CN101377129A - 用于地下使用的换能器组件 - Google Patents

用于地下使用的换能器组件 Download PDF

Info

Publication number
CN101377129A
CN101377129A CNA2008102151138A CN200810215113A CN101377129A CN 101377129 A CN101377129 A CN 101377129A CN A2008102151138 A CNA2008102151138 A CN A2008102151138A CN 200810215113 A CN200810215113 A CN 200810215113A CN 101377129 A CN101377129 A CN 101377129A
Authority
CN
China
Prior art keywords
cylinder
shaped body
pipe
transducer
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008102151138A
Other languages
English (en)
Other versions
CN101377129B (zh
Inventor
何青岩
克里斯托弗斯·德尔坎波
理查德·D·沃德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prad Research and Development Ltd
Original Assignee
Prad Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prad Research and Development Ltd filed Critical Prad Research and Development Ltd
Publication of CN101377129A publication Critical patent/CN101377129A/zh
Application granted granted Critical
Publication of CN101377129B publication Critical patent/CN101377129B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/52Structural details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Remote Sensing (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Acoustics & Sound (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Structure Of Receivers (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明公开了用于地下使用的换能器组件。为地下配置而构造的管子装配有由非传导性材料制成的圆柱形换能器模块。该模块安装成围绕管子的一部分,并包括设置于其上的换能器元件,使得仅元件的表面沿着模块主体的外部暴露。换能器元件连结到导线,该导线被布置成穿过圆柱形主体,以在主体的内孔附近引出。圆柱形主体的端部被材料覆盖以形成液压密封。本发明还公开了一种构造该换能器装置的方法。

