CN101381003A - A New Type of Spacecraft Main Bearing Structure - Google Patents
A New Type of Spacecraft Main Bearing Structure Download PDFInfo
- Publication number
- CN101381003A CN101381003A CNA2008102228322A CN200810222832A CN101381003A CN 101381003 A CN101381003 A CN 101381003A CN A2008102228322 A CNA2008102228322 A CN A2008102228322A CN 200810222832 A CN200810222832 A CN 200810222832A CN 101381003 A CN101381003 A CN 101381003A
- Authority
- CN
- China
- Prior art keywords
- cabin
- propulsion
- main frame
- main
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009434 installation Methods 0.000 claims abstract description 17
- 238000001514 detection method Methods 0.000 claims abstract description 5
- 230000002787 reinforcement Effects 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 abstract description 8
- 238000003032 molecular docking Methods 0.000 description 6
- 238000005192 partition Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Moulding By Coating Moulds (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种新型航天器主承力结构,包括推进舱结构、星形桁架结构(6)和电子舱主框架结构;所述推进舱结构的上部连接电子舱主框架结构,下部作为整星精度检测基准面和提供推进舱仪器设备的安装面;所述星形桁架结构(6)为一个由撑杆支撑的载荷安装框,位于电子舱主框架结构内,用于安装有效载荷,其撑杆的下端固定连接在推进舱结构的上部。由于本发明采用外框架侧板结构和内部星形桁架结构来构成内外双承力路径的混合式主结构来传递整星载荷,传力路径短而连续,结构紧凑、质心低,满足了整个卫星的高刚度、小惯量要求。
The invention discloses a novel spacecraft main load-bearing structure, which comprises a propulsion cabin structure, a star-shaped truss structure (6) and an electronic cabin main frame structure; the upper part of the propulsion cabin structure is connected with the electronic cabin main frame structure, and the lower part serves as The star precision detection reference plane and the installation surface for providing propulsion cabin instruments and equipment; the star truss structure (6) is a load installation frame supported by struts, located in the main frame structure of the electronic cabin, and used for installing payloads. The lower ends of the struts are fixedly connected to the upper part of the propulsion cabin structure. Since the present invention adopts the outer frame side plate structure and the inner star-shaped truss structure to form a hybrid main structure with internal and external double load-bearing paths to transmit the load of the whole satellite, the force transmission path is short and continuous, the structure is compact, and the center of mass is low, which meets the requirements of the entire satellite. High stiffness and small inertia requirements.
Description
技术领域 technical field
本发明涉及一种航天器主承力结构,特别是用于提高小卫星平台适应能力的一种新型小卫星主承力结构。The invention relates to a main load-bearing structure of a spacecraft, in particular to a novel small-satellite main load-bearing structure for improving the adaptability of a small satellite platform.
背景技术 Background technique
航天器的主承力结构主要用于承受作用在航天器上的静力和动力载荷,为所载仪器设备提供固定安装界面并保持稳定的精度,确保整体几何形状。The main load-bearing structure of the spacecraft is mainly used to bear the static and dynamic loads acting on the spacecraft, provide a fixed installation interface for the instruments and equipment on board, maintain stable accuracy, and ensure the overall geometry.
以卫星为例,卫星主承力结构的主要功能是:承受作用在卫星上的静力和动力载荷,为星载仪器设备提供固定安装界面并保持稳定的精度,确保整星几何形状。Taking satellites as an example, the main functions of the satellite’s main force-bearing structure are: to withstand the static and dynamic loads acting on the satellite, to provide a fixed installation interface for spaceborne instruments and equipment and to maintain stable accuracy, and to ensure the geometry of the entire satellite.
卫星各分系统的仪器设备有的直接安装在主承力构件上,大多数仪器设备通过隔板和壁板等次要构件连接到主承力构件上。主承力构件形式的总体布局和质量特性要适应运载火箭的力学环境。卫星结构系统的主承力构件的承力方向要与运载火箭推力方向一致。Some of the instruments and equipment of satellite subsystems are directly installed on the main load-bearing components, and most of the instruments and equipment are connected to the main load-bearing components through secondary components such as partitions and wall panels. The overall layout and mass characteristics of the main load-bearing components should adapt to the mechanical environment of the launch vehicle. The force-bearing direction of the main load-bearing components of the satellite structure system should be consistent with the thrust direction of the launch vehicle.
主承力结构是卫星的脊梁。它承受轴向、弯曲、剪切和扭转等载荷。卫星由于所选取的主承力构件的形式不同,其构型也会有很大的差别。目前主承力结构一般可分为四种形式:箱形板式、中心承力筒式、桁架式、外壳式。The main load-bearing structure is the backbone of the satellite. It bears axial, bending, shearing and torsional loads. Due to the different forms of the main load-bearing components selected by the satellite, its configuration will also vary greatly. At present, the main load-bearing structure can be generally divided into four types: box-shaped plate type, central load-bearing cylinder type, truss type, and shell type.
