CN101368089A - 醇基含碳纳米管纳米流体及其制备方法 - Google Patents

醇基含碳纳米管纳米流体及其制备方法 Download PDF

Info

Publication number
CN101368089A
CN101368089A CNA2007100448840A CN200710044884A CN101368089A CN 101368089 A CN101368089 A CN 101368089A CN A2007100448840 A CNA2007100448840 A CN A2007100448840A CN 200710044884 A CN200710044884 A CN 200710044884A CN 101368089 A CN101368089 A CN 101368089A
Authority
CN
China
Prior art keywords
nano
fluid
nanotube
carbonous
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007100448840A
Other languages
English (en)
Inventor
陈立飞
谢华清
黎阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Polytechnic University
Original Assignee
Shanghai Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Polytechnic University filed Critical Shanghai Polytechnic University
Priority to CNA2007100448840A priority Critical patent/CN101368089A/zh
Publication of CN101368089A publication Critical patent/CN101368089A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

醇基含碳纳米管纳米流体及其制备方法,其特征在于:按以下步骤进行:a)将碳纳米管表面进行羟基化处理;b)在搅拌和超声振动条件下,将碳纳米管直接分散到基体流体醇中,其中碳纳米管占0.2-4vol%,基体流体醇占96-99.8vol%。进行羟基化处理的碳纳米管包括单壁、双壁及多壁碳纳米管。基体流体为乙醇,乙二醇及丙三醇。用本发明方法制备的醇基含碳纳米管纳米流体,因其不含分散剂,从而无介质污染,可在较高温下使用,导热系数增加率随温度变化很小,具有良好的热稳定性,有利于热管理工程设计。