Description

用于地下使用的换能器组件
技术领域
本发明总体上涉及适于地下配置的装置,尤其涉及用于这种装置的源和传感器组件。
背景技术
烃和水矿藏的勘探、开发和监测使测量地下特征并对所获数据进行评估以确定所关心的相关储层或油藏的岩石物理性质成为必需。这些技术典型地使用测井工具,测井工具包括装配有源的伸长的管或“心轴”,该源适于通过穿过地下储层的井筒发射能量。所发射的能量与井筒流体(“泥浆”)和/或周围储层相互作用,以产生信号,所述信号由工具上的一个或多个传感器探测和测量。通过对检测到的信号数据进行处理,获得储层性质的剖面或“测井曲线图(log)”。
本领域已知的测井技术采用各种输送形式,用于分别将工具下入到地下储层或将工具从地下储层收回。在各种测井技术中,例行采用两种输送形式—线缆和随钻测井系统。线缆测井需要当工具沿着井筒移动时在铠装电缆的端部把工具下入井筒中以获得地下测量。随钻测井需要在井筒被钻过储层时把工具配置到钻井组件中。
传统的电磁(EM)测井工具带有作为源和/或传感器操作的天线。在操作中,发射天线由交流电供给能量以发射与储层相互作用的EM能量,在接收天线处接收相应的EM信号。美国专利No.6,788,263描述了用于EM测井的系统。一些测井工具带有声源和传感器,以获得利用声能量的测量。美国专利公开No.20050150655、No.20050150713和No.20050152219描述了声学测井的系统。其它的测井工具带有构造成用于球形聚焦测井(SFL)测量的传感器。美国专利No.7,042,225描述了SFL测井的系统。
图1显示了安装在诸如线缆工具心轴的管子12上的常规传感器10。传感器10包括裸露的电极16,当工具配置在井筒中时,该电极16与井筒流体接触。图2显示了图1结构的传感器10的横截面视图。如图所示,电极16布置在绝缘层18上,并由外层20保持在适当位置,该外层20可以由复合材料制成。在这个设计中,电极16的连接线22必须穿过绝缘层18以与内部组件24电连接。由于一般地工具会有空间限制,因此绝缘层18的厚度通常比电线22在井下压力下为形成良好密封所期望的厚度小。细的管子12的设计也具有影响层18的实际厚度的弯曲和较差偏心性的问题。传统设计的这些缺陷都是导致工具被置于井下时传感器10经受压力而失效的原因。
随着测井系统继续向着具有高度集成工具发展,源和传感器常常暴露于井下流体,这些部件的电线必须连接到内装的电子装置和组件上,而这些电子装置和组件不能被井下流体打湿或沾污。因此,仍然需要改进的技术以提供具有供地下使用的源和传感器的工具。
发明内容
本发明的一方面提供了一种用于地下使用的换能器装置。该装置包括:为地下配置而构造的管子;具有内孔并由非传导性材料制成的圆柱形主体;管子设置于圆柱形主体的内孔内,使得主体围绕管子的一部分;圆柱形主体具有设置于其上的换能器元件,使得仅元件的表面沿着主体的外部暴露;该换能器元件连结到导线,该导线被布置成穿过圆柱形主体并在主体的内孔附近引出;并且圆柱形主体的端部由材料覆盖以形成液压密封。
本发明的另一方面提供了一种构造用于地下使用的换能器装置的方法。该方法包括:将换能器元件设置于具有内孔并由非传导性材料制成的圆柱形主体上,该元件设置成使得仅元件的表面沿着主体的外部暴露,并连结到导线,所述导线布置成穿过主体以在主体的内孔附近引出;将圆柱形主体设置于为地下布置而构造的管子上,该管子穿过主体的内孔,使得主体围绕管子的一部分;以及用材料覆盖圆柱形主体的端部以形成液压密封。
本发明的另一方面提供了一种用于地下使用的换能器系统。该系统包括:为地下配置而构造的管子;由非传导性材料制成的具有壁和内孔的圆柱形主体,所述壁和内孔形成具有敞开端部的单一回转闭曲面(closed surface ofrevolution);圆柱形主体具有设置于其上的换能器元件,使得仅元件的表面沿着主体的外部暴露,露出的元件表面从主体的外表面凹进;圆柱形主体的端部形成为与主体的外径相比具有减小的外径,以使每个端部包括唇缘;换能器元件连结到导线,该导线被布置成穿过圆柱形主体并在主体的内孔附近引出;管子设置于圆柱形主体的内孔内,使得主体围绕管子的一部分;连接器,设置于管子上,以与导线连接,从而在元件与远距离电子装置和组件(electronics)之间进行信号或功率传输;在圆柱形主体的每个端部的唇缘上方和设置于管子的外表面上的材料层中,至少有一个非传导性材料层形成液压密封。
附图说明
通过阅读下面的详细描述并参照附图,本发明的其它方面和优点将变得显然,附图中相同的元件用相同的附图标记表示,附图中:
图1是安装在心轴上的传统传感器的示意图。
图2是图1的传感器构造的横截面侧视图。
图3是根据本发明的换能器模块的横截面侧视图。
图4是根据本发明的安装在管子上的换能器模块的横截面侧视图。
图5是根据本发明的安装在管子上的另一换能器模块的横截面侧视图。
图6示出根据本发明的安装在管子上的换能器模块的正视图。
图7是装备有根据本发明的换能器模块的测井系统的示意图。
图8是根据本发明的构造用于地下使用的换能器装置的方法的流程图。
具体实施方式
为了此公开的目的,术语“传感器”应理解为包括适于接收/探测能量(例如,EM或声能量)或响应于与气体或流体接触/暴露于气体或流体而产生信号的任何装置或元件(例如,流体传感器)。类似地,术语“源”应理解为包括适于传送/发射能量(例如,EM或声能量)的任何装置或元件。正如本领域已知的,换能器装置将一种形式的输入能量转换成另一种形式的输出能量。换能器的一示例是在电与声形式之间转换能量的压电晶体。这种换能器元件常适于用作源或传感器。为了此公开的目的,术语“换能器”应理解为包括本领域已知的被构造为或可适于用作源和/或传感器的任何装置或元件。
图3显示了本发明的换能器模块30的横截面透视图。圆柱形主体32被显示为具有置于其上的换能器元件34。虽然为了便于解释清楚而示出了局部视图,但主体32形成为具有细长壁和内孔的单一回转闭曲面。主体32优选地由非传导性材料制成。可使用的材料包括橡胶、市场上可买到的热塑性塑料(thermal plastics)(例如,PEKTM、PEEKTM、PEKKTM、ULTRAPEKTM)、这些材料的复合物、以及本领域已知的能够经受井下工具预期条件的其它材料(例如,美国专利No.4,320,224和No.6,084,052中公开的)。
换能器元件34可以是本领域已知的用于地下测量的任何合适的元件。通过换能器元件34被设计为通过使表面直接暴露到环境中而起作用来实现本发明的一些方面。这样的元件34包括声换能器、SFL电极和本领域已知的其它元件。在本发明的一方面,换能器元件34被模制并密封在主体32内,使得仅元件的局部表面沿着主体的外部露出。导线36连结到元件34,并被布置成在主体32的端部或附近且在主体的内径表面附近引出。根据元件34的类型和期望的应用场合,一条或多条导线36可包括绞合线、光纤、金属丝网、单一传导线或本领域已知的任何其它的信号/能量传输介质。所述一条或多条导线36和元件34之间的一个或多个内部连接也可以通过本领域已知的任何合适的方式(例如,焊接、粘合剂等)实现。换能器模块30被制造成能够沿着导线36提供液压密封。
在这个方面,主体32形成为使得换能器元件34的端部由材料的重叠38覆盖。因此,元件34从主体32的外表面稍微凹进,并优选地定位成靠近主体的内径和外径的中间。在本发明的一些方面,附加的粘合剂或灌注胶可以布置在保持该元件34的空隙内,以提供附加的密封(未示出)。暴露的元件34的表面也可以像本领域已知的那样并根据特定应用场合所期望的那样进行处理或加工完成。而换能器模块30的其它方面可以通过非常薄的材料重叠38或根本没有重叠而实现,使得暴露的元件34的表面更加流线型或与主体32的外径齐平,如图7所示。
再来参照图4,示出了本发明另一方面的横截面。在这个方面,本发明的换能器模块30安装在心轴40上。非传导性材料设置于心轴40的外表面上方以形成电绝缘层42。用于层42的可使用材料包括本领域已知的和这里描述的任何合适的材料。层42的材料可以以在心轴上滑动的鞘的形式设置在心轴40上,以复合材料模制或固化到心轴、以复合物在受拉状态下缠绕在心轴上、以环氧真空填充浸渍工艺、或以本领域已知的其它工艺。换能器模块30作为套筒在绝缘层42上滑动,并定位成沿着心轴40的长度将元件34放置在期望的位置。
在本发明的一方面,从模块30引出的导线44连接到设置在心轴40中的连接器46。连接器46可以通过机加工放入心轴40中,在绝缘层42中形成合适的孔以允许导线44通过。本发明的一些方面可以这样来实现,即,使导线44连结到附加的内部电路、部件和/或电子装置和组件48,而这些又可以按照期望连结到其它远程的元件以进行信号/功率传输。正如本领域已知的,连接器46可以被构造成与设置在心轴40的孔内的其它连接或接口装置连接,例如美国专利No.6,577,244中描述的下钻具工具(该专利转让给本受让人,这里将其全部内容引入作为参考)上。在本发明的其它方面,连接器46可以是例如在美国专利No.6,577,244中描述的被构造成用于电磁耦合的电感耦合器。