箱形板式结构:主承力结构主要为蜂窝夹层板组成的箱形结构。如我国的CAST968小卫星平台、CAST2000小卫星平台的主承力结构就是采用的箱形板式结构,典型的还有美国洛克希德马丁公司的A2100卫星平台。若选择箱板式主承力结构,由于有效载荷相机较为庞大,空间占据极大,无论是立式安装还是卧式安装都不便于总装操作。Box-shaped plate structure: the main load-bearing structure is mainly a box-shaped structure composed of honeycomb sandwich panels. For example, the main load-bearing structure of my country's CAST968 small satellite platform and CAST2000 small satellite platform is a box-shaped plate structure, and the typical one is the A2100 satellite platform of Lockheed Martin Corporation of the United States. If the main load-bearing structure of the box-plate type is selected, because the payload camera is relatively large and occupies a large space, it is not convenient for the final assembly operation whether it is installed vertically or horizontally.
中心承力筒结构:此类卫星的主承力构件位于卫星本体的中心部位。如我国的东方红三号卫星平台就是由中心承力筒、结构板构成主承力结构。太阳翼、天线及仪器设备等通过连接接口、支架等连接到承力构件上,并将载荷传递到主传力路径上。其特点是主要通过内传力路径传递载荷,星箭对接环、隔板等板架结构也是通过内传力路径传递载荷。Central load-bearing cylinder structure: The main load-bearing member of this type of satellite is located in the center of the satellite body. For example, my country's Dongfanghong No. 3 satellite platform is composed of a central load-bearing tube and a structural plate to form the main load-bearing structure. The solar wings, antennas, and instruments are connected to the load-bearing components through connection interfaces, brackets, etc., and the load is transferred to the main force transmission path. Its characteristic is that the load is mainly transmitted through the internal force transmission path, and the plate frame structures such as star-arrow docking rings and partitions also transmit loads through the internal force transmission path.
对于小卫星,若要中心承力筒起主承力作用,其直径必须与对接环尺寸相当,这样的话外部空间很小,提供的设备安装空间不多,内部空间因相机的装拆空间需求而利用率较低,且不便操作。无论是侧板形式还是增加平台形式都没有办法安装设备,即使仪器设备布于外围而使整星转动惯量较大也不利于总体提出的小惯量要求。而且由于推进系统的发动机需要伸出星体外部,因此要在承力筒相应部位开孔,这样也影响了承力筒的刚度。For small satellites, if the central load-bearing cylinder is to play the main load-bearing role, its diameter must be equivalent to the size of the docking ring. In this case, the external space is very small, and the equipment installation space provided is not much. The internal space is limited due to the installation and disassembly space requirements of the camera. The utilization rate is low and it is inconvenient to operate. There is no way to install equipment in the form of side plates or adding platforms. Even if the instruments and equipment are arranged on the periphery, the large moment of inertia of the whole star is not conducive to the overall small inertia requirement. And because the engine of the propulsion system needs to extend out of the star body, it is necessary to open holes in the corresponding parts of the load-bearing tube, which also affects the rigidity of the load-bearing tube.
桁架结构:其主承力构件是由杆件组成的桁架。如美国休斯公司的HS702卫星平台。桁架可以有多种形式,因此,桁架承力式卫星的构型也呈多样化。可以采用三角形桁架或多边形桁架构架。桁架式主承力构件的构型不一样,卫星的构型也就有所不同。桁架结构对材料和结构的要求很高,在国内作为主承力结构的例子较少,技术难度较大。Truss structure: Its main load-bearing member is a truss composed of rods. Such as the HS702 satellite platform of Hughes Corporation of the United States. The truss can have many forms, therefore, the configuration of the truss load-bearing satellite is also diversified. Triangular trusses or polygonal trusses can be used. The configuration of the truss-type main load-bearing member is different, and the configuration of the satellite is also different. The truss structure has high requirements on materials and structures, and there are few examples of it as the main load-bearing structure in China, and the technical difficulty is relatively large.
外壳体结构:以舱体作为主承力构件,主要是通过外传力路径传递载荷。这类卫星往往由多个舱连接而成,舱与舱之间由舱体法兰连接,最下面与运载火箭连接的舱承受整个航天器的载荷。如我国的返回式卫星、各国的载人飞船大多采用此种结构。但当卫星中心部位有质量较大的有效载荷时,也不便于仅选择外壳作为主传力结构。Outer shell structure: The cabin is used as the main load-bearing component, and the load is mainly transmitted through the external force path. This type of satellite is often connected by multiple cabins, the cabins are connected by the cabin flange, and the lowest cabin connected to the launch vehicle bears the load of the entire spacecraft. For example, most of my country's returnable satellites and manned spacecraft of various countries adopt this structure. However, when there is a heavy payload at the center of the satellite, it is not convenient to select only the shell as the main force transmission structure.
上述几种结构都采用单一的传力路线,导致纵轴惯量大,同时不能满足有效载荷的机动性。目前,单一的主承力结构已不能适应小卫星敏捷机动的需求,但综合多种方式的主承力结构,在设计和结构上较难实现,未见相关文献报道。The above-mentioned structures all adopt a single force transmission route, which results in a large moment of inertia on the longitudinal axis and cannot satisfy the mobility of the payload. At present, a single main load-bearing structure can no longer meet the needs of agile maneuvering of small satellites, but it is difficult to realize the main load-bearing structure in multiple ways in terms of design and structure, and there are no relevant reports in the literature.
发明内容 Contents of the invention
本发明的技术解决问题是:克服现有技术的不足,提供纵轴惯量小、有效载荷容易实施滚动、俯仰机动,采用内、外双承力路径的一种新型航天器主承力结构。The technical problem of the present invention is: to overcome the deficiencies of the prior art, to provide a new type of spacecraft main load-bearing structure with small vertical axis inertia, easy rolling and pitching maneuvers for the payload, and adopting internal and external dual load-bearing paths.
本发明的技术解决方案是:一种新型航天器主承力结构,包括推进舱结构、星形桁架结构和电子舱主框架结构;所述推进舱结构的上部连接电子舱主框架结构,下部作为整星精度检测基准面和提供推进舱仪器设备的安装面;所述星形桁架结构为一个由撑杆支撑的载荷安装框,位于电子舱主框架结构内,用于安装有效载荷,其撑杆的下端固定连接在推进舱结构的上部。The technical solution of the present invention is: a new type of spacecraft main load-bearing structure, including a propulsion cabin structure, a star truss structure and an electronic cabin main frame structure; the upper part of the propulsion cabin structure is connected to the electronic cabin main frame structure, and the lower part serves as The reference plane for whole-star precision detection and the installation surface for propulsion cabin instruments and equipment are provided; the star-shaped truss structure is a load installation frame supported by struts, which is located in the main frame structure of the electronic cabin and is used for installing payloads. The lower end is fixedly connected to the upper part of the propulsion cabin structure.
所述推进舱结构为锥台形状,包括推进舱下端框、推进舱壳体、推进舱加强桁条和推进舱上端框;推进舱加强桁条分布在推进舱壳体周围,两端分别固定连接推进舱下端框和推进舱上端框,推进舱上端框的上端面连接电子舱主框架结构,推进舱上端框下部的圆锥面是推进舱壳体的连接面。The structure of the propulsion cabin is in the shape of a truncated cone, including the lower end frame of the propulsion cabin, the shell of the propulsion cabin, the reinforcement stringers of the thrust cabin and the upper end frame of the thrust cabin; The lower end frame of the propulsion compartment and the upper end frame of the propulsion compartment, the upper end surface of the upper end frame of the propulsion compartment is connected to the main frame structure of the electronic compartment, and the conical surface at the lower part of the upper end frame of the propulsion compartment is the connection surface of the propulsion compartment shell.
所述推进舱下端框设有内法兰,作为整星精度检测基准面和提供推进舱仪器设备的安装面。The lower end frame of the propulsion cabin is provided with an inner flange, which is used as a reference plane for whole-star precision testing and provides a mounting surface for propulsion cabin instruments and equipment.
所述星形桁架结构的撑杆数量为不少于六的双数,每两根撑杆的顶端共用一个连接接头,接头的上端与载荷安装框连接,接头的下端与推进舱结构连接。The number of struts in the star-shaped truss structure is an even number of no less than six, and the tops of every two struts share a connecting joint, the upper end of the joint is connected to the load installation frame, and the lower end of the joint is connected to the propulsion cabin structure.
所述电子舱主框架结构包括主框架下角条、主框架立柱、主框架上角条和加强支撑,主框架立柱连接主框架下角条和主框架上角条,在主框架立柱上靠近主框架上角条处安装加强支撑。The main frame structure of the electronic cabin includes the lower corner bar of the main frame, the main frame column, the upper corner bar of the main frame and the reinforcement support. Install reinforced supports at the corner strips.
所述电子舱主框架结构还包括T形角条,位于主框架下角条和主框架上角条之间支撑主框架立柱。The main frame structure of the electronic cabin also includes a T-shaped corner bar, which is located between the lower corner bar of the main frame and the upper corner bar of the main frame to support the main frame column.
本发明与现有技术相比的有益效果是:The beneficial effect of the present invention compared with prior art is:
1、本发明的卫星主承力结构与运载火箭对接,采用外框架侧板结构和内部星形桁架结构来构成内外双承力路径的混合式主结构来传递整星载荷,传力路径短而连续。其主传力路径为:1. The main load-bearing structure of the satellite of the present invention is docked with the launch vehicle, and the outer frame side plate structure and the inner star-shaped truss structure are used to form a hybrid main structure with internal and external double load-bearing paths to transmit the entire satellite load. The force transmission path is short and continuous. Its main force transmission path is:
内:有效载荷相机→有效载荷星形桁架支撑结构→推进舱下端框→运载对接框;Inside: payload camera→payload star truss support structure→lower end frame of propulsion module→carrying docking frame;
外:顶板和侧板→主框架结构→推进舱上端框→推进舱壳体→推进舱下端框→运载对接框。Outside: top plate and side plate→main frame structure→upper frame of propulsion cabin→shell of propulsion cabin→lower frame of propulsion cabin→carrying docking frame.
因此,本发明结构紧凑、质心低,满足了整个卫星的高刚度、小惯量要求。Therefore, the invention has a compact structure and a low center of mass, and meets the requirements of high rigidity and small inertia of the entire satellite.
2、卫星本体结构突破了以往较多采用的箱板式结构构型,合理使用板壳结构、桁架结构及带加强桁条的承力圆锥筒,有效载荷与平台对接所采用的星形桁架结构最大限度地提高安装精度。形成星形桁架结构加外侧板主框架内外相结合的双路径承力结构,使卫星整体刚度得到了较好的保证。2. The structure of the satellite body has broken through the box-plate structure configuration that was often used in the past. The plate shell structure, truss structure and load-bearing conical cylinder with reinforced stringers are rationally used. The star-shaped truss structure used for the docking of the payload and the platform is the largest. Maximize installation accuracy. A star-shaped truss structure and a dual-path load-bearing structure combining the inside and outside of the main frame of the outer plate are formed, so that the overall rigidity of the satellite is better guaranteed.