Description

醇基含碳纳米管纳米流体及其制备方法
技术领域
本发明涉及一种具有良好热稳定性的且导热系数有较大提高的醇基含碳纳米管纳米流体的制备方法。
背景技术
传热流体在许多领域,如能源、化工、汽车、建筑、微电子、信息等,具有举足轻重的地位。传统流体介质,如水、醇、油等,其导热系数较低,而热交换系统的传热负荷和传热强度日益增大,低传热性能的换热工质已成为制约高负荷传热和特殊条件下强化传热技术发展的主要障碍,特别是在能源、化工、微电子、信息等高技术领域。因此,研制导热系数高、换热性能好的高效传热流体已成为研究的热点。
1995年,美国Argonne国家实验室的Choi首次提出纳米流体(nanofluids)的概念[U.S.Choi,in:Developments and Applications of Non-Newtonian Flows,ASME,New York,(1995):99]。所谓纳米流体,是指把金属或非金属纳米粉体分散到水、醇、机油等传统换热介质中,制备成均匀、稳定、高导热的新型换热介质。然而,碳纳米管的惰性(non-reactive)表面、管与管之间固有的范德华力、极大的比表面积和长径比,使其在不添加分散剂的条件下直接分散在极性基体流体中往往产生非常严重的团聚[C.Park et al.,Chem.Phys.Lett.(2002)364:303]。而选择表面功能化且被截断成最佳长径比的碳纳米管来制备纳米流体是解决问题的有效途径。研究还发现:纳米流体导热系数的提高存在很强的温度依赖关系,这不仅限制了纳米流体的应用范围,而且也不利于热管理工程设计。因此,制备导热系数高,且导热系数增加率随温度变化很小,具有热稳定性的纳米流体是亟待解决的问题之一。
发明内容
本发明的目的在于提供一种不含分散剂、无介质污染,具有高导热系数及热稳定性的醇基含碳纳米管纳米流体及其制备方法,即通过将表面功能化及进行截断短化处理的碳纳米管,在搅拌和超声振动条件下,分散在基体流体醇中,得到不含分散剂的醇基含碳纳米管纳米流体,其目的在于克服现有技术中热稳定性差,导热系数增加率随温度变化很大的缺点。
醇基含碳纳米管纳米流体及其制备方法,其特征在于:按以下步骤进行:
a)将碳纳米管表面进行羟基化处理;
b)在搅拌和超声振动条件下,将碳纳米管直接分散到基体流体醇中,其中碳纳米管占0.2—4vol%,基体流体醇占96—99.8vol%。
所述的进行羟基化处理的碳纳米管包括单壁、双壁及多壁碳纳米管。
所述的基体流体为乙醇,乙二醇及丙三醇。
用本发明方法制备的醇基含碳纳米管纳米流体,因其不含分散剂,从而无介质污染,可在较高温下使用,导热系数增加率随温度变化很小,具有良好的热稳定性,有利于热管理工程设计。
附图说明
图1乙二醇基纳米流体导热系数提高率随温度变化图;
图2丙三醇基纳米流体导热系数提高率随温度变化图。
由图可见,不同碳纳米管浓度的醇基纳米流体,其导热系数提高率随温度变化较小,在测试的温度范围内不超过1.6%,说明制备的醇基含碳纳米管纳米流体具有良好的热稳定性。
具体实施方式
实施例1:将体积份额配比为0.2%的表面羟基化的单壁碳纳米管与体积份额配比为99.8%的乙二醇相混合,超声振动2小时左右。形成的纳米流体的导热系数比乙二醇增加3.5%。
实施例2:将体积份额配比为0.4%的表面羟基化的双壁碳纳米管与体积份额配比为99.6%的乙二醇相混合,超声振动3.5小时左右。形成的纳米流体的导热系数比乙二醇增加8%。
实施例3:将体积份额配比为1%的表面羟基化的多壁碳纳米管与体积份额配比为99%的乙二醇相混合,超声振动8小时左右。形成的纳米流体的导热系数比乙二醇增加17.5%。而相同碳纳米管浓度的水基纳米流体的导热系数提高只有12%。
实施例4:将体积份额配比为2%的表面羟基化的多壁碳纳米管与体积份额配比为98%的乙二醇相混合,超声振动12小时左右。形成的纳米流体的导热系数比乙二醇增加36%。
实施例5:将体积份额配比为1%的表面羟基化的多壁碳纳米管与体积份额配比为98%的丙三醇相混合,超声振动9小时左右。形成的纳米流体的导热系数比丙三醇增加16%。
实施例6:将体积份额配比为2%的表面羟基化的多壁碳纳米管与体积份额配比为98%的丙三醇相混合,超声振动14小时左右。形成的纳米流体的导热系数比丙三醇增加35%。
实施例7:将体积份额配比为3%的表面羟基化的多壁碳纳米管与体积份额配比为97%的乙二醇相混合,超声振动18小时左右。形成的纳米流体的导热系数比乙二醇增加50%。
实施例8:将体积份额配比为4%的表面羟基化的单壁碳纳米管与体积份额配比为96%的乙二醇相混合,超声振动20小时左右。形成的纳米流体的导热系数比乙二醇增加70%。
实施例9:将体积份额配比为0.25%的表面羟基化的多壁碳纳米管与体积份额配比为99.75%的乙二醇相混合,超声振动3小时左右。形成的纳米流体的导热系数比乙醇增加2.9%。

Claims (3)

1.醇基含碳纳米管纳米流体及其制备方法,其特征在于:按以下步骤进行:
a)将碳纳米管表面进行羟基化处理;
b)在搅拌和超声振动条件下,将碳纳米管直接分散到基体流体醇中,其中碳纳米管占0.2—4vol%,基体流体醇占96—99.8vol%。
2.根据权利要求1所述的醇基含碳纳米管纳米流体及其制备方法,其特征在于:碳纳米管包括单壁、双壁及多壁碳纳米管。
3.根据权利要求1所述的醇基含碳纳米管纳米流体及其制备方法,其特征在于:所述的基体流体为乙醇,乙二醇及丙三醇。
CNA2007100448840A 2007-08-15 2007-08-15 醇基含碳纳米管纳米流体及其制备方法 Pending CN101368089A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2007100448840A CN101368089A (zh) 2007-08-15 2007-08-15 醇基含碳纳米管纳米流体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2007100448840A CN101368089A (zh) 2007-08-15 2007-08-15 醇基含碳纳米管纳米流体及其制备方法

Publications (1)

Publication Number Publication Date
CN101368089A true CN101368089A (zh) 2009-02-18

Family

ID=40412089

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007100448840A Pending CN101368089A (zh) 2007-08-15 2007-08-15 醇基含碳纳米管纳米流体及其制备方法

Country Status (1)

Country Link
CN (1) CN101368089A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010145833A1 (de) * 2009-06-18 2010-12-23 Sgl Carbon Se Temperiermedium
TWI616400B (zh) * 2012-04-26 2018-03-01 布魯爾科技公司 碳奈米管的多官能醇分散液

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010145833A1 (de) * 2009-06-18 2010-12-23 Sgl Carbon Se Temperiermedium
TWI616400B (zh) * 2012-04-26 2018-03-01 布魯爾科技公司 碳奈米管的多官能醇分散液
US10519333B2 (en) 2012-04-26 2019-12-31 Brewer Science, Inc. Multifunctional alcohol dispersions of carbon nanotubes

Similar Documents

Publication Publication Date Title
Eshgarf et al. A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption
Devendiran et al. A review on preparation, characterization, properties and applications of nanofluids
Sidik et al. Recent advancement of nanofluids in engine cooling system
Bahiraei et al. Graphene family nanofluids: A critical review and future research directions
Panduro et al. A review of the use of nanofluids as heat-transfer fluids in parabolic-trough collectors
Shanbedi et al. Investigation of heat-transfer characterization of EDA-MWCNT/DI-water nanofluid in a two-phase closed thermosyphon
Rehman et al. Synthesis, characterization, stability and thermal conductivity of multi-walled carbon nanotubes (MWCNTs) and eco-friendly jatropha seed oil based nanofluid: An experimental investigation and modeling approach
Al-Kayiem et al. Review on nanomaterials for thermal energy storage technologies
Amiri et al. Laminar convective heat transfer of hexylamine-treated MWCNTs-based turbine oil nanofluid
Jha et al. Synthesis and thermal conductivity of copper nanoparticle decorated multiwalled carbon nanotubes based nanofluids
Teng et al. Characteristics of carbon-based nanofluids and their application in a brazed plate heat exchanger under laminar flow
Yang et al. Toward TiO 2 nanofluids—Part 2: applications and challenges
Wang et al. Remarkable improvements in the stability and thermal conductivity of graphite/ethylene glycol nanofluids caused by a graphene oxide percolation structure
Huq et al. Review on aqueous graphene nanoplatelet nanofluids: preparation, stability, thermophysical properties, and applications in heat exchangers and solar thermal collectors
Askari et al. Experimental investigation on the thermal performance of ultra-stable kerosene-based MWCNTs and Graphene nanofluids
Yi et al. Development of superior stable two-dimensional montmorillonite nanosheet based working nanofluids for direct solar energy harvesting and utilization
Nagar et al. Modern solar systems driven by nanoparticles-based fatty acids and paraffin wax phase change materials
CN109384219A (zh) 面向高效换热工质的纳米流体及其制备方法和换热设备
CN105860937A (zh) 一种热管式真空集热管用纳米流体超导液及其制备方法
Fang et al. Experimental study of the thermal properties of a fatty acid-modified graphite composite phase change material dispersion system
Kumar et al. An overview of recent advancements and applications of hybrid nanofluids
Almanassra et al. Stability and thermophysical properties test of carbide-derived carbon thermal fluid; a comparison between functionalized and emulsified suspensions
Wang et al. Facile self-assembly approach to construct a novel MXene-decorated nano-sized phase change material emulsion for thermal energy storage
CN101368089A (zh) 醇基含碳纳米管纳米流体及其制备方法
Rashidi et al. Applications of nanofluids in thermal energy transport

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20090218