, turbine hollow blade tenon as claimed in claim 4 processing method for positioning and clamping is characterized in that, described bar portion is provided with screw thread, can cooperate realization position adjustment with the tenon end face and the attached anchor clamps that help of installing plate of blade.
6, a kind of anchor clamps of realizing claim 1 turbine hollow blade tenon processing method for positioning and clamping comprise jig main body, it is characterized in that, are connected with the installing plate auxiliary clamp of realizing that the blade above-below direction clamps on the jig main body; Jig main body is provided with first to the 6th alignment pin of respective vanes first to the 6th anchor point, make six alignment pin round ends lay respectively at the normal direction of blade first to the 6th anchor point, guarantee that blade is put into and with after alignment pin contacts, alignment pin is perpendicular to blade anchor point section; Also be provided with holding pin on the jig main body, this holding pin and a tenon end face auxiliary clamp that separates with jig main body clamp about with blade.
7, a kind of anchor clamps of realizing claim 1 turbine hollow blade tenon processing method for positioning and clamping as claimed in claim 6, it is characterized in that, the tenon end face auxiliary clamp and the installing plate auxiliary clamp of described blade be equipped with can regulate and self adaptation contact the design auxiliary folder, should comprise head and bar portion by auxiliary folder, the last plane of head contacts with workpiece, and inner plane contacts with the sphere on bar portion top.
8, a kind of anchor clamps of realizing claim 1 turbine hollow blade tenon processing method for positioning and clamping as claimed in claim 7 is characterized in that, described bar portion is provided with screw thread, can cooperate realization position adjustment with the tenon end face and the attached anchor clamps that help of installing plate of blade.
CN2008102324423A 2008-11-27 2008-11-27 Hollow Turbine Blade Tenon Machining Positioning Clamping Method and Fixture Expired - Fee Related CN101417396B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008102324423A CN101417396B (en) 2008-11-27 2008-11-27 Hollow Turbine Blade Tenon Machining Positioning Clamping Method and Fixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008102324423A CN101417396B (en) 2008-11-27 2008-11-27 Hollow Turbine Blade Tenon Machining Positioning Clamping Method and Fixture

Publications (2)

Publication Number Publication Date
CN101417396A true CN101417396A (en) 2009-04-29
CN101417396B CN101417396B (en) 2010-06-09

Family

ID=40628498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008102324423A Expired - Fee Related CN101417396B (en) 2008-11-27 2008-11-27 Hollow Turbine Blade Tenon Machining Positioning Clamping Method and Fixture

Country Status (1)