附图说明 Description of drawings
图1为本发明主承力结构的一般视图;Fig. 1 is the general view of main bearing structure of the present invention;
图2为本发明推进舱结构的一般视图;Fig. 2 is the general view of propulsion cabin structure of the present invention;
图3为本发明星形桁架结构的一般视图;Fig. 3 is the general view of star truss structure of the present invention;
图4为本发明主框架结构的一般视图。Fig. 4 is a general view of the main frame structure of the present invention.
具体实施方式 Detailed ways
如图1所示,本发明的一种新型卫星主承力结构,包括推进舱结构、星形桁架结构和电子舱主框架结构;推进舱结构的上部连接电子舱主框架结构,下部作为整星精度检测基准面和提供推进舱仪器设备的安装面;星形桁架结构位于电子舱主框架结构内,为一个由撑杆支撑的载荷安装框,用于安装有效载荷,其撑杆的下端固定连接在推进舱结构的上部。As shown in Figure 1, a novel satellite main load-bearing structure of the present invention includes a propulsion cabin structure, a star truss structure and an electronic cabin main frame structure; the upper part of the propulsion cabin structure is connected to the electronic cabin main frame structure, and the lower part serves as Accuracy detection reference plane and installation surface for propulsion cabin instruments and equipment; the star truss structure is located in the main frame structure of the electronic cabin, which is a load installation frame supported by struts for installing payloads, and the lower ends of the struts are fixedly connected In the upper part of the propulsion compartment structure.
如图2所示,推进舱结构为一锥台形状,包括推进舱下端框1、推进舱壳体2、推进舱加强桁条3和推进舱上端框4;推进舱加强桁条3分布在推进舱壳体2周围,其两端分别固定连接推进舱下端框1和推进舱上端框4,推进舱上端框4的上端面连接电子舱主框架结构,为正六边形结构,推进舱上端框4下部的圆锥面是推进舱壳体2的连接面。As shown in Figure 2, the structure of the propulsion cabin is in the shape of a truncated cone, including the lower end frame 1 of the propulsion cabin, the casing 2 of the propulsion cabin, the reinforcement stringers 3 of the thrust cabin, and the upper end frame 4 of the thrust cabin; the reinforcement stringers 3 of the thrust cabin are distributed in the Around the cabin shell 2, its two ends are respectively fixedly connected to the lower end frame 1 of the propulsion cabin and the upper end frame 4 of the propulsion cabin. The lower conical surface is the connecting surface of the propulsion cabin shell 2 .
推进舱下端框1设有内法兰,作为整星精度检测基准面和提供推进舱仪器设备的安装面。The frame 1 at the lower end of the propulsion cabin is provided with an inner flange, which serves as a datum surface for whole-star precision testing and provides a mounting surface for propulsion cabin instruments and equipment.
如图3所示,星形桁架结构6为一个由撑杆支撑的载荷安装框,用于安装有效载荷相机及相关载荷,提供相机的基础刚度。本实施例的撑杆共八根,每两根撑杆的顶端共用1个连接接头,接头的上端与载荷安装框连接,接头的下端与推进舱结构的推进舱下端框1连接。As shown in FIG. 3 , the
如图4所示,本实施例中的电子舱主框架结构,包括六个主框架下角条5、六个主框架立柱7、六个主框架上角条9和六个加强支撑10组成。主框架立柱7连接主框架下角条5和主框架上角条9,在主框架立柱7上靠近主框架上角条9处安装加强支撑10。As shown in FIG. 4 , the main frame structure of the electronic cabin in this embodiment includes six main frame lower corner bars 5 , six main frame upright columns 7 , six main frame upper corner bars 9 and six reinforcement supports 10 . The main frame column 7 is connected with the main frame
在主框架下角条5和主框架上角条9之间,还有六个T形角条8,用于支撑主框架立柱7。Between the
主框架结构是电子舱的中心部件,主要作用是使各结构板连成一个整体封闭结构,并且保证电子舱与推进舱连接处的强度。The main frame structure is the central part of the electronic cabin, and its main function is to connect the structural plates into a whole closed structure and ensure the strength of the connection between the electronic cabin and the propulsion cabin.
此种小卫星主承力结构主要装配顺序为:The main assembly sequence of the main load-bearing structure of this small satellite is as follows:
(1)推进舱结构的推进舱下端框1、推进舱壳体2、推进舱加强桁条3、推进舱上端框4主要通过铆接连接成一整体,在局部厚度过大的部位,铆接不能完成时,用螺接代替,防止发生剥离现象。(1) The lower end frame 1 of the propulsion compartment, the shell 2 of the propulsion compartment, the reinforcing stringer 3 of the propulsion compartment, and the upper frame 4 of the propulsion compartment of the propulsion compartment structure are mainly connected into a whole by riveting. , Replaced by screw connection to prevent peeling.
(2)考虑到有效载荷的安装精度以及总装操作的方便性,采用了星形桁架结构6来实现有效载荷与平台的对接。将星形桁架结构6底部螺栓连接在推进舱下端框1的内法兰上。(2) Considering the installation accuracy of the payload and the convenience of the assembly operation, a star-shaped
(3)将已经铆接好的六个主框架下角条5与推进舱上端框4通过螺接或铆接完成连接。(3) Connect the lower corner strips 5 of the six main frames that have been riveted to the upper end frame 4 of the propulsion cabin by screwing or riveting.
(4)将由六个主框架立柱7、六个主框架T形角条8、六个主框架上角条9、六个加强支撑10通过过渡角盒连接成一个整体的主框架结构与已经与推进舱结构连接的主框架下角条5通过螺栓连接。(4) Connect the six main frame columns 7, six main frame T-shaped corner strips 8, six main frame upper corner strips 9, and six reinforcement supports 10 through transition corner boxes to form a whole main frame structure and have been connected with The
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810222832A CN100575191C (en) | 2008-09-19 | 2008-09-19 | A New Type of Spacecraft Main Bearing Structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810222832A CN100575191C (en) | 2008-09-19 | 2008-09-19 | A New Type of Spacecraft Main Bearing Structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101381003A true CN101381003A (en) | 2009-03-11 |
CN100575191C CN100575191C (en) | 2009-12-30 |
Family
ID=40461104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810222832A Active CN100575191C (en) | 2008-09-19 | 2008-09-19 | A New Type of Spacecraft Main Bearing Structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100575191C (en) |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101848612A (en) * | 2010-05-07 | 2010-09-29 | 北京航空航天大学 | Portable electronic equipment cabin |
CN102001452A (en) * | 2010-11-08 | 2011-04-06 | 航天东方红卫星有限公司 | Method for realizing integration of energy control and main force bearing plate of satellite |
CN102009746A (en) * | 2010-11-08 | 2011-04-13 | 航天东方红卫星有限公司 | Octagonal battery-equipped array upright post micro satellite configuration |
CN102303710A (en) * | 2011-06-08 | 2012-01-04 | 航天东方红卫星有限公司 | General propelling module for small satellites |
CN102502426A (en) * | 2011-10-20 | 2012-06-20 | 中联重科股份有限公司 | Crane boom and crane |
CN102556367A (en) * | 2011-11-15 | 2012-07-11 | 上海卫星工程研究所 | Method for assembling structures of light product platforms |
CN103612775A (en) * | 2013-11-20 | 2014-03-05 | 西北工业大学 | Multifunctional load-bearing structure for miniature satellites |
CN103847982A (en) * | 2012-12-04 | 2014-06-11 | 波音公司 | Methods and apparatus for performing propulsion operations using electric propulsion systems |
CN103935529A (en) * | 2014-04-29 | 2014-07-23 | 上海卫星工程研究所 | Rapid response satellite structure |
CN103963998A (en) * | 2014-05-06 | 2014-08-06 | 上海卫星工程研究所 | Main force-bearing satellite structure with hexagonal framework |
CN103963997A (en) * | 2014-05-06 | 2014-08-06 | 上海卫星工程研究所 | Small satellite polygonal force bearing barrel |
CN104567681A (en) * | 2015-01-08 | 2015-04-29 | 航天东方红卫星有限公司 | Precise measurement method for satellite precise benchmark truss structure device |
CN104698509A (en) * | 2013-12-10 | 2015-06-10 | 上海卫星工程研究所 | Geostationary orbit meteorological satellite |
CN105083590A (en) * | 2015-09-02 | 2015-11-25 | 南京理工大学 | Multiunit cubesat main load-bearing structure |
CN105235916A (en) * | 2015-10-27 | 2016-01-13 | 上海微小卫星工程中心 | Integration satellite compact in layout |
CN105438503A (en) * | 2015-11-30 | 2016-03-30 | 中国空间技术研究院 | Satellite and rocket docking device |
CN106248384A (en) * | 2016-09-12 | 2016-12-21 | 西安航天动力试验技术研究所 | A kind of power for liquid propellant rocket engine test transmits Change-over frame and method for designing |
CN106864773A (en) * | 2017-03-31 | 2017-06-20 | 陕西蓝箭航天技术有限公司 | A kind of instrument cabin structure of vehicle |
CN107323686A (en) * | 2017-05-16 | 2017-11-07 | 上海卫星工程研究所 | Load keeps flat test split open type erecting device |
CN107505799A (en) * | 2017-09-18 | 2017-12-22 | 北京空间飞行器总体设计部 | A kind of load support structure for concentrating point type stress |
CN107878782A (en) * | 2017-11-17 | 2018-04-06 | 南京理工大学 | Three unit cube star main force support structures |
CN107902107A (en) * | 2017-11-17 | 2018-04-13 | 南京理工大学 | Six unit cube star main force support structures |
CN108045597A (en) * | 2017-10-23 | 2018-05-18 | 上海卫星工程研究所 | Modularization, sectional satellite structure |
CN108583936A (en) * | 2018-04-04 | 2018-09-28 | 上海宇航系统工程研究所 | A kind of strong maneuverable spacecraft configuration of hollow carrying greatly |
CN108725844A (en) * | 2018-06-26 | 2018-11-02 | 北京蓝箭空间科技有限公司 | The control cabin structure of space launch vehicle |
CN109015510A (en) * | 2018-07-26 | 2018-12-18 | 北京卫星环境工程研究所 | The stringer installation method of sealed compartment time structure Instrumental mounting platform |
CN109050873A (en) * | 2018-08-31 | 2018-12-21 | 上海宇航系统工程研究所 | A kind of aircraft section structure with large size opening |
CN109094820A (en) * | 2018-07-11 | 2018-12-28 | 上海空间推进研究所 | Ring plate stove formula composite material main force support structure part |
CN109496098A (en) * | 2018-09-18 | 2019-03-19 | 上海宇航系统工程研究所 | A kind of spacecraft electronic equipment mounting structure and spacecraft |
CN109823576A (en) * | 2019-02-20 | 2019-05-31 | 上海卫星工程研究所 | Bearer connection structure for planetary landing device |
CN110697087A (en) * | 2019-10-24 | 2020-01-17 | 北京空间飞行器总体设计部 | Satellite propulsion service cabin structure |
US10543938B2 (en) | 2012-05-11 | 2020-01-28 | The Boeing Company | Methods and apparatus for performing propulsion operations using electric propulsion systems |
CN111846290A (en) * | 2020-08-06 | 2020-10-30 | 北京中科宇航技术有限公司 | Carrier rocket and launching support tail section thereof |
CN112298605A (en) * | 2020-09-29 | 2021-02-02 | 北京空间飞行器总体设计部 | Plate-and-bar type satellite main structure |
CN112498742A (en) * | 2021-01-13 | 2021-03-16 | 北京工商大学 | Electronic cabin with drawer-type closed box structure |
CN112722338A (en) * | 2021-02-04 | 2021-04-30 | 北京星际荣耀空间科技股份有限公司 | Satellite support and carrier rocket |
CN112758353A (en) * | 2021-01-13 | 2021-05-07 | 中国科学院高能物理研究所 | Highly integrated, modular, fully shielded payload structure for astronomical satellites |
CN112977882A (en) * | 2021-03-12 | 2021-06-18 | 上海卫星工程研究所 | High orbit satellite platform structure with central force bearing cylinder type storage boxes tiled in parallel |
CN112993536A (en) * | 2021-02-07 | 2021-06-18 | 中国科学院微小卫星创新研究院 | Antenna load compartment configuration |
CN113911393A (en) * | 2021-09-29 | 2022-01-11 | 北京空间飞行器总体设计部 | Cone-prism transition type honeycomb interlayer bearing cylinder structure |
CN114162350A (en) * | 2021-12-01 | 2022-03-11 | 上海宇航系统工程研究所 | Sun orientation device main structure suitable for space station |
US11286066B2 (en) | 2012-05-11 | 2022-03-29 | The Boeing Company | Multiple space vehicle launch system |
CN114408215A (en) * | 2021-12-27 | 2022-04-29 | 航天东方红卫星有限公司 | Satellite configuration suitable for quick maneuvering ultrastable imaging |
CN115432208A (en) * | 2022-09-29 | 2022-12-06 | 中国空间技术研究院 | A half-height load-bearing cylinder all-electric propulsion satellite configuration |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102616385B (en) * | 2012-04-11 | 2015-01-14 | 深圳航天东方红海特卫星有限公司 | Truss-type satellite structure with central capsule |
-
2008
- 2008-09-19 CN CN200810222832A patent/CN100575191C/en active Active
Cited By (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101848612A (en) * | 2010-05-07 | 2010-09-29 | 北京航空航天大学 | Portable electronic equipment cabin |
CN102001452B (en) * | 2010-11-08 | 2013-01-23 | 航天东方红卫星有限公司 | Method for realizing integration of energy control and main force bearing plate of satellite |
CN102001452A (en) * | 2010-11-08 | 2011-04-06 | 航天东方红卫星有限公司 | Method for realizing integration of energy control and main force bearing plate of satellite |
CN102009746A (en) * | 2010-11-08 | 2011-04-13 | 航天东方红卫星有限公司 | Octagonal battery-equipped array upright post micro satellite configuration |
CN102009746B (en) * | 2010-11-08 | 2012-11-14 | 航天东方红卫星有限公司 | Octagonal battery-equipped array upright post micro satellite configuration |
CN102303710A (en) * | 2011-06-08 | 2012-01-04 | 航天东方红卫星有限公司 | General propelling module for small satellites |
CN102303710B (en) * | 2011-06-08 | 2013-05-01 | 航天东方红卫星有限公司 | General propelling module for small satellites |
CN102502426A (en) * | 2011-10-20 | 2012-06-20 | 中联重科股份有限公司 | Crane boom and crane |
CN102502426B (en) * | 2011-10-20 | 2014-07-23 | 中联重科股份有限公司 | Crane boom and crane |
CN102556367A (en) * | 2011-11-15 | 2012-07-11 | 上海卫星工程研究所 | Method for assembling structures of light product platforms |
CN102556367B (en) * | 2011-11-15 | 2014-09-10 | 上海卫星装备研究所 | Method for assembling structures of light product platforms |
US12227314B2 (en) | 2012-05-11 | 2025-02-18 | The Boeing Company | Multiple space vehicle launch system |
US11708181B2 (en) | 2012-05-11 | 2023-07-25 | The Boeing Company | Methods and apparatus for performing propulsion operations using electric propulsion systems |
US11286066B2 (en) | 2012-05-11 | 2022-03-29 | The Boeing Company | Multiple space vehicle launch system |
US10689132B2 (en) | 2012-05-11 | 2020-06-23 | The Boeing Company | Methods and apparatus for performing propulsion operations using electric propulsion systems |
US10543938B2 (en) | 2012-05-11 | 2020-01-28 | The Boeing Company | Methods and apparatus for performing propulsion operations using electric propulsion systems |
CN103847982B (en) * | 2012-12-04 | 2020-01-03 | 波音公司 | Method and apparatus for performing propulsion operations using an electric propulsion system |
CN103847982A (en) * | 2012-12-04 | 2014-06-11 | 波音公司 | Methods and apparatus for performing propulsion operations using electric propulsion systems |
CN103612775B (en) * | 2013-11-20 | 2016-01-06 | 西北工业大学 | The multi-functional load-carrying construction of a kind of micro-satellite |
CN103612775A (en) * | 2013-11-20 | 2014-03-05 | 西北工业大学 | Multifunctional load-bearing structure for miniature satellites |
CN104698509A (en) * | 2013-12-10 | 2015-06-10 | 上海卫星工程研究所 | Geostationary orbit meteorological satellite |
CN103935529A (en) * | 2014-04-29 | 2014-07-23 | 上海卫星工程研究所 | Rapid response satellite structure |
CN103935529B (en) * | 2014-04-29 | 2018-01-12 | 上海卫星工程研究所 | A kind of quick response satellite structure |
CN103963997A (en) * | 2014-05-06 | 2014-08-06 | 上海卫星工程研究所 | Small satellite polygonal force bearing barrel |
CN103963998A (en) * | 2014-05-06 | 2014-08-06 | 上海卫星工程研究所 | Main force-bearing satellite structure with hexagonal framework |
CN104567681A (en) * | 2015-01-08 | 2015-04-29 | 航天东方红卫星有限公司 | Precise measurement method for satellite precise benchmark truss structure device |
CN105083590A (en) * | 2015-09-02 | 2015-11-25 | 南京理工大学 | Multiunit cubesat main load-bearing structure |
CN105083590B (en) * | 2015-09-02 | 2017-03-22 | 南京理工大学 | Multiunit cubesat main load-bearing structure |
CN105235916A (en) * | 2015-10-27 | 2016-01-13 | 上海微小卫星工程中心 | Integration satellite compact in layout |
CN105438503B (en) * | 2015-11-30 | 2018-02-09 | 中国空间技术研究院 | A kind of satellite-rocket docking device |
CN105438503A (en) * | 2015-11-30 | 2016-03-30 | 中国空间技术研究院 | Satellite and rocket docking device |
CN106248384A (en) * | 2016-09-12 | 2016-12-21 | 西安航天动力试验技术研究所 | A kind of power for liquid propellant rocket engine test transmits Change-over frame and method for designing |
CN106864773A (en) * | 2017-03-31 | 2017-06-20 | 陕西蓝箭航天技术有限公司 | A kind of instrument cabin structure of vehicle |
CN106864773B (en) * | 2017-03-31 | 2018-05-22 | 北京蓝箭空间科技有限公司 | A kind of instrument cabin structure of vehicle |
CN107323686A (en) * | 2017-05-16 | 2017-11-07 | 上海卫星工程研究所 | Load keeps flat test split open type erecting device |
CN107323686B (en) * | 2017-05-16 | 2019-10-29 | 上海卫星工程研究所 | Load lays flat test with seperated open type mounting device |
CN107505799A (en) * | 2017-09-18 | 2017-12-22 | 北京空间飞行器总体设计部 | A kind of load support structure for concentrating point type stress |
CN107505799B (en) * | 2017-09-18 | 2020-04-10 | 北京空间飞行器总体设计部 | Concentrated point type stressed load supporting structure |
CN108045597A (en) * | 2017-10-23 | 2018-05-18 | 上海卫星工程研究所 | Modularization, sectional satellite structure |
CN107902107B (en) * | 2017-11-17 | 2023-09-05 | 南京理工大学 | Six-unit cube star main bearing structure |
CN107878782A (en) * | 2017-11-17 | 2018-04-06 | 南京理工大学 | Three unit cube star main force support structures |
CN107902107A (en) * | 2017-11-17 | 2018-04-13 | 南京理工大学 | Six unit cube star main force support structures |
CN108583936A (en) * | 2018-04-04 | 2018-09-28 | 上海宇航系统工程研究所 | A kind of strong maneuverable spacecraft configuration of hollow carrying greatly |
CN108725844A (en) * | 2018-06-26 | 2018-11-02 | 北京蓝箭空间科技有限公司 | The control cabin structure of space launch vehicle |
CN109094820A (en) * | 2018-07-11 | 2018-12-28 | 上海空间推进研究所 | Ring plate stove formula composite material main force support structure part |
CN109015510A (en) * | 2018-07-26 | 2018-12-18 | 北京卫星环境工程研究所 | The stringer installation method of sealed compartment time structure Instrumental mounting platform |
CN109050873A (en) * | 2018-08-31 | 2018-12-21 | 上海宇航系统工程研究所 | A kind of aircraft section structure with large size opening |
CN109496098A (en) * | 2018-09-18 | 2019-03-19 | 上海宇航系统工程研究所 | A kind of spacecraft electronic equipment mounting structure and spacecraft |
CN109496098B (en) * | 2018-09-18 | 2020-10-09 | 上海宇航系统工程研究所 | Spacecraft electronic equipment mounting structure and spacecraft |
CN109823576A (en) * | 2019-02-20 | 2019-05-31 | 上海卫星工程研究所 | Bearer connection structure for planetary landing device |
CN110697087A (en) * | 2019-10-24 | 2020-01-17 | 北京空间飞行器总体设计部 | Satellite propulsion service cabin structure |
CN111846290A (en) * | 2020-08-06 | 2020-10-30 | 北京中科宇航技术有限公司 | Carrier rocket and launching support tail section thereof |
CN112298605A (en) * | 2020-09-29 | 2021-02-02 | 北京空间飞行器总体设计部 | Plate-and-bar type satellite main structure |
CN112298605B (en) * | 2020-09-29 | 2022-03-04 | 北京空间飞行器总体设计部 | A plank-type satellite main structure |
CN112758353A (en) * | 2021-01-13 | 2021-05-07 | 中国科学院高能物理研究所 | Highly integrated, modular, fully shielded payload structure for astronomical satellites |
CN112498742A (en) * | 2021-01-13 | 2021-03-16 | 北京工商大学 | Electronic cabin with drawer-type closed box structure |
CN112498742B (en) * | 2021-01-13 | 2022-07-19 | 北京工商大学 | Electronic cabin adopting food steamer type closed box structure |
CN112722338A (en) * | 2021-02-04 | 2021-04-30 | 北京星际荣耀空间科技股份有限公司 | Satellite support and carrier rocket |
CN112993536B (en) * | 2021-02-07 | 2022-12-09 | 中国科学院微小卫星创新研究院 | Antenna load compartment configuration |
CN112993536A (en) * | 2021-02-07 | 2021-06-18 | 中国科学院微小卫星创新研究院 | Antenna load compartment configuration |
CN112977882A (en) * | 2021-03-12 | 2021-06-18 | 上海卫星工程研究所 | High orbit satellite platform structure with central force bearing cylinder type storage boxes tiled in parallel |
CN113911393A (en) * | 2021-09-29 | 2022-01-11 | 北京空间飞行器总体设计部 | Cone-prism transition type honeycomb interlayer bearing cylinder structure |
CN114162350A (en) * | 2021-12-01 | 2022-03-11 | 上海宇航系统工程研究所 | Sun orientation device main structure suitable for space station |
CN114162350B (en) * | 2021-12-01 | 2023-09-29 | 上海宇航系统工程研究所 | Main structure of sun alignment orientation device suitable for space station |
CN114408215A (en) * | 2021-12-27 | 2022-04-29 | 航天东方红卫星有限公司 | Satellite configuration suitable for quick maneuvering ultrastable imaging |
CN114408215B (en) * | 2021-12-27 | 2024-02-09 | 航天东方红卫星有限公司 | Satellite configuration suitable for rapid maneuvering ultra-stable imaging |
CN115432208A (en) * | 2022-09-29 | 2022-12-06 | 中国空间技术研究院 | A half-height load-bearing cylinder all-electric propulsion satellite configuration |
CN115432208B (en) * | 2022-09-29 | 2025-01-24 | 中国空间技术研究院 | A semi-high bearing tube all-electric propulsion satellite configuration |
Also Published As
Publication number | Publication date |
---|---|
CN100575191C (en) | 2009-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101381003A (en) | A New Type of Spacecraft Main Bearing Structure | |
CN106564619B (en) | A kind of Commercial Remote Sensing Satellites configuration layouts | |
US20150360792A1 (en) | Device for retaining a tank in an aircraft | |
CN108674692B (en) | A remote sensing microsatellite | |
WO2016101086A1 (en) | Satellite structure for platform and load integration | |
US20150360791A1 (en) | Tank retainer in an aircraft | |
CN105235916B (en) | A kind of integrated satellite of compact layout | |
CN103935529B (en) | A kind of quick response satellite structure | |
CN111703592B (en) | Large commercial remote sensing satellite platform configuration and assembly method | |
CN109050989B (en) | Double-star point type adapter | |
CN107745829B (en) | A lightweight spacecraft main structure | |
CN114408215A (en) | Satellite configuration suitable for quick maneuvering ultrastable imaging | |
CN105416611B (en) | A plate-type satellite device suitable for high-orbit satellites | |
CN110450983A (en) | Quick satellite configuration | |
CN113562195A (en) | Box plate frame combined satellite configuration | |
CN106628252A (en) | In-orbit aircraft structure of effective load adapter based on parallel arrangement | |
CN111409871B (en) | Satellite platform configuration with extendable truss node pods | |
CN112357118A (en) | Manned lunar surface lander based on truss structure | |
CN107323686A (en) | Load keeps flat test split open type erecting device | |
KR100775989B1 (en) | Composite aperture radar support of satellites | |
CN109823576B (en) | Bearing connection structure for planetary lander | |
CN114194418B (en) | A lunar landing platform structure | |
CN116552807A (en) | A cabin structure satellite | |
JPH11208596A (en) | Satellite structure | |
CN116198746A (en) | Small satellite platform and load integrated configuration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |