CN101382440B - Magnetic position sensor with integrated hall effect switch - Google Patents

Magnetic position sensor with integrated hall effect switch Download PDF

Info

Publication number
CN101382440B
CN101382440B CN 200810212363 CN200810212363A CN101382440B CN 101382440 B CN101382440 B CN 101382440B CN 200810212363 CN200810212363 CN 200810212363 CN 200810212363 A CN200810212363 A CN 200810212363A CN 101382440 B CN101382440 B CN 101382440B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
sensor
flux
positioned
path
switch
Prior art date
Application number
CN 200810212363
Other languages
Chinese (zh)
Other versions
CN101382440A (en )
Inventor
史蒂芬·G·西博格
理查德·J·维克勒
科特·盖尔布莱斯
Original Assignee
费希尔控制产品国际有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

A non-contacting position sensor having primary and secondary sensors detects relative displacement between two objects. The secondary sensor may function as a limit switch detection element in a limit switch circuit, and is positioned to be in the path of magnetic flux not detected by the primary sensor. The primary sensor is positioned in a flux path between sections of a flux gathering pole. Asecondary sensor is positioned in a leakage flux path outside the first sensor or may be positioned in a secondary flux path.

Description

具有集成霍尔效应开关的磁性位置传感器 Integrated magnetic position sensor having a Hall-effect switch

[0001] 本申请是申请日为2004年2月18日、申请号为200480004797. 7、名称为具有集成霍尔效应开关的磁性位置传感器的发明的分案申请。 [0001] This application is filed on February 18, 2004, Application No. 200480004797.7, entitled invention having a divisional application of a magnetic position sensor integrated Hall-effect switch.

[0002] 相关申请参考 [0002] Reference to Related Applications

[0003] 本公开要求2003年2月21日递交的、其中全部主题被共同公开的美国临时专利申请No. 60/448,785的优先权,并享有其权益。 [0003] The present disclosure requirement in 2003 filed February 21, in which all subjects were US Provisional Patent Application Publication No. joint No. 60 / 448,785, and to enjoy their rights and interests.

技术领域 FIELD

[0004] 本公开一般涉及一种用于测量两个物体之间的位移或者位置的装置,更具体地讲,涉及一种非接触位置传感器,其具有用作为初级传感器的初级可配置磁通量源和与该初级传感器相关联的次级传感器,这些传感器都被用于检测控制阀上的阀杆位置。 [0004] The present disclosure relates generally to an apparatus for displacement or position between two objects for measurement, and more particularly, relates to a non-contact position sensor having a primary configurable magnetic flux source and used as the primary sensor the primary sensor and secondary sensor associated with, the sensors are used to detect valve stem position on a control valve.

背景技术 Background technique

[0005] 从食品加工厂中的控制产品流量,到大型油库中的维持液位,工业加工厂在广泛应用中使用控制阀。 [0005] from the control product flow in food processing plants, to maintain the level of large oil depot, industrial processing plants use control valves in a wide range of applications. 通常是自动的控制阀,通过作为一种可变节流孔或者通道,被用来管理产品流量。 Generally automatic control valve as a variable orifice through or passage, is used to manage the product flow. 通过移动内部阀元件即阀塞,能够精确地控制通过阀体的产品量。 That is the inner valve member by moving the valve plug can be precisely controlled amount of product through the valve body. 该控制阀通常是自动的,使用执行机构和遥控仪器,该遥控仪器在过程控制计算机和该执行机构之间进行通信,以控制阀内的流量变化,从而实现该工厂操作者所期望的控制策略。 The control valve is typically automated, using a remote control device and the actuator, the remote control between the computer and the instrument actuator communicates process control, to control the flow changes within the valve to achieve the plant operators desired control strategy . 位置传感器在维持精确过程控制中起关键性作用。 Position sensors play a critical role in maintaining accurate process control.

[0006] 当该过程控制计算机发布指令以调整流量时,该遥控仪器必须读取当前的阀位置,并且通过该执行机构实施正确的校正动作。 [0006] When the process control computer issues a command to adjust the flow rate, the remotely operated instrument must read the present valve position, and the implementation of appropriate corrective action through the actuator. 典型的执行机构是由压缩空气源驱动的,而该压缩空气源由该遥控仪器控制。 A typical actuator is driven by a compressed air source, and the compressed air source is the remote control device. 例如,在滑杆阀上使用的弹簧和隔膜执行机构中,作用到大片隔膜上的气压的变化,导致该隔膜的运动或者位移。 For example, a spring and diaphragm actuator used on a slider valve, the change in air pressure acting on the large diaphragm cause movement or displacement of the diaphragm. 与该隔膜相连接的是执行机构杆, 该执行机构杆又连接到该阀塞。 And is connected to the diaphragm actuator rod, the actuator rod is in turn connected to the valve plug. 通过改变该隔膜上的气压,该遥控仪器可以直接定位该阀塞,从而控制通过该控制阀的流量。 By changing the air pressure on the diaphragm, the remotely operated instrument can directly position the valve plug to control the flow of the control valve. 为了准确地控制流量,该仪器必须总是了解阀塞在哪里,以及根据新的指令它必须运动到哪里。 In order to accurately control the flow, the instrument must always know where to plug in, and where it must move according to the new directive. 通过在该遥控仪器和该执行机构杆之间连接位置传感器,可实现这一目的。 By connecting the position sensor between the remotely operated instrument and the actuator rod, this can be achieved. 该位置传感器的输出可以被直接连接到该遥控仪器,从而提供阀杆位置反馈,获得精确的阀控制。 The output of the position sensor may be directly connected to the remotely operated instrument to provide stem position feedback to obtain precise valve control.

[0007] 传统的位置传感器,比如电位计或者其他的机电限位开关,要求动态的或者运动机械联动来将运动或者位移接入该传感器。 [0007] The conventional position sensors, such as potentiometers or other electro-mechanical limit switches, require dynamic or moving mechanical linkages to the movement or displacement of the sensor access. 这种机电限位开关被安装在执行机构上,并且当一运动元件位于半行程或者阀杆行程的两端时,由该运动元件解扣。 Such electromechanical limit switch is mounted on the actuator, and when a moving element located at both ends of the semi-stroke or valve stem travel by the moving element trip. 从限位开关(或者开关)中输出的信号用于操纵继电器、电磁阀,或者用于触发警报。 Signal output from the limit switch (or switches) for actuating relays, solenoid valves, or to trigger an alarm. 为了避免比如在高推力阀的应用中对控制元件的损坏,可以将该限位开关设置在适当位置,以使阀杆的运动不会超过其所期望的行程长度。 For example, in order to avoid the application of high thrust of the valve control element damage, the limit switch can be provided at an appropriate position, such that movement of the valve stem does not exceed its desired travel length.

[0008] 在应用中,在由于湍流存在所导致的机械振动的地方,由于在非常短的时间周期内引起数百万次的运算周期累积,系统误差和不稳定性可能降低位置传感器的可靠性。 [0008] In applications where mechanical vibrations due to the turbulence caused by the presence, causing millions of times since the operation period accumulated in a very short period of time, system errors and instability may reduce the reliability of the position sensor . 机械联动同样具有接触或磨损点。 Mechanical linkage also has a contact or wear points. 在恶劣使用条件下,在这些磨损点上,不稳定性差不多可以“锯开”这些机械联动,从而将阀杆从遥控仪器上断开。 Under severe conditions, wear at these points, the instability can almost "sawing" the mechanical linkage, thereby disconnecting the valve stem from the remotely operated instrument. 这种类型严重失效会破坏阀控制,必须避免。 This type of failure can severely damage control valves, must be avoided. 为了提高传感器的可靠性,传感器设计已经被移向非接触位置检测方法。 In order to improve the reliability of the sensor, the sensor design has been moved to a non-contact position detecting method.

[0009] 非接触传感器的一种类型是磁性位置传感器。 [0009] A non-contact type sensor is a magnetic position sensor. 磁性位置传感器用于检测两个物体之间的位移,主要是通过将磁通量源,通常是磁铁,连接到第一个物体上,并且将传感器,比如霍尔效应传感器,连接到第二个物体上。 Magnetic position sensor for detecting a displacement between two objects, mainly through the magnetic flux source, typically a magnet, connected to the first object, and the sensor, such as a Hall effect sensor coupled to the second body . 该磁通量源产生磁场,由该传感器检测该磁场。 The source of magnetic flux produces a magnetic field detected by the sensor. 通过一个或者两个物体产生相对位移的任何运动,产生该磁场相对于传感器的不同部分, 从而改变该传感器的输出。 Produced by any one or both objects relative displacement motion, different portions of the generated magnetic field relative to the sensor, thereby changing the output of the sensor. 此输出可以与该执行机构和阀杆之间的相对位移直接相关。 This output can be directly related to the relative displacement between the actuator and the valve stem.

[0010] 非接触位置传感器具有很强的可适用性,并且可以测量多种形式的位移。 [0010] The non-contact position sensor has a strong applicability, and can measure various forms of displacement. 然而, 目前的非接触位置传感器通常受到将其连接到运动元件上的方法的限制。 However, current non-contacting position sensor is generally limited by the method of connecting it to the movable element. 在遥控仪器中, 具有多种位置或者反馈传感器的商业实例,其中遥控仪器仍然使用“接触”动态联动来接入位移。 In the remote control apparatus having a position or a plurality of feedback sensors Commercial examples, wherein the remote instrument will use the "contact" to access the dynamic linkage displacement. 一种这种构造是使用常规的蜗轮装置,来直接将旋转运动接合到非接触磁阻元件上。 One such configuration is to use conventional worm gear, the rotational movement directly bonded to a non-contacting magneto-resistive element. 虽然该磁阻元件可以被归类为非接触传感器,但是这种运动实际上是通过“接触”装置转换的,并且就像传统的基于联动(linkage-based)的电位计一样,该运动的可靠性降低。 Although this magnetoresistive element may be classified as a non-contact sensor, but this movement is actually the "contact" means the conversion, and the like based on the traditional linkage (linkage-based) as a potentiometer, the reliable movement reduced.

[0011] 另外,其他的非接触位置传感器从无效到重新配置磁通量源,从而为不同形式的位移测量(例如,直线和旋转)提供预定输出。 [0011] In addition, other non-contact position sensor reconfigured from the inactive to the magnetic flux source to provide a predetermined output for the various forms of displacement measurement (e.g., linear and rotary). 在RiggS等人的美国专利5,359,288,Wolf 等人的美国专利5,497,081,以及Takaishi等人的美国专利5,570,015中,将发现上述形式位置传感器的实例。 RiggS et al in U.S. Patent 5,359,288, Wolf et al., U.S. Patent No. 5,497,081, and Takaishi et al., U.S. Patent No. 5,570,015, the form found in the above-described examples the position sensor.

[0012] 现有非接触位置传感器的其他缺点,包括需要至少两个这种限位开关来检测阀塞行程的两端,难以实现这种限位开关,以及担心其可靠性。 Other disadvantages of [0012] the conventional non-contact position sensor comprising at least two such limit switches to detect both ends of the spool stroke, it is difficult to achieve such limit switches, and concerns their reliability. 在下文的优选实施例的发明内容和具体实施方式中,将说明一种在其中能够克服现有近程式传感器的全部缺点的方式。 Summary and detailed description of embodiments In the following preferred, wherein A will be described to overcome all disadvantages of the conventional proximity sensor embodiment.

发明内容 SUMMARY

[0013] 如这里所述的位置传感器组件,提供有非接触位置传感器,用于准确地检测两个物体之间的相对位移,更具体地讲,用于精确测量控制阀组件中的阀塞的位置。 [0013] The position sensor assembly described herein, there is provided a non-contact position sensor for accurately detecting the relative displacement between two objects, and more particularly, for accurate measurement of the control valve assembly of the valve plug position.