非传导性材料设置在绝缘层42上方以形成稳定层50。这个第二层50有助于将模块30和一条或多条导线44保持在适当位置。稳定层50可以由与形成绝缘层42的材料相同的材料形成,而且它可以按照类似的方式施加。稳定层50优选地设置于心轴40上,使得导线44定位在该层之下。如果导线44被布置成在端部或附近且靠近内表面处从模块主体32引出,则这变得容易。
由非传导性材料形成的第三密封层52设置于稳定层50上方,以覆盖模块主体32的两端。该密封层52可以由用于其它层的材料中的任一种形成,并以类似的方式施加。本发明的一个方面是通过将橡胶模制在整个单元上作为密封层52,从而形成液压密封来实现的。为了实现更好的密封,优选的是,模块30的两个端部处的外径与稳定层50的外径相同。通过这种方式,密封层52可以在模块30的端部处无间隙地结合到外表面,并且端部处的结合区域的长度得到优化以提供良好密封。如图4所示,模块主体32优选地形成为,其端部具有相对于主体外径减小的外径,使得每个端部包括唇缘53,该唇缘53位于密封层52的下面以提供改善的密封。
外层54形成在密封层52上方,以保护并进一步将模块30组件密封在适当的位置。外层可以由任何合适的材料形成并按照这里描述的以及本领域已知的方式施加。合适材料的例子包括但不限于,非传导性的防爆炸减压橡胶(decompression-explosion resistant rubber)、PEKTM和玻璃、碳纤维、KEVLARTM、玻璃丝加固的环氧(fiberglass-reinforced epoxy)或这里描述的任何其它材料。Finci等人的美国专利公开No.20070107896以及美国专利No.4,873,488、No.7,023,212、No.7,026,813描述了借助复合基/绝缘外壳实现的井下工具(所有这四篇文献都转让给本受让人,它们的全部内容在这里引入作为参考)。如图4所示,模块端部的唇缘53也由外层54覆盖,以进一步改善密封。
图5显示了本发明的另一方面。在这个方面,另一换能器模块30安装在心轴40上。非传导性材料设置于心轴40的外表面上以形成电绝缘层42。非传导性材料设置于绝缘层42上以形成稳定层50。稳定层50优选地设置于心轴40上以使导线44定位在该层之下。第三密封层52设置于稳定层50上,以覆盖模块主体32的两端。一个方面可以通过将橡胶模制在整个单元上作为密封层52,从而形成液压密封来实现。按照这里所描述的,层42、50、52可以由任何合适的材料形成并设置在心轴上。
模块主体32配备有导线44,该导线44布置成穿过主体,使得一端向外表面伸出以与元件34连结,另一端在主体端部或附近且在内径表面附近引出。主体32可以在导线位于其内部的条件下被模制,或者导线可以在主体形成后添加(例如,通过钻出的引线孔(feedthru))。如果模制时并入导线44,则沿着导线长度的模制提供了防御流体通道的液压密封;否则可以利用任何合适的化合物将导线灌注或密封在引线孔中。
如图5所示,这个方面的模块主体32在一个端部形成有仅一个台肩55。相对的端部56向着心轴40的外径成为流线型。模块30的两个端部优选地逐渐变细,使得它们的外径与稳定层50的外径相同。通过这种方式,密封层52可以在模块端部无间隙地结合到外表面,并且端部处的结合区域的长度得到优化以提供良好密封。
在模块30形成后,一个或多个换能器元件34设置于模块主体32的中部。在本发明的一方面,元件34包括传导性金属片,多个指状物围绕模块主体32缠绕。密封层52在模块30设置于心轴40上之后施加在期望位置,并且可以在元件34安装之前或之后施加。一旦元件34处于适当的位置,导线44就可以通过本领域已知的任何合适的方式(例如,焊接、粘合剂、紧固件等)连接到该元件。
为了保护元件/导线的连接以及为了固定元件34,由非传导性复合材料制成的环57可以设置于心轴40上。环57可以在放置了模块30和元件34之后在心轴40上滑动。环57可以通过合适的紧固件装置或粘合剂固定在适当位置。外层54形成在密封层52上方,以保护模块30组件并进一步将模块30组件密封在适当的位置。外层54可以由任何合适的材料制成并按照这里所描述的施加。外层54和环57可以单独或同时模制/安装。使元件34暴露的窗口58可以按原样模制或在之后进行机加工。
另一方面,模块30配备有传导销59(例如,金属销、电线),该传导销59在台肩55设置于主体32内。销59的一端向着主体32的中间外表面伸出,另一端连接到导线44。销59可以模制在模块30内或者在模块形成后插入到模块中。销59可以通过本领域已知的任何合适的方式(例如,焊接、粘合剂、紧固件等)连接到元件34。
图6显示了本发明的另一方面。构造成用于地下使用的管子60装备有本发明的换能器模块30。管子60可以由金属(例如,非磁性金属)、复合材料或本领域已知的任何其它的合适材料制成。这个方面通过使换能器模块30配备有一系列露出的元件带62来构造。通过该构造,模块30可以成为用于获得本领域已知的SFL测量的电极(例如,美国专利No.7,042,225中所描述的)。一个或多个内部导线和连结按照这里描述的完成。管子60可以是用于地下作业的任何传统的工具或管道。可以装备有本发明的模块30的实施例的示例包括:构造成用于在铠装电缆(例如,金属线、滑线)上进行地下布置的管子,例如钻铤、生产工具、套管等。本发明的方面也可以通过如下方式实现:包括设置于模块30上或者模块和管子60上以覆盖一个或多个元件62的防护装置(未示出),为元件62提供额外的保护,尤其是在模块暴露到苛刻的磨蚀性条件的应用场合(例如,钻井应用场合)中。防护部件可以被构造成具有使元件62的一个或多个表面暴露到环境中的开口,正如本领域已知的那样(例如,美国专利No.6,566,881和No.6,299,639中所描述的)。
图7显示了本发明的另一方面。用于获取地下测量数据的测井系统70装配有多个本发明的换能器模块30。该系统70包括显示为置于穿过地下储层的井筒74中的井下工具72。除模块30外,该工具72可以装配有其它源和传感器进行各种地下测量,正如本领域所已知的。工具72容纳有带有合适电路系统的电子装置和组件/硬件76。工具72被显示为由测井电缆78(在线缆系统的情况下)或由钻柱78(在随钻系统的情况下)支撑在井筒74中。利用线缆工具,工具72通过绞车80在井筒74中提升和下降,绞车80由地面设备82控制。测井电缆或钻柱78包括导体84,导体84将井下电子装置和组件76与地面设备82连接起来,以进行信号/数据和控制通信。可选择地,信号/数据可以在工具72中进行处理或记录,处理后的数据被传输到地面设备82。换能器模块30所产生的和/或探测到的信号的精确形式和细节根据所期望的测量和应用场合而改变,正如本领域所已知的。
图8显示了根据本发明一方面的构建用于地下使用的换能器装置的方法100的流程图。在步骤105中,将换能器元件34设置于模块30上,该模块30形成为具有内孔并由非传导性材料制成的圆柱形主体,正如这里描述的。可以在包括一个或多个换能器元件34的条件下制造或模制模块30,或者在模块30制造之后添加所述一个或多个元件,正如这里所描述的。根据这里描述的技术,将元件34设置成使得元件的表面沿着模块主体32的外部露出,并且将元件连结到导线44,其中导线44被布置成穿过主体以在主体的内孔附近引出。在步骤110,将模块30设置于为地下布置而构造的管子60上。正如这里所描述的,使管子穿过模块主体32的内孔,从而使主体围绕管子的一部分。在步骤115,根据这里公开的技术,用材料覆盖模块主体32的端部,以形成液压密封。
上述公开的技术相对于为地下使用而构造的传统的源和传感器结构具有显著的优势。上述公开的方面在暴露的换能器元件和内部电子装置和组件以及层材料之间提供了改善的密封。这些设计降低了存在于传统结构中的源泄漏。例如,因为元件导线不需要像传统结构那样穿过一个或多个层,因此液压密封可以通过单一橡胶模制工艺实现,而不需要在插入线缆并去除多余的片之后进行修理和修补,从而改善了密封质量。此外,本发明的换能器模块可以用在实际的各种类型的管子。对于地下应用,模块可以设置在本领域已知的各种输送管装置上,包括但不限于,线缆、滑线、LWD/MWD、LWT、运行工具、生产油管和套管。
虽然本公开描述了本发明的特定方面,但在研究了本公开后,大量变形和改变对于本领域技术人员来讲变得很明显,包括使用这里所描述的元件的等同功能和/或结构的替代物。例如,本发明的方面也可以通过将换能器模块30设置于从管子的外表面向外延伸的突出部分(也称为稳定器叶片)上来实现。而其它方面可以通过使模块30包括适于遥测应用的元件(未示出)来实现。所有这些对本领域技术人员显然的类似改变都将被认为落入本发明的范围内,本发明的范围由所附权利要求限定。对于本说明书,应当清楚地理解,“包括”一词是指“包括但不限于”。

Claims (22)

1、一种用于地下使用的换能器装置,包括:
为地下配置而构造的管子;
具有内孔并由非传导性材料制成的圆柱形主体;
管子设置于圆柱形主体的内孔内,使得主体围绕管子的一部分;
圆柱形主体具有设置于其上的换能器元件,使得仅元件的表面沿着主体的外部暴露;
该换能器元件连结到导线,该导线被布置成穿过圆柱形主体并在主体的内孔附近引出;并且
圆柱形主体的端部由材料覆盖以形成液压密封。
2、如权利要求1所述的装置,其中,圆柱形主体包括形成单一回转曲面的壁,该回转曲面具有敞开的端部,以作为套筒安装在管子上方。
3、如权利要求2所述的装置,其中,换能器元件设置于圆柱形主体上,使得暴露出的元件表面从主体的外表面凹进。
4、如权利要求3所述的装置,还包括设置于管子的外表面上的非传导性材料,以在管子和圆柱形主体之间形成第一层。
5、如权利要求4所述的装置,还包括设置于由非传导性材料制成的第一层上方以覆盖导线的非传导性材料,从而在管子上方形成第二层。
6、如权利要求5所述的装置,其中,覆盖圆柱形主体的端部的材料形成位于第一和第二层上方的第三层。
7、如权利要求6所述的装置,还包括设置于圆柱形主体的端部上方的非传导性材料,以形成置于管子上的第一、第二和第三层上方的第四层。
8、如权利要求7所述的装置,其中,圆柱形主体的端部形成为与主体的外径相比具有减小的外径,使得每个端部包括安装在第二、第三或第四层中至少一个层之下的唇缘。
9、如权利要求8所述的装置,还包括连接器,该连接器设置于管子上,以与导线连接,从而用于在换能器元件与远距离电子装置和组件之间进行信号或功率传输。
10、如权利要求8所述的装置,还包括设置于圆柱形主体上的位于换能器元件上方的环。
11、如权利要求2所述的装置,其中,导线的一段密封在圆柱形主体的壁内。
12、一种构造用于地下使用的换能器的方法,包括:
将换能器元件设置于具有内孔并由非传导性材料制成的圆柱形主体上,该元件设置成使得仅元件的表面沿着主体的外部暴露,并连结到导线,所述导线布置成穿过主体以在主体的内孔附近引出;
将圆柱形主体设置于为地下布置而构造的管子上,该管子穿过主体的内孔,使得主体围绕管子的一部分;和
用材料覆盖圆柱形主体的端部以形成液压密封。
13、如权利要求12所述的方法,其中,圆柱形主体包括形成单一回转曲面的壁,该回转曲面具有敞开的端部,以作为套筒安装在管子上方。
14、如权利要求13所述的方法,包括将换能器元件设置于圆柱形主体上,使得暴露出的元件表面从主体的外表面凹进。
15、如权利要求14所述的方法,还包括在管子的外表面上设置非传导性材料,以在管子和圆柱形主体之间形成第一层。
16、如权利要求15所述的方法,还包括在由非传导性材料制成的第一层上方设置非传导性材料以覆盖导线,从而在管子上方形成第二层。
17、如权利要求16所述的方法,其中,用材料覆盖圆柱形主体的端部包括在第一和第二层上方形成第三层。
18、如权利要求17所述的方法,还包括在圆柱形主体的端部上方设置非传导性材料,以形成置于管子上的第一、第二和第三层上方的第四层。
19、如权利要求18所述的方法,其中,圆柱形主体的端部形成为与主体的外径相比具有减小的外径,使得每个端部包括安装在第二、第三或第四层中至少一个层之下的唇缘。
20、如权利要求19所述的方法,还包括在换能器元件上方将环设置于圆柱形主体上。
21、如权利要求13所述的方法,其中,将导线的一段密封在圆柱形主体的壁内。
22、一种用于地下使用的换能器系统,包括:
为地下配置而构造的管子;
由非传导性材料制成的具有壁和内孔的圆柱形主体,所述壁和内孔形成具有敞开端部的完整回转体;
圆柱形主体具有设置于其上的换能器元件,使得仅元件的表面沿着主体的外部暴露,露出的元件表面从主体的外表面凹进;
圆柱形主体的端部形成为与主体的外径相比具有减小的外径,以使每个端部包括唇缘;
换能器元件连结到导线,该导线被布置成穿过圆柱形主体并在主体的内孔附近引出,导线的一段被密封在圆柱形主体的壁内;
管子设置于圆柱形主体的内孔内,使得主体围绕管子的一部分;
连接器,设置于管子上,以与导线连接,从而在换能器元件与远距离电子装置和组件之间进行信号或功率传输;以及
在圆柱形主体的每个端部的唇缘上方和设置于管子的外表面上的材料层中,至少有一个非传导性材料层形成液压密封。
CN2008102151138A 2007-08-31 2008-09-01 用于地下使用的换能器组件 Expired - Fee Related CN101377129B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/848,441 2007-08-31
US11/848,441 US7723989B2 (en) 2007-08-31 2007-08-31 Transducer assemblies for subsurface use

Publications (2)

Publication Number Publication Date
CN101377129A true CN101377129A (zh) 2009-03-04
CN101377129B CN101377129B (zh) 2012-07-18

Family

ID=40195986

Family Applications (2)

Application Number Title Priority Date Filing Date
CNU200820207538XU Expired - Fee Related CN201318173Y (zh) 2007-08-31 2008-09-01 用于地下使用的换能器装置和换能器系统
CN2008102151138A Expired - Fee Related CN101377129B (zh) 2007-08-31 2008-09-01 用于地下使用的换能器组件

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNU200820207538XU Expired - Fee Related CN201318173Y (zh) 2007-08-31 2008-09-01 用于地下使用的换能器装置和换能器系统

Country Status (7)

Country Link
US (1) US7723989B2 (zh)
EP (1) EP2188492B8 (zh)
CN (2) CN201318173Y (zh)
CA (1) CA2697853C (zh)
EA (1) EA017430B1 (zh)
GB (1) GB201003044D0 (zh)
WO (1) WO2009032504A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104823074A (zh) * 2013-03-15 2015-08-05 Cbg公司 耐用闪烁晶体组件
CN113785194A (zh) * 2019-04-23 2021-12-10 诺沃皮尼奥内技术股份有限公司 用于测量结垢和/或溶蚀的传感器布置结构和方法以及监测结垢和/或溶蚀的机器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2465717B (en) * 2008-07-16 2011-10-05 Halliburton Energy Serv Inc Apparatus and method for generating power downhole
US9097100B2 (en) * 2009-05-20 2015-08-04 Halliburton Energy Services, Inc. Downhole sensor tool with a sealed sensor outsert
US8564315B2 (en) * 2010-07-08 2013-10-22 Schlumberger Technology Corporation Downhole corrosion monitoring
US8704524B2 (en) 2011-09-14 2014-04-22 Baker Hughes Incorporated Connection method of replaceable sensors for resistivity arrays
EP2795061A4 (en) * 2011-12-21 2015-12-16 Services Petroliers Schlumberger ISOLATION STRUCTURE FOR DRILLING MEASURING INSTRUMENT ANTENNAS
WO2013139928A1 (en) * 2012-03-21 2013-09-26 Cgg Services Sa Seismic methods and systems employing flank arrays in well tubing
AU2012375396B2 (en) * 2012-03-28 2015-05-28 Halliburton Energy Services, Inc. Downhole fluid resistivity sensor systems and methods
CN104603390B (zh) 2012-10-05 2018-02-06 哈里伯顿能源服务公司 用于电磁遥测心轴的绝缘涂层方法
WO2017034924A1 (en) * 2015-08-21 2017-03-02 Halliburton Energy Services, Inc. Borehole acoustic logging receiver quality control and calibration
US11313218B2 (en) 2016-02-09 2022-04-26 Saudi Arabian Oil Company Downhole corrosion, erosion, scale and deposit monitoring system
BR112019007987A2 (pt) 2016-12-22 2019-07-02 Halliburton Energy Services Inc ferramenta de perfilagem e método
CN111965731B (zh) * 2020-08-14 2023-10-20 中国海洋石油集团有限公司 一种测试装置及测试设备

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1321545A (fr) * 1962-02-07 1963-03-22 Schlumberger Prospection Perfectionnements aux dispositifs pour l'étude de la composition des mélanges d'eau et de liquides isolants
DE2861696D1 (en) 1977-09-07 1982-04-29 Ici Plc Thermoplastic aromatic polyetherketones, a method for their preparation and their application as electrical insulants
US4738812A (en) * 1982-11-12 1988-04-19 Teleco Oilfield Services Inc. Method of forming an electrode structure
US4873488A (en) * 1985-04-03 1989-10-10 Schlumberger Technology Corporation Induction logging sonde with metallic support having a coaxial insulating sleeve member
US4949045A (en) * 1987-10-30 1990-08-14 Schlumberger Technology Corporation Well logging apparatus having a cylindrical housing with antennas formed in recesses and covered with a waterproof rubber layer
US6710600B1 (en) * 1994-08-01 2004-03-23 Baker Hughes Incorporated Drillpipe structures to accommodate downhole testing
AR008989A1 (es) * 1995-12-05 2000-03-08 Lwt Instr Inc Estructuras de material compuesto con menor atenuacion de senal, metodo para formarlas; tubos de union sustituto y componente de tren de perforacioncon dicho material
US6177609B1 (en) * 1997-03-10 2001-01-23 Meadox Medicals, Inc. Self-aggregating protein compositions and use as sealants
US6084052A (en) * 1998-02-19 2000-07-04 Schlumberger Technology Corporation Use of polyaryletherketone-type thermoplastics in downhole tools
US6300762B1 (en) * 1998-02-19 2001-10-09 Schlumberger Technology Corporation Use of polyaryletherketone-type thermoplastics in a production well
US6566881B2 (en) * 1999-12-01 2003-05-20 Schlumberger Technology Corporation Shielding method and apparatus using transverse slots
US7242194B2 (en) * 2000-04-07 2007-07-10 Schlumberger Technology Corporation Formation imaging while drilling in non-conductive fluids
US6577244B1 (en) * 2000-05-22 2003-06-10 Schlumberger Technology Corporation Method and apparatus for downhole signal communication and measurement through a metal tubular
US6788263B2 (en) * 2002-09-30 2004-09-07 Schlumberger Technology Corporation Replaceable antennas for subsurface monitoring apparatus
US20040065437A1 (en) * 2002-10-06 2004-04-08 Weatherford/Lamb Inc. In-well seismic sensor casing coupling using natural forces in wells
US7026813B2 (en) * 2003-09-25 2006-04-11 Schlumberger Technology Corporation Semi-conductive shell for sources and sensors
US7514930B2 (en) * 2003-12-02 2009-04-07 Schlumberger Technology Corporation Apparatus and method for addressing borehole eccentricity effects
US7042225B2 (en) * 2003-12-12 2006-05-09 Schlumberger Technology Corporation Apparatus and methods for induction-SFL logging
US7364007B2 (en) * 2004-01-08 2008-04-29 Schlumberger Technology Corporation Integrated acoustic transducer assembly
US7367392B2 (en) * 2004-01-08 2008-05-06 Schlumberger Technology Corporation Wellbore apparatus with sliding shields
US7460435B2 (en) * 2004-01-08 2008-12-02 Schlumberger Technology Corporation Acoustic transducers for tubulars
US7525315B2 (en) * 2004-04-01 2009-04-28 Schlumberger Technology Corporation Resistivity logging tool and method for building the resistivity logging tool
US20050257961A1 (en) 2004-05-18 2005-11-24 Adrian Snell Equipment Housing for Downhole Measurements
GB2420624B (en) 2004-11-30 2008-04-02 Vetco Gray Controls Ltd Sonde attachment means
CN1676874B (zh) * 2005-04-14 2010-12-08 中国石化集团胜利石油管理局钻井工艺研究院 井斜及方位伽马随钻测量仪
US7671597B2 (en) * 2005-06-14 2010-03-02 Schlumberger Technology Corporation Composite encased tool for subsurface measurements
US7392697B2 (en) * 2005-09-19 2008-07-01 Schlumberger Technology Corporation Apparatus for downhole fluids analysis utilizing micro electro mechanical system (MEMS) or other sensors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104823074A (zh) * 2013-03-15 2015-08-05 Cbg公司 耐用闪烁晶体组件
CN113785194A (zh) * 2019-04-23 2021-12-10 诺沃皮尼奥内技术股份有限公司 用于测量结垢和/或溶蚀的传感器布置结构和方法以及监测结垢和/或溶蚀的机器
CN113785194B (zh) * 2019-04-23 2023-11-17 诺沃皮尼奥内技术股份有限公司 用于测量结垢和/或溶蚀的传感器布置结构和方法以及监测结垢和/或溶蚀的机器

Also Published As

Publication number Publication date
EP2188492A1 (en) 2010-05-26
EP2188492B1 (en) 2015-07-01
EP2188492B8 (en) 2015-12-30
CA2697853A1 (en) 2009-03-12
WO2009032504A1 (en) 2009-03-12
EA017430B1 (ru) 2012-12-28
CN101377129B (zh) 2012-07-18
CN201318173Y (zh) 2009-09-30
EA201070330A1 (ru) 2010-10-29
US7723989B2 (en) 2010-05-25
US20090072832A1 (en) 2009-03-19
CA2697853C (en) 2016-01-12
GB201003044D0 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
CN101377129B (zh) 用于地下使用的换能器组件
CA2591701C (en) Wellbore communication system
US10598810B2 (en) Optical magnetic field sensor units for a downhole environment
US7954560B2 (en) Fiber optic sensors in MWD Applications
US5816344A (en) Apparatus for joining sections of pressurized conduit
CN100516929C (zh) 一种组合式传播和横向电阻率井下仪器
US6994162B2 (en) Linear displacement measurement method and apparatus
CN201258737Y (zh) 测井仪器
NO341280B1 (no) Telemetrisystem og fremgangsmåte for å sende et elektromagnetisk signal inne i et borehull
US20140266210A1 (en) Apparatus and methods of communication with wellbore equipment
CN101065555A (zh) 经过套管而通信的方法和装置
US7671597B2 (en) Composite encased tool for subsurface measurements
US20070119589A1 (en) Complaint Covering of a Downhole Component
US20180106140A1 (en) Systems and methods for determining the strain experienced by wellhead tubulars
US7071696B2 (en) Measurement device and support for use in a well
EP2196620B1 (en) A micro-logging system and method
CN115726773A (zh) 一种测量随钻前探地层电阻率的装置及方法
CN102797456A (zh) 连续管钻机井下通信装置的耐高温、耐高压封装方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120718

Termination date: 20170901

CF01 Termination of patent right due to non-payment of annual fee