Country Link
CN (1) CN101417396B (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101856792A (en) * 2010-06-21 2010-10-13 昆山致贸精密模具有限公司 Jig for auxiliary processing special-shaped parts
CN102029537A (en) * 2010-11-11 2011-04-27 西北工业大学 Precise positioning fixture for numerical control machining of thin-wall blade
CN102229058A (en) * 2011-06-21 2011-11-02 无锡桥联数控机床有限公司 Self-adjusting auxiliary location support mechanism
CN102513587A (en) * 2011-12-28 2012-06-27 四川成发航空科技股份有限公司 Method for machining flat groove on front edge of low-pressure air intake guide blade of aeroengine
CN101694374B (en) * 2009-10-20 2012-07-04 西安交通大学 Rapid detecting device and detecting method of precision of blades of gas turbine
CN102528499A (en) * 2012-01-29 2012-07-04 无锡透平叶片有限公司 Blade positioning and clamping device used for processing blade root of tenon tooth
CN102632410A (en) * 2012-04-10 2012-08-15 西北工业大学 Resin pressing curved surface numerical control machining clamp for performing precision forging on blade tenon root
CN102873558A (en) * 2012-09-21 2013-01-16 西安交通大学 Turbine blade clamp based on piezoelectric ceramics and quick posture adjusting method
CN103170860A (en) * 2013-03-28 2013-06-26 西北工业大学 Hollow turbine blade wax mould cantilever-type clamp
CN103600250A (en) * 2013-11-21 2014-02-26 沈阳黎明航空发动机(集团)有限责任公司 Self-adaptive blade clamping and positioning device
CN104191264A (en) * 2014-08-06 2014-12-10 哈尔滨汽轮机厂有限责任公司 Clamping and positioning device for machining gas turbine power turbine guide vane datum face
CN104289934A (en) * 2014-08-25 2015-01-21 哈尔滨汽轮机厂有限责任公司 Blade locating device for machining milling dowel of compression ignition guide blade of milling machine
CN105289881A (en) * 2015-12-03 2016-02-03 中国南方航空工业(集团)有限公司 Spraying protection clamp for turbine blades
CN105583672A (en) * 2014-10-23 2016-05-18 沈阳黎明航空发动机(集团)有限责任公司 Positioning method for integrated guide vane
CN106002619A (en) * 2016-06-23 2016-10-12 重庆江增船舶重工有限公司 Turbine blade tenon tooth machining blade positioning device
CN106271734A (en) * 2016-08-29 2017-01-04 中航动力股份有限公司 A kind of line cutting positioning fixture
CN107866685A (en) * 2016-09-27 2018-04-03 通用电气公司 For the tool holder component for the component for handling gas-turbine unit
CN108372337A (en) * 2016-12-20 2018-08-07 中国航空工业集团公司北京航空制造工程研究所 A kind of positioning of blade and fixing device and its realize blade positioning and fixed method
CN108581346A (en) * 2018-08-14 2018-09-28 中国航发南方工业有限公司 Hollow blade soldering fixture
CN109048289A (en) * 2018-10-16 2018-12-21 中国航发湖南动力机械研究所 Blade of aviation engine assembly tool
CN109332654A (en) * 2018-12-07 2019-02-15 中国航发南方工业有限公司 A kind of blade of aviation engine pedestal preparation facilities
CN110977070A (en) * 2019-11-11 2020-04-10 中国航发沈阳黎明航空发动机有限责任公司 Fixing device and method for blade tenon in linear cutting
CN111451560A (en) * 2020-04-30 2020-07-28 中国航发航空科技股份有限公司 Clamp for blade shroud thinning part of turbine blade of aero-engine and machining method thereof
CN111695286A (en) * 2020-06-22 2020-09-22 中国航发沈阳发动机研究所 Design method of aero-engine turbine blade sampling clamp
CN112045533A (en) * 2020-09-21 2020-12-08 中国航发沈阳黎明航空发动机有限责任公司 Clamping mechanism for grinding bottom of rotor blade tenon
CN112276618A (en) * 2020-10-20 2021-01-29 成都和鸿科技有限公司 Method for machining tenon of blade of gas compressor
CN113787223A (en) * 2021-09-29 2021-12-14 中国航发航空科技股份有限公司 Blade circumferential arc hammer foot-shaped tenon machining device and machining method thereof
CN113857560A (en) * 2021-11-09 2021-12-31 浙江畅尔智能装备股份有限公司 Broaching machining process of blade tenon

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652369B2 (en) * 2001-12-13 2003-11-25 General Electric Company Fixture for clamping a gas turbine component and its use in shaping the gas turbine component
US6890248B2 (en) * 2003-02-28 2005-05-10 General Electric Company Apparatus and method for consistently retaining a gas turbine engine blade in a predetermined position and orientation
US7328496B2 (en) * 2003-10-31 2008-02-12 General Electric Company Apparatus for rebuilding gas turbine engine blades
CN201109035Y (en) * 2007-09-24 2008-09-03 沈阳黎明航空发动机(集团)有限责任公司 Special-purpose fixture

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694374B (en) * 2009-10-20 2012-07-04 西安交通大学 Rapid detecting device and detecting method of precision of blades of gas turbine
CN101856792A (en) * 2010-06-21 2010-10-13 昆山致贸精密模具有限公司 Jig for auxiliary processing special-shaped parts
CN102029537A (en) * 2010-11-11 2011-04-27 西北工业大学 Precise positioning fixture for numerical control machining of thin-wall blade
CN102229058B (en) * 2011-06-21 2013-01-23 无锡桥联数控机床有限公司 Self-adjusting auxiliary location support mechanism
CN102229058A (en) * 2011-06-21 2011-11-02 无锡桥联数控机床有限公司 Self-adjusting auxiliary location support mechanism
CN102513587A (en) * 2011-12-28 2012-06-27 四川成发航空科技股份有限公司 Method for machining flat groove on front edge of low-pressure air intake guide blade of aeroengine
CN102513587B (en) * 2011-12-28 2014-02-12 四川成发航空科技股份有限公司 Machining Method of Front Edge Flat Groove of Air-engine Low Pressure Intake Guide Vane
CN102528499A (en) * 2012-01-29 2012-07-04 无锡透平叶片有限公司 Blade positioning and clamping device used for processing blade root of tenon tooth
CN102632410A (en) * 2012-04-10 2012-08-15 西北工业大学 Resin pressing curved surface numerical control machining clamp for performing precision forging on blade tenon root
CN102632410B (en) * 2012-04-10 2014-03-12 西北工业大学 Resin pressing curved surface numerical control machining clamp for performing precision forging on blade tenon root
CN102873558A (en) * 2012-09-21 2013-01-16 西安交通大学 Turbine blade clamp based on piezoelectric ceramics and quick posture adjusting method
CN102873558B (en) * 2012-09-21 2014-12-10 西安交通大学 Turbine blade clamp based on piezoelectric ceramics and quick posture adjusting method
CN103170860B (en) * 2013-03-28 2015-06-10 西北工业大学 Hollow turbine blade wax mould cantilever-type clamp
CN103170860A (en) * 2013-03-28 2013-06-26 西北工业大学 Hollow turbine blade wax mould cantilever-type clamp
CN103600250A (en) * 2013-11-21 2014-02-26 沈阳黎明航空发动机(集团)有限责任公司 Self-adaptive blade clamping and positioning device
CN103600250B (en) * 2013-11-21 2015-11-04 沈阳黎明航空发动机(集团)有限责任公司 A kind of blade self adaptation clamping and positioning device
CN104191264B (en) * 2014-08-06 2016-06-15 哈尔滨汽轮机厂有限责任公司 A kind of processing Gas Turbine Power turbine guide vane sheet reference plane clamping and positioning device
CN104191264A (en) * 2014-08-06 2014-12-10 哈尔滨汽轮机厂有限责任公司 Clamping and positioning device for machining gas turbine power turbine guide vane datum face
CN104289934B (en) * 2014-08-25 2016-07-27 哈尔滨汽轮机厂有限责任公司 A kind of blade locking device for milling machine processing combustion pressure guide vane milling pin
CN104289934A (en) * 2014-08-25 2015-01-21 哈尔滨汽轮机厂有限责任公司 Blade locating device for machining milling dowel of compression ignition guide blade of milling machine
CN105583672B (en) * 2014-10-23 2018-01-23 沈阳黎明航空发动机(集团)有限责任公司 A kind of localization method of conjuncted guide vane
CN105583672A (en) * 2014-10-23 2016-05-18 沈阳黎明航空发动机(集团)有限责任公司 Positioning method for integrated guide vane
CN105289881A (en) * 2015-12-03 2016-02-03 中国南方航空工业(集团)有限公司 Spraying protection clamp for turbine blades
CN106002619A (en) * 2016-06-23 2016-10-12 重庆江增船舶重工有限公司 Turbine blade tenon tooth machining blade positioning device
CN106271734A (en) * 2016-08-29 2017-01-04 中航动力股份有限公司 A kind of line cutting positioning fixture
CN106271734B (en) * 2016-08-29 2019-06-18 中航动力股份有限公司 A kind of wire cutting positioning fixture
CN107866685A (en) * 2016-09-27 2018-04-03 通用电气公司 For the tool holder component for the component for handling gas-turbine unit
US10227874B2 (en) 2016-09-27 2019-03-12 General Electric Company Tooling fixture assembly for processing a component of a gas turbine engine
CN108372337A (en) * 2016-12-20 2018-08-07 中国航空工业集团公司北京航空制造工程研究所 A kind of positioning of blade and fixing device and its realize blade positioning and fixed method
CN108581346A (en) * 2018-08-14 2018-09-28 中国航发南方工业有限公司 Hollow blade soldering fixture
CN108581346B (en) * 2018-08-14 2020-05-19 中国航发南方工业有限公司 Hollow blade anchor clamps for brazing
CN109048289A (en) * 2018-10-16 2018-12-21 中国航发湖南动力机械研究所 Blade of aviation engine assembly tool
CN109332654A (en) * 2018-12-07 2019-02-15 中国航发南方工业有限公司 A kind of blade of aviation engine pedestal preparation facilities
CN110977070A (en) * 2019-11-11 2020-04-10 中国航发沈阳黎明航空发动机有限责任公司 Fixing device and method for blade tenon in linear cutting
CN110977070B (en) * 2019-11-11 2020-12-08 中国航发沈阳黎明航空发动机有限责任公司 Fixing device and method for blade tenon in linear cutting
CN111451560A (en) * 2020-04-30 2020-07-28 中国航发航空科技股份有限公司 Clamp for blade shroud thinning part of turbine blade of aero-engine and machining method thereof
CN111695286A (en) * 2020-06-22 2020-09-22 中国航发沈阳发动机研究所 Design method of aero-engine turbine blade sampling clamp
CN111695286B (en) * 2020-06-22 2023-10-20 中国航发沈阳发动机研究所 Design method of sampling clamp for turbine blade of aeroengine
CN112045533A (en) * 2020-09-21 2020-12-08 中国航发沈阳黎明航空发动机有限责任公司 Clamping mechanism for grinding bottom of rotor blade tenon
CN112276618A (en) * 2020-10-20 2021-01-29 成都和鸿科技有限公司 Method for machining tenon of blade of gas compressor
CN113787223A (en) * 2021-09-29 2021-12-14 中国航发航空科技股份有限公司 Blade circumferential arc hammer foot-shaped tenon machining device and machining method thereof
CN113857560A (en) * 2021-11-09 2021-12-31 浙江畅尔智能装备股份有限公司 Broaching machining process of blade tenon
CN113857560B (en) * 2021-11-09 2023-11-28 浙江畅尔智能装备股份有限公司 Broaching processing technology for blade tenon

Also Published As

Publication number Publication date
CN101417396B (en) 2010-06-09

Similar Documents

Publication Publication Date Title
CN101417396B (en) Hollow Turbine Blade Tenon Machining Positioning Clamping Method and Fixture
CN102873558B (en) Turbine blade clamp based on piezoelectric ceramics and quick posture adjusting method
CN107944143B (en) Assembly error obtaining method facing actual working condition
CN105843174B (en) A kind of spline curve interpolation parameters computational methods
CN104866666A (en) Robust adjusting method of surface precision on cable network reflective surface based on finite element model correction
CN106125674B (en) A kind of high-precision real time profile error estimation
CN103513573B (en) A kind of 300MW unit effectively stablizes the optimum controling method of main steam temperature
CN107545080B (en) A virtual pre-assembly method of steel bridge based on BIM model
WO2019033820A1 (en) Optimization model for quick boundary searching for static voltage stability region of electric power system
CN103399996A (en) Multi-target topological optimization design method for flexible mechanism for fast servo tool rest
CN107369167A (en) A kind of robot self-calibrating method based on biplane constraint error model
CN104993491A (en) Linear power flow calculation method with voltage and reactive power being taken into consideration
CN115983153A (en) Water cooling system pressure flow simulation method based on component flow resistance characteristics
CN106650155B (en) A method for optimal arrangement of large-scale vibration engineering control devices
CN107968399A (en) A kind of method of fast search Static Voltage Stability Region Boundary
CN109558680B (en) Bridge multi-target equivalent static wind load calculation method based on POD technology
CN115439545A (en) Positioning method, device and storage medium for machining film cooling hole of turbine blade
Dong et al. Geometrical modeling to improve the accuracy of drilled cooling holes on turbine blades
CN103454106B (en) The static test of a kind of paddle change system of wind turbines executing agency
CN115509133B (en) Internal combustion engine transfer function identification method based on torque estimation
CN115238614B (en) Method for correcting elongation of actuating mechanism of flexible-wall spray pipe
CN112149286B (en) Thermodynamic property numerical simulation method and system based on equivalent particle hypothesis
CN107060890A (en) A kind of parametric modeling method of turbo blade conjugate heat transfer computational fields geometrical model
CN112329291A (en) Thermosetting coupling field calculation method of reflector antenna
CN118423000B (en) Method for calculating drilling direction of excavation surface of tunnel plug section

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100609

Termination date: 20121127