[0014] 具有高可配置磁通量源的限位开关使用多个离散磁铁,并且适于测量直线位移或者旋转位移。 [0014] highly configurable magnetic flux source using a plurality of limit switches of discrete magnets and is adapted to measure the linear displacement or rotational displacement. 可以通过磁性组件的控制设计实现这个目的。 By controlling the magnetic assembly may be designed to achieve this purpose. 将各个磁铁进行装配,以产生连续的混合通量场,从而在其中产生可变化的物理几何结构磁通量源。 Each magnet will be assembled to create a continuous mixing flux field, which thereby produce a varying physical geometry magnetic flux source. 使用包括两个L形分段的U形极靴(pole piece),该极靴连接从磁通量源到位于该U形极靴的L形分段之间的霍尔效应元件或初级传感器之间的通量。 Using L-shaped section comprises two U-shaped pole piece (pole piece), which is connected between the pole piece from a magnetic flux source to a Hall Effect element located between the U-shaped pole piece or primary sensor L-shaped section flux.

[0015] 另外使用次级传感器,该次级传感器与该初级传感器协同工作,并且优选的是按照与该初级传感器成比例方式工作。 [0015] Further the use of a secondary sensor, the secondary sensor works in conjunction with the primary sensor, and preferably in accordance with the primary working sensor proportional manner. 在一个实施例中,采用霍尔效应临近传感器的U形极靴,以使两个L形分段每个都具有非对称的Y形部分,以容纳初级和次级传感器。 In one embodiment, a Hall effect sensor is located near the U-shaped pole piece, so that the two L-shaped section each having an asymmetric Y-shaped portion to accommodate the primary and secondary sensors. 该初级传感器在该Y形部分的第一端部直接与U形极靴的端面相连接。 The primary sensor at a first end of the Y-shaped portion of the U-shaped pole shoe end face of the direct connection. 该次级传感器通过适配器被连接到该Y形部分的第二端部。 The secondary sensor is connected to the second end of the Y-shaped portion through the adapter.

[0016] 该适配器在次级传感器和Y形部分的第二端部之间产生间隙,在本文中将该间隙称作气隙。 [0016] The adapter is a gap between the secondary sensor and the second end portion of the Y-shaped portion, the gap is referred to herein as an air gap. 该气隙产生与该次级传感器之间的损耗磁耦合。 The air gap generates a magnetic coupling between the secondary sensor and loss. 通过改变该气隙中的空间,人们可以按比例控制初级和次级传感器两者经受的通量大小。 By changing the space of the air gap, one can proportionately control the size of both the primary and secondary flux sensor is subjected. 当该适配器优选的是电绝缘材料比如塑料时,可以认识到该气隙还可以为开放空间,即空气或者其他材料,而不会改变通过次级传感器的通量。 When the adapter is preferably an electrically insulating material such as plastic, it can be appreciated that the air gap may also be an open space, i.e. air or other material, without altering the flux through the secondary sensor.

5[0017] 在替换实施例中,该次级传感器被设置为邻近该初级传感器,并且沿垂直于U形极靴所在平面的轴线排列,或者被定向为垂直该初级传感器的霍尔元件,并且位于和U形极靴的底面紧密接触的位置。 5 [0017] In alternative embodiments, the secondary sensor is disposed adjacent to the primary sensor, and the U-shaped pole piece along an axis perpendicular to the plane of arrangement, or a Hall element is oriented perpendicular to the primary sensor, and located in intimate contact and the bottom surface of the U-shaped pole shoe position. 在下列附图的视图中将显示这些不同的实施例。 These various examples show a view in the following drawings.

附图说明 BRIEF DESCRIPTION

[0018] 图IA显示说明位于磁通量源中心附近的磁性传感器的横截面图的结构图。 [0018] FIG IA is located in a configuration diagram explanatory cross sectional view of a magnetic sensor in the vicinity of the center of the magnetic flux source.

[0019] 图IB显示说明位于磁通量源一端附近的图IA中的磁性传感器的横截面图的结构图。 [0019] FIG IB is located explanatory cross-sectional view of a configuration diagram of a magnetic sensor near the source end of the magnetic flux in FIG IA.

[0020] 图IC是图示对应于图IA的磁性传感器输出的图形。 [0020] FIG IC is a graphical illustration corresponding to FIG IA, the magnetic sensor output.

[0021] 图ID是图示对应于图IB的磁性传感器输出的图形。 [0021] FIG ID is a graph illustrating the magnetic sensor output corresponding to FIG. IB.

[0022] 图2A是安装在滑动杆执行机构上的用来检测阀杆直线位移的非接触位置传感器组件的透视图。 [0022] FIG. 2A is a perspective view of a non-contact position sensor assembly for detecting the linear displacement of the valve stem is mounted on the slide bar actuator.

[0023] 图2B是图2A中的整个非接触传感器组件的透视图,显示磁通量源和非接触位置传感器组件之间的相互连接。 [0023] FIG. 2B is a perspective view of the entire non-contact sensor assembly of FIG. 2A showing the interconnection between the magnetic flux source and the non-contact position sensor assembly.

[0024] 图2C是用于直线非接触位置传感器的传感器外壳和传感器组件的透视图。 [0024] FIG. 2C is a perspective view of the sensor housing and sensor assembly for the rectilinear non-contact position sensor.

[0025] 图3A是位置传感器的侧视图,显示包含多个具有各自用于直线行程定位的感应值的离散磁铁的磁通量源。 [0025] FIG 3A is a side view of a position sensor, a display comprising a plurality of discrete magnets having a magnetic flux source for sensing respective values ​​of the linear positioning stroke.

[0026] 图3B是用于直线行程的图3A中的位置传感器的俯视图,并且显示磁通量源在传感器组件中的横向位置以及插入深度。 [0026] FIG. 3B is a plan view of a position sensor of FIG. 3A for linear travel in and shows the lateral position of the magnetic flux source and the sensor assembly insertion depth.

[0027] 图3C和3D相结合,都是图示一电子电路的示意图,该电路用于间歇地为磁性传感器提供能量,并且调节脉冲输出信号以产生遥控仪器中使用的模拟信号。 [0027] Figures 3C and 3D combined, are a schematic diagram illustrating an electronic circuit, the circuit for intermittently energize the magnetic sensor, and adjusting the pulse output signal to generate an analog signal of the remote device used.

[0028] 图4A是自由空间图,用于说明如现有技术所述那样放置的、并且用作为用于直线位移测量的磁通量源的单一条形磁铁的非线性端部效应。 [0028] FIG. 4A is a free space diagram for explaining the placement of the prior art as above, and used as the nonlinear end effects of a single bar magnet flux source for rectilinear displacement measurement.

[0029] 图4B是自由空间图,用于说明由离散磁通量源的离散磁铁所产生的叠加通量场, 以及由通量聚集极靴(flux-gathering pole piece)所产生的合成混合磁场。 [0029] FIG. 4B is a free space diagram for explaining the superposition of discrete flux field source the magnetic flux generated by the discrete magnets, and the magnetic field generated by the synthesis of a mixed flux-gathering pole piece (flux-gathering pole piece) generated.

[0030] 图5A是圆柱形磁铁托架的说明性侧视图,将该托架标示为用来显示用于4. 5英寸直线行程位置传感器的磁通量源中的螺旋导向的离散磁铁的等距垂直间距。 [0030] FIG 5A is an illustrative side view of a cylindrical magnet carriage, the carriage labeled to show equidistant vertical magnetic flux source for the 4.5 inches of rectilinear travel position sensor helical guide discrete magnets spacing.

[0031] 图5B是用于直线位置传感器的螺旋导向离散磁铁阵列的说明性俯视图,该视图显示磁通量源中的离散磁铁的角位移,以及该磁通量源在传感器组件中的横向位置和插入深度。 [0031] FIG 5B is a linear position sensor helical guide illustrative plan view of a discrete array of magnets, which view shows the angular displacement of the discrete magnetic flux source, and the magnetic flux source and the lateral position of the insertion depth of the sensor assembly.

[0032] 图6是连接到旋转轴上的旋转位置传感器的说明性透视图,其中构成旋转磁通量源的多个离散磁铁被布置为围绕该旋转轴成均勻角度分布。 [0032] FIG. 6 is an explanatory perspective view of the connection to the rotating shaft rotational position sensor, wherein the plurality of discrete magnets constituting the rotary magnetic flux source are arranged distributed around the axis of rotation an angle uniformly.

[0033] 图7A是端部安装的旋转位置传感器的说明性透视图,其中该圆柱形磁通量源在通量聚集极靴的多个分支之间旋转。 [0033] FIG. 7A is a perspective view of an illustrative end-mounted rotary position sensor where the cylindrical magnetic flux source in the plurality of branch rotation between the flux-gathering pole piece.

[0034] 图7B是显示用于展示线性输出特征的端部安装旋转位置传感器的参考敏感平面和最大角位移的说明性端视图。 [0034] FIG. 7B is an illustrative end view of the end portion of the reference plane sensitive display linear output characteristic of the rotary position and the maximum angular displacement.

[0035] 图8是用于根据本发明的非接触位置传感器的传感器外壳和传感器组件的透视图; [0035] FIG. 8 is a perspective view of the sensor housing and sensor assembly of the non-contact position sensor of the present invention;

[0036] 图9是沿着图8中的直线9-9做出的平面图; [0036] FIG. 9 is a plan view made along line 9-9 of FIG 8;

6[0037] 图10是用于非接触位置传感器的初级和次级霍尔效应传感器的替换布置方式的放大平面图; 6 [0037] FIG. 10 is an enlarged plan view of the alternative embodiment of the arrangement for non-contact position sensor of the primary and secondary Hall Effect sensor;

[0038] 图11是用于非接触位置传感器的初级和次级霍尔效应传感器的另一替换布置方式的放大平面图; [0038] FIG. 11 is another enlarged plan view of the alternative embodiment of the arrangement for non-contact position sensor of the primary and secondary Hall Effect sensor;

[0039] 图12是磁铁托架行程对霍尔传感器输出(直流电压形式)的曲线图,表明根据一实施例所布置的初级和次级霍尔效应传感器,对应于沿代表阀杆或者阀塞的典型行程的线性转换器的行程的不同位置的相对输出,即磁铁托架行程对初级霍尔传感器(Allegro 3516 LUA)以及与初级霍尔传感器端对端放置的次级霍尔传感器的输出,第二敏感元件正好位于磁极之间的气隙外部,磁铁阵列是2. 5英寸,14个磁铁#A14-6版本1. 3校准;以及 [0039] FIG. 12 is a stroke magnet carriage the Hall sensor output (the form of DC voltage) of a graph indicating arrangement according to an embodiment of the primary and secondary Hall Effect sensors, corresponding to the valve stem or the valve plug along representatives different relative positions of the output stroke of the linear converter typical stroke, i.e. the stroke magnet carriage and placed end to end with the primary secondary Hall sensor Hall sensor Hall sensor output primary (Allegro 3516 LUA), a second sensitive element is located just outside an air gap between the poles, the magnet array is 2.5 inches, the magnet 14 # A14-6 calibration version 1.3; and

[0040] 图13是系统表示的示意图,其中由处理器检测、分析初级和次级霍尔效应传感器的电压输出,与存储在其存储器中的数据相比较,并且可以将输出信号从该系统提供给控制器。 [0040] FIG. 13 is a schematic diagram showing a system in which detection by a processor, the analysis of primary and secondary voltage output of the Hall effect sensor, is compared with data stored in its memory, and the output signal may be provided from the system to the controller.

具体实施方式 detailed description

[0041] 为了理解在此所述的位置传感器的优点,有必要了解位置传感器的元件以及它们如何运转从而测量控制阀上的位移。 [0041] In order to understand the advantages of the position sensor herein, it is necessary to know the position of the sensor element and how they operate to measure displacement on a control valve. 虽然所述优选实施例讲解了涉及控制阀的位移测量, 但是本领域技术人员同样将会认识到与其他位移测量应用的相关性。 While the preferred embodiment relates to explain displacement measurement control valves, those skilled in the art will recognize that the same correlation with other displacement measurement applications. 转向附图并且首先参考图1A,显示了该非接触位置传感器的关键部件。 Turning to the drawings and initially to Figure 1A, it shows the key components of the non-contact position sensor.

[0042] 在图IA中,传感器5被布置在磁通量源8附近。 [0042] In FIG IA, the sensor 5 is disposed in the vicinity of the magnetic flux source 8. 众所周知,磁通量源8产生连续的三维通量场,该通量场完全包围磁通量源8和传感器5。 It is well known, the magnetic flux source 8 generates a continuous three-dimensional flux field that completely surrounds the flux field magnetic flux source 8 and the sensor 5. 然后,传感器5是一种产生与包围传感器5的磁场10成比例的电信号的装置。 Then, a sensor 5 generates an electrical signal 10 proportional to the magnetic field sensor 5 is surrounded. 如本领域技术人员已知的那样,所检测的磁场10的强度相对于磁场10中的位置而变化。 As those skilled in the art as the intensity of the detected magnetic field 10 changes with respect to the magnetic field in the position 10. 因此,如图IC中的图表所示,传感器5相对于磁场10的相对位置或者位移中的任何变化,都将在传感器5的输出中产生相应的变化。 Thus, as shown in the graph in FIG IC, the sensor 5 relative position or any variation of the displacement of the magnetic field 10 will produce a corresponding change in the output of the sensor 5. 可以利用这种关系来制造非接触位置传感器。 It may be manufactured using a non-contact position sensor of this relationship.

[0043] 在非接触位置或者位移测量的应用中,传感器5和磁通量源8都被安装在两个机械独立的物体(未示出)上。 [0043] In the application of non-contacting position or displacement measurement, the sensor 5 and the magnetic flux source 8 are mounted on two mechanically independent objects (not shown). 没有使用动态的或者运动的机械联动来将磁通量源8之间的相对位移直接耦合到传感器5中。 Do not use dynamic or moving mechanical linkages to the relative displacement between the magnetic flux source 8 directly coupled to the sensor 5. 再次参考图1A,传感器5和磁通量源8的相对位置使传感器5布置在靠近磁通量源8中心的位置,具有用Dl表示的位移。 Referring again to Figure 1A, the relative position of the sensor 5 and the magnetic flux source 8 of the sensor 5 is arranged at a position near the center of the magnetic flux source 8 with a displacement indicated by Dl. 在图IC中对应的图表显示用对于位移Dl的Vl表示的传感器5的输出。 Corresponding chart in FIG IC output for display Dl Vl displacement sensor 5 is represented. 在图IB中,该位移被变动到新的位置, 用D2表示,使传感器5布置在磁通量源8的端部附近。 In FIG IB, the variation is a displacement to a new position, indicated by D2, the sensor 5 is disposed in the vicinity of the end portion 8 of the magnetic flux source. 在图ID中,对应的图表显示传感器5输出V2中的变化,该与由磁通量源8产生的磁场10中传感器5的位置变化直接相关。 In FIG. ID, the graph shows the corresponding change in the sensor 5 output V2 is directly related to the change in position of the sensor 5 and 10 of the magnetic field generated by the magnetic flux source 8. 传感器5输出信号的这些变化,被用作为这两个机械独立的物体之间的位移的直接测量。 The change in the sensor 5 output signal are used as a direct measurement of displacement between the two mechanically independent objects. 连接到传感器5上的电子电路(未示出),用来处理在下文中进行更加详细说明的控制阀应用中使用的传感器5的输出信号。 Connected to an electronic circuit (not shown) for processing an output signal of the control valve applications explained in greater detail using the sensor 5 is below the sensor 5.

[0044] 现在参考图2A,位置传感器被显示为与用于控制阀的自动控制的滑动杆执行机构20相连接。 [0044] Referring now to Figure 2A, the position sensor is displayed as a slide bar and the actuator for controlling the automatic control valve 20 is connected. 滑动杆执行机构20适用于直线运动(即沿着直线的运动)。 Sliding bar mechanism 20 is adapted to perform linear motion (i.e., motion along a straight line). 图2A的透视图显示该位置传感器的磁性传感器组件11和磁通量源18a (在图3-7中进行更加详细的显示), 是如何独立地安装在滑动杆执行机构20和遥控仪器19 (仅仅显示遥控仪器的模块基座) 之间的。 2A show a perspective view of the sensor assembly of the magnetic position sensor 11 and magnetic flux source 18a (in FIG. 3-7 show in more detail), independently of how the slide bar mounted on the actuator 20 and the remotely operated instrument 19 (only ) between the remotely operated instrument module base. [0045] 众所周知,滑动杆执行机构20,遥控仪器19和控制阀(未示出)相结合而形成阀组件23。 [0045] It is well known slide bar actuator 20, the remotely operated instrument 19, and a control valve (not shown) combine to form the valve assembly 23. 安装组件14将磁通量源18a连接到杆连接器27上。 The mounting assembly 14 connected to the magnetic flux source 18a to the stem connector 27. 安装组件14由安装板15a 和对准板15b构成。 The mounting assembly 14 is constituted by the alignment plate 15b and the mounting plate 15a. 使用杆连接器螺栓16a和16b将杆连接器27连接在执行机构杆17和阀杆21之间。 Using stem connector bolts 16a and 16b of the lever 27 connected by connecting rod 17 and the stem 21 are in the actuator.

[0046] 在美国专利5,451,923中描述未配备本位置传感器的典型阀组件的一般操作,该专利被转让给Fisher Controls International公司,将其合并在此作为参考。 [0046] The description of a typical valve assembly not equipped with the present position of the sensor in U.S. Patent No. 5,451,923 in the general procedure, which is assigned to Fisher Controls International Corporation, which is incorporated herein by reference. 众所周知, 当遥控仪器19接收到移动该阀塞的命令时,压缩空气被引导向滑动杆执行机构20,并且执行机构杆17将产生运动。 Is well known, when the remote control device 19 receives a command to move the valve plug, compressed air is guided to the slide bar actuator 20, actuator rod 17 and the generated motion. 执行机构杆17的任何位移都将使磁通量源18a相对于传感器组件11的位置产生相对变化。 Any displacement of the actuator rod 17 will cause the magnetic flux source 18a with respect to a relative change in position of the sensor assembly 11. 该位置变化改变该传感器输出。 The position change of the sensor output change. 该输出信号被传送到遥控仪器19中进行处理,从而产生对阀塞(未示出)的精确控制。 The output signal is transmitted to the remotely operated instrument 19 for processing to produce a precise control of the valve plug (not shown). 图2B显示直线位置传感器30a 的透视图。 FIG 2B is a perspective view of a linear position sensor 30a is displayed. 磁通量源18a和传感器组件11紧密接近地布置,从而将磁场10(图IA和图1B) 充分地连接到传感器组件11上,但是在运行过程中不发生接触。 Magnetic flux source 18a and the sensor assembly 11 is disposed in close proximity so as to be sufficiently connected to the sensor assembly 11 on the magnetic field 10 (FIG. IA and FIG. IB), but not in contact during operation.

[0047] 现在参考图2C,传感器组件11被安装在传感器外壳22中。 [0047] Referring now to Figure 2C, the sensor assembly 11 is mounted in the sensor housing 22. 传感器外壳22提供通量聚集极靴32和磁性传感器35的位置对准(在下文中进行更加详细地说明)。 The sensor housing 22 provides the flux-gathering pole piece 32 and the magnetic position sensor 35 are aligned (hereinafter described in more detail below). 通过支架38和两个螺钉24a和24b,将磁性传感器35和通量聚集极靴32保持在传感器外壳22中。 By a bracket 38 and two screws 24a and 24b, the magnetic sensor 35 and flux-gathering pole piece 32 is held in the sensor housing 22. 此外,通过将传感器外壳22直接整合到遥控仪器19中,来简化电气连接,并且能够适合本领域技术人员所熟知的危险环境中的用于固有安全性和防爆炸操作的工业限制。 Further, by integrating the sensor housing 22 directly into the remotely operated instrument 19, to simplify electrical connection, and it can be suitably industrial constraints to those skilled in the art in hazardous environments for the inherent safety and explosion-proof operation. 传感器外壳22由铝或者任何其它适合的非磁性材料制造,并且适合于容纳传感器组件11。 The sensor housing 22 of aluminum or any other suitable non-magnetic material made from, and is adapted to receive a sensor assembly 11.

[0048] 现在参考图3A和图3B,将详细讨论该优选实施例中的磁通量源18a (图3A)和传感器组件11 (图3B)。 [0048] Referring now to FIGS. 3A and 3B, will be discussed in detail magnetic flux source 18a (FIG. 3A) in the embodiment and the preferred embodiment of the sensor assembly 11 (FIG. 3B). 在该优选实施例中,磁通量源18a被设计为用于在其整个位移测量范围之内测量直线行程,并且提供线性输出信号。 In the preferred embodiment, the magnetic flux source 18a is designed to measure rectilinear travel throughout its range of displacement measurement, and provide a linear output signal. 例如,位移中10%的变化将在位置传感器的输出信号中产生相应的10%的变化。 For example, a 10% change in displacement will produce a corresponding ten percent change in the output signal of the position sensor. 位置传感器输出中的所有变化都与位移中的变化成正比。 All changes in position sensor output are proportional to the variation of the displacement. 该线性输出关系在遥控仪器的运行中十分重要。 The linear output relationship is important in the operation of the remote instrument. 通过产生位移的正比例测量,不需要通过遥控仪器19或者传感器电子线路13 (图3C和3D)的额外处理就可以提供位置反馈。 Measured by the proportional displacement, without going through the remotely operated instrument 19 or the sensor electronics 13 (FIGS. 3C and 3D) can provide additional processing position feedback.

[0049] 多个独立的或者离散的圆柱形磁铁50-72被安装在矩形托架41中,用来产生磁通量源18a。 [0049] a plurality of individual or discrete cylindrical magnets 50-72 are mounted in a rectangular bracket 41 for generating magnetic flux source 18a. 用于托架41的优选材料是非磁性的,比如铝或者塑料。 Preferred materials for the carrier 41 is nonmagnetic such as aluminum or plastic. 在该优选实施例中,23 个离散的磁铁50-72都被布置在托架41中,用于产生能够测量大约4. 5英寸的直线行程的线性阵列。 In the preferred embodiment, the 23 discrete magnets 50-72 are arranged in the tray 41, for generating a linear array capable of measuring about 4.5 inches of rectilinear travel. 离散磁铁50-72优选的是都由铝镍钴永磁合金(ALNIC0)8H做成,并且垂直地或者水平排列。 Discrete magnets 50-72 are preferably by alnico permanent magnet alloy (ALNIC0) 8H made, and are arranged vertically or horizontally. 在一个实施例中,使用环氧树脂,比如明尼苏达州,圣保罗的3M公司制造的2214结构性粘着剂(Structural Adhesive),将磁铁50-72安装在该托架中。 In one embodiment, an epoxy resin, such as Minnesota, St. Paul, manufactured by 3M Company, 2214 structural adhesive (Structural Adhesive), the magnets 50-72 are mounted in the carrier. 每个离散的磁铁都大约是直径为0. 1875英寸,并且长度为0. 1875英寸。 Each discrete magnets have a diameter of about 0.1875 inches, and a length of 0.1875 inches. 各个磁铁中心到中心的间距在垂直方向上大约为0. 25英寸,在该阵列的中心部分上设置大约4. 5英寸的位移测量。 Each magnet center to center spacing in the vertical direction is approximately 0.25 inches, is provided about 4.5 inches displacement measurement over the central portion of the array. 托架41提供该磁铁阵列的机械对准,并且使用安装组件14直接连接到杆连接器27上,使用前面图2A中所示的杆连接器螺栓16a和16b,将装配组件14连接到杆连接器27上。 Bracket 41 provides mechanical alignment of the magnet array, and the use of mounting assembly 14 is connected directly to the stem connector 27 using stem connector bolts preceding figures 16a shown in FIG. 2A and 16b, the connecting rod 14 is connected to the fitting assembly on 27.

[0050] 如本领域技术人员所理解的那样,在遥控仪器19安装在执行机构20上的过程中产生的尺寸公差层叠,要求在阀组件23运行之前进行仪器校准。 [0050] As those skilled in the art will appreciate, the size tolerance stack produced during the remotely operated instrument 19 is mounted on the actuator 20, the instrument requires calibration before the valve assembly 23 in operation. 通过沿着该纵向行程轴线和在水平地垂直于该纵向轴线的平面中提供粗糙位置校准,有利于该仪器校准。 By providing the stroke axis and a rough alignment position in a horizontal plane perpendicular to the longitudinal axis along the longitudinal direction, it is conducive to the instrument calibration. 区别于直接将运动耦合到传感器的现有技术联动,安装组件14的安装板15a和对准板15b都是静态的,并且仅在安装过程中提供调整。 Directly coupled to motion different from the prior art sensor linkage mounting assembly mounting plate 15a 14 and aligning plate 15b are static and only provide adjustment during the installation process. 在图3B中进一步说明磁通量源18a和传感器组件11 Further illustrate magnetic flux source 18a and sensor assembly 11 in FIG. 3B

8的水平对准。 8 horizontally aligned.

[0051] 图3B中所示的俯视图清楚地显示传感器组件11的U形通量聚集极靴32。 [0051] The plan view shown in FIG. 3B clearly shows the U-shaped flux sensor assembly 11 gathering pole piece 32. 通量聚集极靴32包括两个由高穿透性材料,优选的是宾夕法尼亚州,里丁卡彭特技术公司的退火的HyMu “80”®做成的L形分段33a和33b,并且布置成互为镜像相反。 Flux-gathering pole piece 32 comprises two high-permeability material, preferably Pennsylvania, Carpenter Technology Corporation of Reading annealed HyMu "80" ® made of L-shaped section 33a and 33b, and arranged into the mirror opposite to each other. L形分段33a和33b在底部相结合,具有适于容纳磁性传感器35的间隙,以及将各个L形分段33a和33b布置在紧靠磁性传感器35的位置。 L-shaped sections 33a and 33b are combined at the bottom, with a gap adapted to receive the magnetic sensor 35, and the respective position of the L-shaped sections 33a and 33b are arranged in close proximity of the magnetic sensor 35. 每个L形分段33a和33b的正方形横截面尺寸都大约为0. 15英寸。 Each L-shaped sections 33a and 33b of a square cross-sectional dimensions are about 0.15 inches. 优选的是,每个L形分段33a和33b深度都大约为1. 25英寸,并且横过该底部有0. 445英寸,从而形成深度大约1. 25英寸、宽度为0. 89英寸的外形尺寸的U形。 Preferably, each L-shaped section 33a and 33b have a depth of about 1.25 inches, across the bottom and 0.445 inches, to form a depth of about 1.25 inches, a width of 0.89 inches appearance the size of U-shaped. 在该优选实施例中,磁性传感器35是Allegro 3515的霍尔效应元件,但是同样可以或者另外使用其他形式的包含但不是限于Allegro 3515的霍尔效应元件的磁性传感器。 In the preferred embodiment, the magnetic sensor 35 is the Allegro 3515 Hall Effect element, but may also be other forms of or in addition comprise but not limited Hall effect magnetic sensor element Allegro 3515.

[0052] 通过电子电路13 (图3C和3D)处理磁性传感器35的输出。 [0052] (FIGS. 3C and 3D) processing the output of the magnetic sensor 35 by the electronic circuit 13. 电子电路13在磁性传感器35和遥控仪器19之间设置有接口。 The electronic circuit 13 is provided with an interface between the magnetic sensor 35 and the remotely operated instrument 19. 如图3C中所示,一对连接器Jl和J2从工业标准4-20mA电流线圈中接收功率。 As shown in FIG. 3C, a pair of connectors Jl and J2 receive power from an industrial standard 4-20mA current in the coils. 如本领域技术人员所理解的那样,用于磁性传感器35和电子电路13的功率可以从调整电路产生,该调整电路用无源元件R5,R6,R7,RIO, Rl 1,R12 和C5,以及来自加利福尼亚州,圣克拉拉的国家半导体公司的LM285微功耗基准电压二极管U2设计而成。 As those skilled in the art will appreciate, the power for the magnetic sensor 35 and the electronic circuit 13 may be generated from the adjusting circuit, the adjusting circuit with passive components R5, R6, R7, RIO, Rl 1, R12 and C5, and national semiconductor Corporation from California, Santa Clara LM285 micropower voltage reference diode U2 designed. 在表1中显示这些元件以及图3C和3D中的其它元件的值/标示。 Display value / label these elements 3C and 3D and the other elements shown in Table 1.

[0053] 间歇性地为这些电路供电,可以减少磁性传感器35和电子电路13的功率消耗。 [0053] intermittently supply for these circuits can reduce the power consumption of the magnetic sensor 35 and the electronic circuit 13. 磁性传感器35通过连接器J3连接到该电子电路上,并且通过多通道场效应晶体管(FET) Q2在大约200赫兹处“功率开关”或者受到脉冲作用。 The magnetic sensor 35 is connected through connectors J3 to the electronic circuitry, and by the multi-channel field effect transistor (FET) Q2 at about 200 Hz at a "power switch" or is pulsed. 如本领域技术人员所理解的那样,嵌入式控制器U1,亚利桑那州,菲尼克斯的微型芯片技术公司的PIC12C508A,以及无源元件RU YU Cl和C2提供用于脉冲运行的定时和控制。 As those skilled in the art understand, the embedded controller U1, Arizona, Phoenix Technologies the PIC12C508A microchip, and a passive element RU YU Cl and C2 provide the timing and control for pulsed operation. 从磁性传感器35输出的脉冲输出信号必须进行插值或者重建,从而产生能够由遥控仪器19处理的模拟信号。 Pulse output signal output from the magnetic sensor 35 must be interpolated or reconstructed to produce an analog signal that can be processed by the remotely operated instrument 19. FET Q1,运算放大器U3A (图3C),以及多个无源元件R2,R8,R13,R14,C3,C6和C7,产生采样和保持电路,用来重建模拟信号。 FET Q1, an operational amplifier of U3A (Fig. 3C), and a plurality of passive components R2, R8, R13, R14, C3, C6 and C7, to produce sample and hold circuit to reconstruct the analog signal. 运算放大器U3B和多个无源元件R3,R4,R9以及C4调整(即调整增益和偏移)并且过滤重建模拟信号,从而产生最终输出信号。 A plurality of operational amplifier U3B and passive components R3, R4, R9, and C4 to adjust (i.e. adjust the gain and offset) and filtered reconstructed analog signal to produce the final output signal. 通过连接器J4,最终的输出信号或者位置位移测量被输送到遥控仪器19中(图3C)。 J4, the final output signal or position displacement measurement is fed into a (FIG. 3C) the remotely operated instrument 19 through connector. 最后,测试连接器J5能够为用于磁性传感器35和电子电路13的诊断评估提供测试信号。 Finally, the test connector J5 can provide test signals for diagnostic evaluation for the magnetic sensor 35 and the electronic circuit 13.

[0054] [0054]

[0055] 表1 [0055] TABLE 1

[0056] 继续参考图4B,通量聚集极靴32收集磁通量源18a产生的磁场10,并且将该通量引导向磁性传感器35,在下文中将对此进行更加详细地说明。 [0056] With continued reference to Figure 4B, the flux-gathering pole piece 10 collects the magnetic field 32 generated by the magnetic flux source 18a and directs the flux 35, which will be described hereinafter in more detail to the magnetic sensor. 磁通量源18a被安装为大致垂直于传感器组件11,这样任何相对水平位移都不会导致磁通量源18a与通量聚集极靴32 上的内脚物理接触。 Magnetic flux source 18a is mounted approximately perpendicular to sensor assembly 11 such that any relative horizontal displacement does not cause the magnetic flux source 18a and the flux-gathering pole piece 32 of the foot on physical contact. 磁通量源18a与U形通量聚集极靴32的开口的啮合大约为0. 3125英寸。 Magnetic flux source 18a and the U-shaped flux-gathering pole piece 32 is engaged with an opening of approximately 0.3125 inches. 位于磁通量源18a两侧的大约为0. 2英寸的气隙将磁通量源18a对称地布置在传感器组件11中。 Located on both sides of the magnetic flux source 18a is approximately 0.2 inches of the air gap magnetic flux source 18a symmetrically arranged in the sensor assembly 11.

[0057] 每个离散的磁铁50-72产生磁场。 [0057] Each discrete magnet 50-72 produces a magnetic field. 众所周知,所述磁场的形状和密度与多个因素直接相关。 Known, shape and density of the magnetic field is directly related to several factors. 这些因素中的两个是磁铁的感应和磁铁与外界磁场的相互作用。 Two of these factors interact with the external magnetic field and the magnet sensor magnet. 为了更好地理解磁通量源18a的特有特征,在下文中将更加详细地说明上述因素。 For a better understanding of the characteristic features of the magnetic flux source 18a, the aforementioned factors will be described hereinafter in more detail.

[0058] 磁铁的感应是其内在磁性强度的直接测量,并且能够在制造过程中进行控制或者程序化。 [0058] The induction magnet is a direct measure of its inherent magnetic strength and can be controlled or programmed during manufacture. 众所周知,对于给定的磁铁物理几何结构,在其感应中的增加将在磁性强度和其磁场密度中产生相应的增加。 It is well known for a given physical geometry of the magnet, an increase in its induction produces a corresponding increase in the strength of the magnetic field and its density. 通过控制离散磁铁的感应,能够控制其通量密度(即在给定体积中的通量大小),并且因此能够控制其磁场。 By controlling the discrete magnets induction, its flux density can be controlled (i.e., in a given volume flux magnitude), and it is possible to control the magnetic field. 同样,不是由离散磁铁产生的任何附加的或者外界磁场都可以与离散磁铁产生的磁场相结合。 Also, any additional or external magnetic field is not generated by the discrete magnet can be produced by the combination of the discrete magnet. 附加磁场的极性和密度能够“加性地”±曾加或者减少围绕离散磁铁周围的磁场。 Polarity and density of the additional magnetic field can "additively" has been added to or reduced about ± discrete field around the magnet. 在此说明的磁路使用感应控制和外界磁场之间的相互作用来产生可编程的磁通量源。 Interaction between a magnetic circuit and the external magnetic field using an induction control described herein to produce a programmable magnetic flux source.

[0059] 如现有技术证明的那样,当用于位移测量使用磁铁的整个长度时,单一条形磁铁会有难度。 [0059] As evidenced by the prior art, when used for the entire length of the magnet displacement measurement, a single bar magnet will be difficult. 如图4A中所示,在单一条形磁铁的应用中,磁极的极化方向或者方位平行于行程方向。 As shown in FIG. 4A, in the single bar magnet application, the polarization direction or orientation of the magnetic poles is parallel to the direction of travel. 极性方向在磁极附近设置有高度集中的磁场130a和130b。 Polarity in the vicinity of the magnetic pole provided with a highly concentrated magnetic fields 130a and 130b. 在这些密集通量区域中,磁通线之间的排斥力在磁场中产生极端非线性变化。 In these dense flux regions, the repelling force between the magnetic flux lines generated extreme nonlinear changes in the magnetic field. 如果单一条形磁铁将被用于位移测量,则需要通过传感器组件电子线路进行特殊处理,从而产生线性输出。 If a single bar magnet is to be used for displacement measurement, special handling is required by the sensor assembly electronics to produce a linear output. 另外,磁铁的长度可以增加大约75%,从而排除非线性端部效应,但是这种方法不必要地增加了成本,并且由于物理长度的增加限制了位置传感器的应用。 Further, the length of the magnet can be increased by about 75%, thus excluding the nonlinear end effects, but this approach needlessly increases cost and limits due to increased physical length of the application of the position sensor. 在本优选实施例中,磁通量源长度可以与将要检测的最大位移大致相等,并且不需要对输出信号进行特殊处理。 In the preferred embodiment, the magnetic flux source length can be substantially equal to the maximum displacement to be detected, and no special processing of the output signal.

[0060] 图4B是仅使用七个离散磁铁50-56的优选实施例的自由空间图,用于图示相互结合来产生更大的混合磁场10的磁场110-116。 [0060] FIG. 4B is a free space diagram of a preferred embodiment 50-56, for illustrating bonded to each other to produce a larger magnetic field 10 of the mixing using only seven discrete magnets 110-116. 下述磁学原理大致说明了多个离散磁铁之间的关系。 Magnetic following principles generally illustrates the relationship between the plurality of discrete magnets. 如图4B所示,独立磁场110-116不仅包围产生所定向的离散磁铁50-56,而且提供用于相邻磁铁的相交磁通线。 4B, the magnetic fields 110-116 not only independent surrounded produce the discrete magnets 50-56 orientation, but also provide intersecting flux lines for adjacent magnets. 叠加的通量区域加性地相结合,用于产生更大的限定整个磁通量源的预定磁场10。 Flux region superimposed additively combining, for generating a predetermined magnetic field 10 defines the entire magnetic flux larger source. 在优选实施例中,每个离散磁铁50-56的极轴垂直指向相对运动的方向,以有助于“叠加”连续磁场。 Embodiment, the polar axis of each discrete magnet 50-56 points perpendicular to the direction of relative motion in the preferred embodiment, to facilitate "stacking" continuous magnetic field. 通过控制每个离散磁铁50-56的感应或者强度,并且将其布置成线性阵列,离散磁场110-116加性地互相结合,从而产生能够产生预定磁场10的可编程磁通量源。 By controlling the induction or strength of each discrete magnet 50-56, and which is arranged in a linear array, the discrete magnetic fields 110-116 additively combined with each other to produce a programmable magnetic flux source capable of generating a predetermined magnetic field 10.

[0061] 如上文所述,每个离散磁铁都具有与之相关联的特殊的磁性“能量”或者感应量。 [0061] As described above, each discrete magnet has a special magnetic properties associated therewith, "energy", or the amount of induction. 物理磁性体积、磁铁几何结构以及磁铁材料特性,都限定了在磁铁中能够存在多少磁能。 Physical magnetic volume, magnet geometry, and magnet material characteristics, defining how much magnetic energy can be present in the magnet. 如本领域技术人员所0知的,每个离散磁铁的感应都可以使用传统的磁性处理器进行设计或者校准,比如印地安那州,印第安纳波利斯的磁性仪器公司生产的型号为990C的Magnetreater®。 As those skilled in the 0 art, each discrete magnet's induction can use a conventional processor design or calibration magnetic, such as Indiana, Indianapolis magnetic Instruments model 990C produced by the Magnetreater ®. 当使用型号为990C的Magnetreater®时,需要考虑上述磁铁的所有特性。 When using the Model 990C Magnetreater®, to consider all the features of the magnet.

在下文中示出的表2,提供了用于图3A中所示的线性阵列的感应值。 It is shown in the following Table 2, a value for the linear sensing array shown in FIG. 3A.

[0062] [0062]

[0063] 表2 [0063] TABLE 2

[0064] 如表2中所述和所示,磁铁序列的感应值发生阶段性的变化,从而产生磁通量源18a的磁场10。 [0064] Table stepwise change in the sensed value and, the magnet 2 sequence occurs, resulting in a magnetic field 10 of magnetic flux source 18a. 离散磁铁61被布置在阵列的几何中心,并且被设计为0高斯,从而在仪器校准中为绝对参考提供磁性空位。 Discrete magnet 61 is disposed at the geometric center of the array, and is designed to zero gauss to provide a magnetic gap in the absolute reference instrument calibration. 此外,为了提供绝对位移测量,离散磁铁50-72在磁性空位的两侧都具有相反的极性。 Further, to provide absolute displacement measurement, the discrete magnets 50-72 are on both sides of the magnetic gap have opposite polarities. 极性差异通过电子电路13 (在图4B中未示出)进行检测,并且通过遥控仪器19将其作为绝对位置测量。 Polarity difference (not shown in FIG. 4B) is detected by an electronic circuit 13, and by the remotely operated instrument 19 as an absolute position measurement. 众所周知,在表2的值中,相反的数学符号表示极性变化。 It is well known in the values ​​of Table 2, the opposite polarity change mathematical notation. 通常,正值表示磁性空位之上的相对位移,负值表示磁性空位之下的相对位移。 Typically, a positive value represents a relative displacement on the magnetic gap, negative values ​​indicating relative displacement below the magnetic gap. 虽然优选实施例讲解了具有线性输出关系的位置传感器,但是应该理解的是,磁通量源的内在可编程性能够提供多种位置传感器输出信号行程关系,而没有改变传感器组件电子线路。 Although the preferred embodiment explained the position sensor having a linear output relationship, it should be appreciated that the inherent programmability of the magnetic flux source can provide a plurality of position sensor output signal travel relationships without modifying the sensor assembly electronics. 同样,离散磁通量源的独特特性为不同形式的位移测量提供充分的适应性。 Similarly, the unique characteristics of the discrete magnetic flux source provide sufficient flexibility for the various forms of displacement measurement. 在下文中所解释的替换实施例中将更加详细地说明这种适应性。 In the embodiment will be explained hereinafter in alternative embodiments described in greater detail this adaptation.

[0065] 在直线应用的另一实施例中,在磁通量源中重新定位离散磁铁来控制相互作用。 [0065] In another embodiment of the linear application, repositioning the discrete magnets in the magnetic flux source controls the interactions. 如上文所述,优选实施例依靠设计相邻离散磁铁的感应来产生预定的输出信号。 As described above, the preferred embodiment relies on the discrete design of an induction magnet adjacent to generate a predetermined output signal. 再次参考图1A-1D,磁场中的物理位置决定此磁场的测量强度。 Referring again to FIGS. 1A-1D, a magnetic field strength measured to determine the physical location of this magnetic field. 类似地,通过在相邻磁铁之间产生空间和距离,能够控制离散磁铁的表现强度,因此可以控制其相互作用。 Similarly, by creating space and the distance between adjacent magnets, the performance can be controlled by strength of the magnet, it is possible to control the interaction.

[0066] 图5A是另一实施例的侧视图。 [0066] FIG 5A is a side view of another embodiment. 磁通量源18b的离散磁铁50-72都再次沿着托架42的纵轴46等间距布置。 Magnetic flux source 18b discrete magnets 50-72 are arranged along the longitudinal axis 46 of spacing bracket 42 and the like again. 离散磁铁50-72的直径大约为0. 125英寸,长度为0. 462英寸。 The diameter of the discrete magnet 50-72 is approximately 0.125 inches, a length of 0.462 inches. 托架42适于容纳具有大约为0. 25英寸的中心到中心间距的离散磁铁50-72。 Has a bracket 42 adapted to receive approximately 0.25 inches center-to-center spacing of the discrete magnets 50-72. 通过围绕磁通量源18b的纵轴46螺旋形地导向或者旋转离散磁铁50-72,来控制磁场的相互作用。 Magnetic flux source 18b through the longitudinal axis of rotation 46 helically oriented discrete magnets 50-72 about or to control the magnetic interaction. 众所周知,通过在任何方向上增加离开磁铁的间距,将降低磁铁的表观强度。 Is well known, by increasing the spacing in any direction away from the magnet, would decrease the apparent strength of the magnet. 在此替换实施例中,提供围绕纵轴在相邻磁铁之间精确的角位移,来控制相邻磁场之间的相互作用。 In this alternative embodiment, there is provided about the longitudinal axis in a precise angular displacement between the adjacent magnets, to control the interaction between the magnetic field adjacent. 在此替换实施例中,传感器组件11 (未示出)与优选实施例中详细说明的传感器组件相同。 In this alternative embodiment, the sensor assembly 11 (not shown) in a sensor assembly according to the preferred embodiment described in detail the same. 因此, 通过离散磁铁50-72的计算方位,可以产生预定的输出信号。 Accordingly, by calculating the orientation of the discrete magnets 50-72, it is possible to generate a predetermined output signal.

[0067] 图5B是用于直线位置传感器的螺旋指向磁通量源18b的俯视图。 [0067] FIG 5B is a top view of FIG directed helical magnetic flux source 18b for a rectilinear position sensor. 该视图显示用于离散磁铁50-72的旋转参考平面126。 This view shows a discrete magnet 50-72 rotational reference plane 126. 磁通量源18b大约位于通量聚集极靴32的第一和第二L形分段33a和33b之间的中心部分。 Magnetic flux source 18b is located approximately at a central portion of the flux-gathering pole piece and between the second L-shaped sections 33a and 33b of the first 32. 在下文中示出的表3,提供了要求从具有全部设计为大约457高斯的离散磁铁50-72的传感器组件11 (未示出)中获得基本线性输出的旋转角实例。 Shown in the following Table 3 provides examples of the rotation angle required to obtain a substantially linear output from the sensor assembly 50-72 11 (not shown) having the overall design of about 457 Gauss from the discrete magnets.

[0068] [0068]

[0069] 表3 [0069] TABLE 3

[0070] 图6中显示位置传感器的另一实施例。 [0070] FIG. 6 shows another embodiment of the position sensor. 使用与优选实施例中类似的技术构造旋转非接触位置传感器30b。 Using similar techniques embodiment the non-contact rotational position sensor configured 30b preferred embodiment. 15个离散磁铁50-64被排列在均勻角度分布为6°的扇形托架43中。 15 distributed discrete magnets 50-64 are arranged in a fan shape in the 6 ° angle bracket 43 uniformly. 该扇形托架垂直布置在旋转轴47上,以产生旋转磁通量源18c。 The fan-shaped bracket vertically disposed on the rotary shaft 47, to produce a rotating magnetic flux source 18c. 另外,扇形支架43 优选的是由铝制成。 Further, stent 43 is preferably made of aluminum sector. 通过旋转安装组件79,旋转磁通量源18c被直接连接到旋转轴75上。 79, the rotary magnetic flux source 18c is connected directly to the mounting assembly by rotating the rotary shaft 75. 通量聚集极靴的L形分段33a和33b,磁性传感器35,以及离散磁铁50-64都与上述说明相同。 The flux-gathering pole piece L-shaped sections 33a and 33b, the magnetic sensor 35, and discrete magnets 50-64 are the same as described above. 在下文中示出的表4,为图6中所示的旋转磁通量源18c提供感应值。 Shown in the following Table 4, to provide values ​​for the rotation sensing magnetic flux source 18c shown in FIG.

[0071] [0071]

[0072] 表4 [0072] TABLE 4

[0073] 图6中所示的旋转位置传感器30b,通过各个离散磁铁50-64的感应的受控校准, 提供旋转行程和传感器输出之间的线性关系。 [0073] The rotational position sensor shown in FIG. 6 30b, through each discrete magnet 50-64 controlled calibration of the induction, there is provided a linear relationship between rotary travel and sensor output. 通过90°的旋转,提供线性输出运行特性。 By rotation of 90 °, providing a linear output operating characteristics. [0074] 在此所描述的原理同样可以被应用于具有延长的线性运行范围的旋转位置传感器30c。 [0074] In the principles described herein may equally be applied to a rotational position sensor 30c with an extended linear operating range. 使用与上文中参考图2C所述的相同的通量聚集极靴32的L形分段33a和33b以及磁性传感器,可以用单个圆柱条磁铁39作为用于位置传感器的磁通量源。 Aggregation using the same flux described above with reference to FIG. 2C pole piece L-shaped section 33a and 33b and the magnetic sensor 32 can be a single cylindrical bar magnet 39 as a magnetic flux source for the position sensor. 如图7A中所示, 旋转传感器30c被设计为可以提供以线性方式变化的输出。 As shown in FIG. 7A, the rotary sensor 30c is designed to be provided in a linear manner to changes in output. 圆柱形磁铁39在通量聚集极靴32的第一和第二L形分段33a和33b之间旋转,以提供基本为线性的输出信号。 Cylindrical magnet flux-gathering pole piece 39 in the rotation between the first and second L-shaped sections 33a 32 and 33b, to provide a substantially linear output signal. 通过正确选择磁铁长度,可以获得最大的线性度。 By properly selecting the length of the magnet, the maximum linearity can be obtained. 相对于通量聚集极靴32,圆柱形磁铁39的最优化长度是实质上为通量聚集极靴32的L形分段之间的间隙宽度的2/3。 With respect to the flux-gathering pole piece 32, the length of the cylindrical magnet 39 is optimized substantially to the gap between the flux-gathering pole piece L-shaped section 32 of 2/3 of the width. 例如,使用内部宽度大约为0. 59英寸的优选实施例的通量聚集极靴32,圆柱形磁铁39将具有大约为0. 385 英寸的长度。 Flux embodiment example, using an internal width of approximately 0.59 inches preferably gathering pole piece 32, having a cylindrical magnet 39 is approximately 0.385 inches in length. 在此替换实施例中,圆柱形磁铁39的直径大约为0. 1875英寸。 In this alternative embodiment, the diameter of the cylindrical magnet 39 is approximately 0.1875 inches. 如图所示,托架44将圆柱形磁铁39连接到旋转轴75上。 As shown, the bracket 44 is connected to the rotary shaft 75 of the cylindrical magnet 39. 托架44适于围绕旋转轴75的轴线49,连接到圆柱形磁铁39上。 Bracket 44 adapted to surround the rotation shaft 75 axis 49, 39 connected to the cylindrical magnet. 此外,圆柱形磁铁39被插入通量聚集极靴32的开口中大约0. 3125英寸。 Further, the cylindrical magnet 39 is inserted into the flux gathering pole piece 32 of the opening of about 0.3125 inches.

[0075] 如图7B中所示,通过110°的旋转提供线性输出运行特性,其中,该旋转是围绕等分通量聚集极靴32的第一和第二L形分段33a和33b的平面119对称布置的。 [0075] As shown in FIG. 7B, the linear output operating characteristics provided by rotation of 110 °, wherein the rotation of the first and second pole piece are L-shaped sections 33a 32 and 33b surrounding the flat aliquots flux-gathering 119 arranged symmetrically. 等分平面119与磁性传感器的检测平面118成直角。 Aliquots detection plane 119 plane of the magnetic sensor 118 at right angles.

[0076] 上文中已经显示和说明了使用单个霍尔效应传感器的位置传感器的多种执行方式。 In [0076] As already shown and described various implementation using a single position sensor is a Hall effect sensor. 可以在上文中所述和所示的技术和构造中进行多种调整和变动。 We can make various changes and adjustments in the art and configurations described above and shown in FIG. 例如,由铁磁粉材料做成的磁分路可以被设置在靠近或者完全包围每个离散磁铁的位置,以有选择地减小其磁场,因此控制其在后续磁铁上的效应。 For example, ferromagnetic powder made of magnetic shunt material may be disposed at a position near or completely surrounding each discrete magnet to selectively reduce its magnetic field and therefore control its effect on subsequent magnets. 此外,同样可以在各个磁铁之间使用不均勻间距,或者使用可变磁铁长度。 Further, also possible to use non-uniform spacing between individual magnets or variable magnet length used.

[0077] 此外,如图8-11中的实施例所示,次级霍尔效应传感器可以被加到在单个霍尔效应非接触接近传感器中使用的U形通量聚集极靴上。 [0077] Further, in the embodiment shown in FIG. 8-11, a secondary Hall Effect sensor can be added in a single Hall Effect non-contact proximity sensor for use in the U-shaped flux-gathering pole piece. 下面参见附图8,传感器组件200被安装在传感器外壳212中。 Referring to Figure 8, the sensor assembly 200 is mounted in the sensor housing 212. U形通量聚集极靴214被传感器外壳212固定地排列。 U-shaped flux-gathering pole piece 214 is fixedly arranged in the sensor housing 212. 如上文中更充分地说明那样,U形通量聚集极靴214,包括第一L形分段216以及第二L形分段218, 并被布置在紧密邻近磁通量源的位置。 As described more fully described above, U-shaped flux-gathering pole piece 214, comprising a first L-shaped section 216 and a second L-shaped section 218, and is disposed at a position close proximity to the magnetic flux source. 磁通量源可以采用,例如含有多个离散圆柱形磁铁的矩形托架(如图3A中所示)的形式,使用该托架可以有助于通过具有直线位置和行程的传感器组件210进行检测。 Magnetic flux source may be employed, for example, a rectangular bracket comprising a plurality of discrete cylindrical magnets (as shown in FIG. 3A) form, can facilitate the use of the carrier is detected by the sensor assembly and having a straight travel position 210. 对于磁通量源的替换布置方式同样是可能的。 Alternative arrangements for the magnetic flux source are also possible. 例如,为了便于检测旋转位置和行程,磁通量源可以采用含有多个离散磁铁的扇形(如图6中所示)的形式,优选的是排列为均勻角度分布。 For example, in order to facilitate detection of the rotational position and travel, the magnetic flux source may take the form of a fan comprising a plurality of discrete magnets (as shown in FIG. 6), preferably arranged in a uniform angular distribution.

[0078] 如图9中最佳所示,在传感器外壳212中,第一L形分段216以及第二L形分段218分别在非对称的Y形部分220,222的位置终止。 [0078] As best shown in FIG. 9, in the sensor housing 212, a first L-shaped section 216 and a second L-shaped section 218 terminate at a position asymmetric Y-shaped portions 220, 222. 非对称的Y形部分220,222各自分别具有第一端部224,226。 Asymmetric Y-shaped portions 220, 222 each having a first end portion 224, 226 respectively. 初级霍尔效应传感器228被布置在U形通量聚集极靴214的第一和第二L形分段216,218的Y形部分220,222的第一端部224,226之间。 Primary Hall effect sensor 228 is disposed aggregated pole piece 214 of the first end portion of the first and second L-shaped section of the Y-shaped portion 216, 218 220, 222 224, 226 between the U-shaped flux. 与L形分段218 相接触的初级特感器228的表面238优选的是有烙印的。 Surface 238 and the L-shaped section 218 contacts the primary Laid sensor 228 is preferably branded.

[0079] 每个非对称Y形部分220,222还分别具有第二端部230,232。 [0079] each of the asymmetric Y-shaped portion 220, 222 also has a second end 230, 232 respectively. 第一端部224,226 以及第二端部230,232都被布置在各个Y形部分220,222的首端。 A first end portion and a second end portion 224, 226, 230, 232 are disposed in the first end of each Y-shaped portions 220, 222. 传感器外壳212优选的是还提供有适配器234,该适配器由电绝缘材料,比如塑料做成,但是磁通量可以穿过该适配器。 Sensor housing 212 is preferably further provided with the adapter 234, the adapter is an electrically insulating material, for example made of plastic, but the magnetic flux can pass through the adapter. 如图9中最佳所示,次级传感器236和适配器234都被布置在非对称Y形部分220, 222的第二端部230,232之间。 As best, secondary sensor 236 and the adapter 234 in FIG. 9 are disposed between the asymmetric Y-shaped portions 220, 230, 232 of the second end portion 222. 与初级传感器228相类似,次级传感器236是霍尔效应传感 Similar to the primary sensor 228, the secondary sensor 236 is a Hall effect sensor

16器,在非对称Y形部分220,222的第一和第二端部224,226,230,232的法向上布置有至少一个敏感元件,从而与U形通量聚集极靴214产生的通量方向垂直。 16 is, in the asymmetric Y-shaped first and second end portions 224,226,230,232 of the portion 220, 222 is disposed upwardly method has at least one sensitive element, so that the U-shaped flux-gathering pole piece 214 flux direction generated vertical.

[0080] 通过提供非对称Y形部分220,222,使初级传感器228位于第一和第二端部224, 226之间,使次级传感器236与适配器234 —起,位于第一和第二端部230,232之间,部分通量可以从初级传感器228有效地避开,并且由次级传感器236进行检测。 [0080] By providing the asymmetric Y-shaped portions 220, 222 of the primary sensor 228 at the first and second end portions 224, 226, the secondary sensor 236 and the adapter 234-- onwards, the first and second ends between the portions 230, 232, 228 may be part of the flux from the primary sensor effectively avoided, and detected by the secondary sensor 236. 次级传感器236 可以在限位开关电路中用作为限位开关元件,它在整个单一传感器非接触位置传感器上具有增加的可靠性,并且同样有利于避免在阀杆行程的两端需要两个限位开关。 Secondary sensor elements 236 can be used as a limit switch, in which the whole non-contact sensor having a single increased reliability on the position sensor circuit using a limit switch, and also contributes to avoiding the need to travel in the stem ends of the two limits switch.

[0081] 有利的是,适配器234在次级传感器236和非对称Y形部分220,222的第二端部230,232之间产生气隙,在其中产生与次级传感器236的有损耗磁性连接。 [0081] Advantageously, the adapter 234 generates an air gap between the secondary sensor 236 and the second end portion asymmetric Y-shaped portion 220, 222 230, 232, which is generated in the secondary sensor 236 is connected to a magnetic lossy . 通过控制该气隙中的空间,以及磁路的其它元件,比如磁极端部表面区域,能够分别控制初级传感器228和次级传感器236中通过的通量大小。 By controlling the space of the air gap, the magnetic circuit and other components, such as the surface area of ​​the pole portion, it is possible to control the size of the primary sensor 228 and secondary sensor 236 flux through respectively.

[0082] 已经发现,大约0. 13英寸的气隙提供初级传感器228的输出的40%至50%的次级传感器236的输出,该输出是在被用作为限位开关时的次级传感器的理想输出。 [0082] It has been found, an air gap of about 0.13 inches to provide the output from 40% to 50% of the secondary sensor 236 of the primary sensor 228, and the output is used as is in the secondary sensor when the limit switch ideal output. 另外, 通过改变适配器的尺寸,气隙的尺寸,或者适配器的材料,都将影响初级传感器228和次级传感器236的相对输出。 Further, by changing the size of the adapter, the size of the air gap, or the material of the adapter, will affect the relative output of the primary sensor 228 and secondary sensor 236. 因此,在初级传感器228主要用作为位置传感器,并且次级传感器236用作为限位开关的那些应用中,优选的是,初级传感器228经受的比次级传感器236更大百分比的U形通量聚集极靴214产生的磁通量,所以选择各个尺寸和材料,从而产生所要求的结果。 Thus, the primary sensor 228 is mainly used as a position sensor 228 and secondary sensor 236 is used as a limit switch those applications, it is preferred that the concentration ratio of the primary sensor 236 is subjected to a greater percentage of U-shaped flux secondary sensor pole piece 214 generates a magnetic flux, so the respective dimensions and materials selected to produce the desired results.

[0083] 在其它实施例中,可以相对于初级传感器228设置次级传感器236,这样将不需要改变U形通量聚集极靴的L形分段216,218的端部。 [0083] In other embodiments, the primary sensor 228 may be provided with respect to the secondary sensor 236, so that the need to change the U-shaped flux-gathering pole piece L-shaped end sections 216, 218. 现在参见图10,初级传感器228被显示为位于L形分段216,218的端部和初级传感器228的表面238之间,表面238与L形分段218相接触,并且优选的是有烙印的。 Referring now to FIG. 10, the primary sensor 228 is shown positioned between the L-shaped section 238 of the surface 216 and the end portion of the primary sensor 228, a surface 238 in contact with the L-shaped section 218, and preferably are the branded . 在此实施例中,次级传感器236被布置为紧邻初级传感器228,这样初级和次级传感器228,236的端部优选是接触的。 In this embodiment, the secondary sensor 236 is disposed proximate to the primary sensor 228, so that the primary and secondary sensors 228, 236 of the end portion is preferably contacted.

[0084] 为了使次级传感器经受如上述实施例中的通量,代替从初级传感器228分流通量,图10实施例的次级传感器236 (图11中的再一替换实施例的次级传感器236与之相同),检测靠近初级传感器228的泄漏通量。 [0084] As for the secondary sensor is subjected to the above-described embodiments of the flux, in place of the primary circulation sub-sensor 228, FIG. 10 embodiment, the secondary sensor 236 of the secondary sensor a further alternative embodiment (Fig. 11 embodiment 236 the same as), the leakage flux is detected close to the primary sensor 228. 为此,需要将次级传感器236布置在最高泄漏磁通量通路中,其中该通路尽可能地靠近初级传感器228。 To this end, the secondary sensor 236 is disposed in the highest leakage flux path, wherein the passages close to the primary sensor 228 as possible.

[0085] 初级传感器228和次级传感器236的霍尔效应敏感元件240、242分别被被依次排列,并与L形分段216,218的端部相垂直。 [0085] The primary sensor 228 and secondary sensor 236 is a Hall effect sensing elements 240, 242 respectively are sequentially arranged, and an end portion of the L-shaped sections 216, 218 perpendicular. 由于初级传感器228和次级传感器236的端部相接触,所以有利的是,敏感元件240、242能够以大约0. 112英寸的距离尽可能地接近彼此, 这样,当初级和次级传感器件228、236被布置在同一平面内时,通过次级传感器236的敏感元件242,来基本上最大化靠近初级传感器228的泄漏通量检测。 Since the primary sensor 228 and secondary sensor 236 ends in contact, it is advantageous that the sensitive element 240, 242 can be approximately 0.112 inches to a distance close to each other as possible, so that when the primary and secondary sensors 228 when, 236 are disposed in the same plane, the secondary sensor 236 sensing element 242 to substantially maximize the leakage flux near the primary sensor 228 detects.

[0086] 现在转向图11,在再一替换实施例中,次级传感器236定向为垂直于初级传感器228。 [0086] Turning now to FIG. 11, in another alternative embodiment, the secondary sensor 236 is oriented perpendicularly to the primary sensor 228. 在此实施例中,次级传感器236的敏感元件242甚至更加靠近初级传感器228的敏感元件(未示出)。 In this embodiment, the secondary sensor 236 of the sensing element 242 even closer to the sensitive element (not shown) of the primary sensor 228. 可以发现,通过布置次级传感器236,使得次级传感器236的未烙印表面被布置为与U形通量聚集极靴的L形分段218的底面紧密平直的接触,次级传感器236的敏感元件242可以以大约0. 063英寸的间距靠近初级传感器228的霍尔效应敏感元件。 Can be found by arranging the secondary sensor 236, so that the surface of the secondary non-mark sensor 236 is arranged with the U-shaped flux-gathering pole piece 218 of the L-shaped section of the bottom surface in close contact with a flat, secondary sensor 236 is sensitive element 242 may be a pitch of approximately 0.063 inches near the Hall effect sensing element of the primary sensor 228. 在此实施例中,由于更加靠近初级和次级传感器228、236的检测元件,更特别的是,由于次级传感器236布置在具有更高的泄漏通量的通道中,所以,与图10实施例的次级传感器相比,可通过次级传感器238获得更大的输出电压。 In this embodiment, since the closer to the primary and secondary sensor detecting elements 228, 236, and more particularly, since the secondary sensor 236 disposed in a channel having a higher leakage flux in it, with the embodiment 10 of FIG. secondary sensor embodiment as compared to 238 may be greater secondary sensor output voltage.

[0087] 图12是示范性阀杆行程的图形表示,使用根据在此所公开的实施例中的一个的初级和次级传感器监测该阀杆行程,其中,初级传感器228和次级传感器236的电压输出以直流电压形式显示,并且通过矩形托架(或者是“磁铁托架”)形式的磁通量源的线性运动表示的阀杆的行程或者位移,以英寸显示。 [0087] FIG. 12 is an exemplary graphical representation stem travel, using a primary and secondary embodiment of a sensor monitoring the valve stem travel according to embodiments disclosed herein, wherein the primary sensor 228 and secondary sensor 236 voltage DC voltage output display form, and by a rectangular carriage (or "magnetic carrier") or the stroke of the valve stem displacement in the form of linear movement of the magnetic flux source expressed in inches display. 如所述图形表示所示,次级传感器236的电压输出与初级传感器228的电压输出成正比。 As shown in the graphical representation, the voltage output of the secondary sensor 236 and the voltage output of the primary sensor 228 is proportional.

[0088] 另外,人们可以将次级传感器236布置在任何想要的位置,但是优选的是布置在高磁通量通路中。 [0088] Further, it may be secondary sensor 236 is arranged at any desired position, but is preferably disposed in a high flux path. 也就是说,除了经受泄漏通量的次级传感器或者替代它之外,次级传感器可以被设置在次级磁通量通路中。 That is, in addition to the sensor is subjected to secondary leakage flux outside it, or alternatively, the secondary sensor may be disposed on the secondary magnetic flux path. 这样,人们可以利用磁极构造来形成额外的泄漏磁通路线来由次级传感器进行检测,或者形成由次级传感器进行检测的完全分离的磁通量通路。 Thus, one can form an additional leakage flux path reason secondary sensor detects magnetic pole configuration, or a completely separate flux path is detected by the secondary sensor. 同样,在控制电路中,次级传感器除了作为限位开关以外,还可以被用于其它目的。 Also, in the control circuit, in addition to the secondary sensor as a limit switch, it may also be used for other purposes.

[0089] 如图13中示意性所示,初级传感器228和次级传感器236优选的是都被放置为与电压检测器250通信,该电压检测器检测穿过初级和次级传感器228、236每个中的检测元件240、242的电压。 [0089] FIG. 13 schematically illustrated, the primary sensor 228 and secondary sensor 236 are preferably are placed to communicate with the voltage detector 250, the detector detects the voltage across the primary and secondary sensors 228, 236 each in a voltage detecting element 240,242. 电压检测器250可以与处理器252进行通信,处理器252包括存储器254,该存储器存储一或多个预定的电压,可以将测得的电压输出或者多个输出与预定电压进行比较。 The voltage detector 250 may communicate, processor 252 includes processor 252 and memory 254, which stores a predetermined voltage or more, can be measured or a plurality of output voltage output is compared with a predetermined voltage. 该处理器还可以包括输出信号发生器256,该输出信号发生器根据处理器252对所检测的电压输出或多个输出与与存储器254中存储的预定电压的一或多个选定接近的判定,产生一信号。 The processor may further include an output signal generator 256, the output signal generator according to a determination or more closest processor 252 outputs the detected voltage with a predetermined voltage or more output stored in the memory 254 of the selected generating a signal. 然后,接收该信号的控制器258能够相应地发动一或多个适当的控制序列。 Then, the controller 258 receiving the signal can be correspondingly launch one or more suitable control sequences.

[0090] 本领域技术人员将认识到,上述多个实施例都是用于说明,并不用于限定于本公开的范围。 [0090] Those skilled in the art will recognize that the various embodiments described above are for illustration and are not intended to limit the scope of the present disclosure. 例如,当在此公开的实施例都被用于检测阀杆行程时,可以认识到,在此的讲解可以类似地被用于其它的期望可靠检测物体的位置和/或可靠限制物体的行程、而不需要多个机电限位开关等的情况中。 For example, when this embodiment of the disclosed embodiment are used to detect valve stem travel, can be appreciated, this explanation can similarly be used for other desired stroke position reliable detection of the object and / or reliable restriction object, without the need for the case of a plurality of electromechanical limit switches or the like.

18 18

Claims (17)

  1. 一种位置传感器组件,包括:初级传感器,包括至少一个响应磁场的霍尔效应敏感元件;次级传感器,包括至少一个响应磁场的霍尔效应敏感元件;用于聚集并且将磁通量导向该初级传感器和该次级传感器的U形通量聚集极靴,该通量聚集极靴是通过对称放置由磁性可穿透材料制成的第一和第二L形分段而形成具有分叉底部的U形构成,该U形极靴的分叉底部具有分开该第一和第二L形分段的间隙;所述初级传感器被设置在该第一和第二L形分段每个的端部之间;所述次级传感器被设置为比该初级传感器从所述U形极靴经受可控的更低百分比的磁通量;以及磁通量源,用于产生磁场,其中该初级传感器的由导向该初级传感器的磁通量产生的电压输出按照基本上为线性的方式随该初级传感器相对于该磁通量源的位移改变而变化。 A position sensor assembly, comprising: a primary sensor, comprising at least one Hall Effect sensing element of the magnetic field response; secondary sensor, comprising at least one Hall Effect sensing element of the magnetic field response; and the magnetic flux guide for collecting the primary sensor and the U-shaped flux-gathering pole piece of the secondary sensor, the flux-gathering pole piece is to place the first and second L-shaped section made of a magnetically permeable material is formed by symmetrically diverging U-shaped with a bottom configuration, the U-shaped pole piece having a bifurcated bottom separate the first and second L-shaped gap segment; the primary sensor is disposed between the first and second L-shaped section of each of the end portions ; said secondary sensor is set lower than the primary sensor from said U-shaped pole piece is subjected to a controlled lower percentage of magnetic flux; and a magnetic flux source for generating a magnetic field, wherein the primary sensor is the primary sensor is guided by the magnetic flux generated output voltage varies in accordance with a substantially linear manner with respect to the primary sensor varying the displacement of the magnetic flux source.
  2. 2.根据权利要求1所述的位置传感器组件,还包括:从该第一L形分段延伸的第一非对称Y形部分,该第一非对称Y形部分具有一头部,该头部包括沿该第二L形分段方向延伸的第一和第二端部;从该第二L形分段延伸的第二非对称Y形部分,该第二非对称Y形部分具有一头部,该头部包括沿该第一L形分段方向延伸的第一和第二端部;所述初级传感器被安排在该第一和第二非对称Y形部分的第一端部之间;以及所述次级传感器被安排在该第一和第二非对称Y形部分的第二端部之间。 The position sensor assembly according to claim 1, further comprising: a first asymmetric Y-shaped portion extending from the first L-shaped section, the first asymmetric Y-shaped portion having a head portion, the head portion comprises a first and a second end portion extending along a direction of the second L-shaped section; a second asymmetric Y-shaped portion extending from the second L-shaped section, the second asymmetric Y-shaped portion having a head portion the head includes a first and second end portions along the extending direction of the first L-shaped section; said primary sensor being arranged between the first portion and the first end of the second asymmetric Y-shaped portion; and said secondary sensor being arranged between the first and the second end of the second asymmetric Y-shaped portions.
  3. 3.根据权利要求2所述的位置传感器组件,还包括布置在该次级传感器与第一和第二非对称Y形部分的第二端部之间的适配器。 3. The position sensor assembly of claim 2, further comprising an adapter disposed between the secondary sensor and the second ends of the first and second asymmetric Y-shaped portion.
  4. 4.根据权利要求3所述的位置传感器组件,其中该适配器由电绝缘材料构成。 The position sensor assembly according to claim 3, wherein the adapter is formed of an electrically insulating material.
  5. 5.根据权利要求4所述的位置传感器组件,其中所述电绝缘材料是塑料。 The position sensor assembly according to claim 4, wherein the electrically insulating material is a plastic.
  6. 6.根据权利要求1-5中任一项所述的位置传感器组件,其中该次级传感器被设置为紧邻该初级传感器,其中该初级传感器的霍尔效应敏感元件和次级传感器的霍尔效应敏感元件被彼此对准,并被定向为与该L形分段的端部垂直。 6. 1-5 position sensor assembly as claimed in any of claims, wherein the secondary sensor is positioned immediately adjacent the primary sensor, where the Hall effect sensing element Hall effect sensor of the primary and the secondary sensor sensitive elements are aligned with each other, and are oriented perpendicular to the end portion of the L-shaped segment.
  7. 7.根据权利要求6所述的位置传感器组件,其中该次级传感器被设置为与该初级传感器垂直,其中该次级传感器的霍尔效应敏感元件与初级传感器的霍尔效应敏感元件相垂直,由此分开该初级传感器和次级传感器的霍尔效应敏感元件的距离被最小化。 The position sensor assembly according to claim 6, wherein the secondary sensor is disposed perpendicularly to the primary sensor, where the Hall effect sensing element Hall Effect sensing element of the secondary sensor is perpendicular to the primary sensor, from the Hall effect sensing element whereby to separate the primary sensor and the secondary sensor is minimized.
  8. 8. 一种位置传感器组件,包括: 传感器外壳;通过该传感器外壳对准的U形极靴,所述U形极靴包括第一L形分段和第二L形分段, 其中该第一L形分段在一非对称Y形部分处终止,并且该第二L形分段在第二非对称Y形部分处终止;初级传感器,被布置在该第一和第二非对称Y形部分每个的第一端部之间,所述第一和第二非对称Y形部分每个的第一端部位于各个非对称Y形部分的头部;以及次级传感器,被设置在该第一和第二非对称Y形部分每个的第二端部之间,所述第一和第二非对称Y形部分每个的第二端部同样位于各个非对称Y形部分的头部。 A position sensor assembly, comprising: a sensor housing; through the sensor housing aligned with the U-shaped pole shoe, the U-shaped pole piece comprises a first L-shaped section and a second L-shaped section, wherein the first in an L-shaped section asymmetric Y-shaped portion terminates at the second L-shaped section and terminates in a second portion of the Y-shaped asymmetric; primary sensor, is disposed in the first and second asymmetric Y-shaped portion between each of the first end portion, said first end of each of the first and second asymmetric Y-shaped portion at the head portion of each asymmetric Y-shaped portion; and a secondary sensor is provided in the second and between a second end portion of each of the second asymmetric Y-shaped portion, said first and second asymmetric Y-shaped portion is located in the same head each asymmetric Y-shaped portion of each of the second end portion.
  9. 9.根据权利要求8所述的位置传感器组件,其中该初级传感器包括至少一个敏感元件,所述敏感元件被安排为垂直于该第一和第二非对称Y形部分的第一端部。 9. The position sensor assembly of claim 8, wherein the primary sensor comprises at least one sensitive element, said sensitive element is arranged perpendicular to the first portion and the first end of the second asymmetric Y-shaped portions.
  10. 10.根据权利要求9所述的位置传感器组件,其中该次级传感器包括至少一个敏感元件,所述敏感元件被安排为垂直于该第一和第二非对称Y形部分的第二端部。 The position sensor assembly of claim 9, wherein the secondary sensor comprises at least one sensitive element, said sensitive element is arranged perpendicular to the first and second end portions of the second asymmetric Y-shaped portions.
  11. 11.根据权利要求8-10中任一项所述的位置传感器组件,还包括:布置在该次级传感器与至少该第一和第二L形分段之一的第二端部之间的适配器。 8-10 11. The position sensor assembly as claimed in any one of claims, further comprising: a secondary sensor disposed at least between the first and the second end portion of one of the second L-shaped segment adapter.
  12. 12.根据权利要求11所述的位置传感器组件,其中该适配器由电绝缘材料构成。 The position sensor assembly of claim 11, wherein the adapter is formed of an electrically insulating material.
  13. 13.根据权利要求12所述的位置传感器组件,其中所述电绝缘材料是塑料。 13. A position sensor assembly as claimed in claim 12, wherein the electrically insulating material is a plastic.
  14. 14.根据权利要求11所述的位置传感器组件,其中该适配器被设置在该次级传感器与第一和第二非对称Y形部分两者的第二端部之间。 14. The position sensor assembly of claim 11, wherein the adapter is disposed between the second end portions of both the sensor and the first and second secondary asymmetric Y-shaped portion.
  15. 15.根据权利要求14所述的位置传感器组件,其中该适配器在该次级传感器与第一和第二非对称Y形部分两者的第二端部之间产生气隙。 15. The position sensor assembly according to claim 14, wherein the adapter is an air gap between the secondary sensor and the first and second end portions of both the second asymmetric Y-shaped portions.
  16. 16.根据权利要求15所述的位置传感器组件,其中该气隙大约为0. 13英寸。 16. The position sensor assembly according to claim 15, wherein the air gap is approximately 0.13 inches.
  17. 17.根据权利要求8所述的位置传感器组件,其中该次级传感器用作为限位开关,并且所述初级传感器被安排为比该次级传感器从所述U形极靴经受更大百分比的磁通量。 The position sensor assembly 17. The flux of claim 8, wherein the limit switch is used as a secondary sensor, and the ratio of primary sensor is arranged to the secondary sensor from the U-shaped pole piece is subjected to a greater percentage of .
CN 200810212363 2003-02-21 2004-02-18 Magnetic position sensor with integrated hall effect switch CN101382440B (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US44878503 true 2003-02-21 2003-02-21
US60/448,785 2003-02-21
CN200480004797.7 2004-02-18
US10/779,686 2004-02-18
US10779686 US7190159B2 (en) 2003-02-21 2004-02-18 Integral hall effect limit switch for control valve stem position sensor
CN200480004797.72004.02.18 2004-02-18

Publications (2)

Publication Number Publication Date
CN101382440A true CN101382440A (en) 2009-03-11
CN101382440B true CN101382440B (en) 2010-12-08

Family

ID=36606023

Family Applications (2)

Application Number Title Priority Date Filing Date
CN 200810212363 CN101382440B (en) 2003-02-21 2004-02-18 Magnetic position sensor with integrated hall effect switch
CN 200480004797 CN100432630C (en) 2003-02-21 2004-02-18 Magnetic position sensor with integrated hall effect switch

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN 200480004797 CN100432630C (en) 2003-02-21 2004-02-18 Magnetic position sensor with integrated hall effect switch

Country Status (1)

Country Link
CN (2) CN101382440B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808233B2 (en) 2006-06-19 2010-10-05 General Electric Company Methods and apparatus for monitoring rotary machines
GB0805263D0 (en) 2008-03-25 2008-04-30 Delphi Tech Inc Sensor arrangement
CN101887106B (en) * 2010-06-13 2012-10-17 灿瑞半导体(上海)有限公司 Hall chip magnetic flux test device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164668A (en) 1991-12-06 1992-11-17 Honeywell, Inc. Angular position sensor with decreased sensitivity to shaft position variability
US5694039A (en) 1996-03-07 1997-12-02 Honeywell Inc. Angular position sensor having multiple magnetic circuits
US6304078B1 (en) 1998-12-09 2001-10-16 Cts Corporation Linear position sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164668A (en) 1991-12-06 1992-11-17 Honeywell, Inc. Angular position sensor with decreased sensitivity to shaft position variability
US5694039A (en) 1996-03-07 1997-12-02 Honeywell Inc. Angular position sensor having multiple magnetic circuits
US6304078B1 (en) 1998-12-09 2001-10-16 Cts Corporation Linear position sensor

Also Published As

Publication number Publication date Type
CN1751229A (en) 2006-03-22 application
CN100432630C (en) 2008-11-12 grant
CN101382440A (en) 2009-03-11 application

Similar Documents

Publication Publication Date Title
US5973494A (en) Electronic caliper using a self-contained, low power inductive position transducer
US6806702B2 (en) Magnetic angular position sensor apparatus
US5055781A (en) Rotational angle detecting sensor having a plurality of magnetoresistive elements located in a uniform magnetic field
US4914389A (en) Multiturn shaft position sensor with backlash compensation
US6563306B2 (en) Method and apparatus for detecting displacement of a magnet moved in response to variation of a physical characteristic of a fluid
US20040017187A1 (en) Magnetoresistive linear position sensor
US7116100B1 (en) Position sensing for moveable mechanical systems and associated methods and apparatus
US6169396B1 (en) Sensing device for detecting change in an applied magnetic field achieving high accuracy by improved configuration
US6326781B1 (en) 360 degree shaft angle sensing and remote indicating system using a two-axis magnetoresistive microcircuit
US5500589A (en) Method for calibrating a sensor by moving a magnet while monitoring an output signal from a magnetically sensitive component
US6222359B1 (en) Non-contacting position sensor using radial bipolar tapered magnets
US20040129909A1 (en) Method for the contactless detection of the position of a butterfly valve shaft of a butterfly valve connecting piece and butterfly valve connecting piece
US6211668B1 (en) Magnetic position sensor having opposed tapered magnets
US6194893B1 (en) Magnetic detector for detecting movement of a magnetic member
US6655652B2 (en) Position controller for a drive-actuated valve having inherent safety design
US4849696A (en) Apparatus for determinig the strength and direction of a magnetic field, particularly the geomagnetic field
US6515474B1 (en) Linearized magnetic displacement sensor
US6411081B1 (en) Linear position sensor using magnetic fields
US5691637A (en) Magnetic field position transducer for two or more dimensions
WO1994017426A1 (en) Device for detecting the angular position of an object
US5801529A (en) Magnetoresistance sensing device without hystersis influence
US5670875A (en) Angular position sensor with adjustable gain and offset signal capability
WO1996016316A1 (en) Arrangement for the contactless determination of the angle of rotation of a rotatable component
US20050104581A1 (en) Rotational position sensor and electronically controlled throttle device and internal combustion engine
US6707292B2 (en) Magnetic circuit for a rotary position sensor

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted