CN101366952A - 磁共振成像对比剂 - Google Patents

磁共振成像对比剂 Download PDF

Info

Publication number
CN101366952A
CN101366952A CNA2007102013472A CN200710201347A CN101366952A CN 101366952 A CN101366952 A CN 101366952A CN A2007102013472 A CNA2007102013472 A CN A2007102013472A CN 200710201347 A CN200710201347 A CN 200710201347A CN 101366952 A CN101366952 A CN 101366952A
Authority
CN
China
Prior art keywords
magnetic resonance
nuclear magnetic
contrast medium
hollow carbon
resonance contrast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007102013472A
Other languages
English (en)
Inventor
陈杰良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Original Assignee
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongfujin Precision Industry Shenzhen Co Ltd, Hon Hai Precision Industry Co Ltd filed Critical Hongfujin Precision Industry Shenzhen Co Ltd
Priority to CNA2007102013472A priority Critical patent/CN101366952A/zh
Priority to US11/946,447 priority patent/US20090047220A1/en
Publication of CN101366952A publication Critical patent/CN101366952A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Abstract

一种磁共振成像对比剂,其包括:多个中空碳纳米微粒,以及分别填充在该多个中空碳纳米微粒内部的含铁纳米微粒。所述磁共振成像对比剂应用中空碳纳米微粒包裹修饰含铁纳米微粒。整个磁共振成像对比剂可以有含铁纳米微粒的性质,例如顺磁性、毒副作用小,也可以具有碳纳米微粒的性质,例如高比表面积,低表面能,可以更好地结合于被测物组织上,有助于对一些微细区域的成像。

Description

磁共振成像对比剂
技术领域
本发明涉及磁共振成像技术领域,尤其涉及一种磁共振成像对比剂。
背景技术
磁共振成像(Magnetic Resonance Imaging,简称MRI)自1973年被首次实现迄今30余年,其已广泛应用于物理、化学、生物、医学等各个领域,用于观察被测物内部组织的结构特征。
磁共振成像所用仪器为一个具有射频发生器及磁共振信号接收器的磁共振成像仪器。当被测物被送入该磁共振成像仪器中,被测物内部组织中原来处于无规律自旋并产生有磁矩的原子核(由于人体富含水,人体内自旋并产生有磁矩的原子核则主要为H质子)会按该磁共振成像仪器产生的磁场方向重新排列。此时,当射频发生器发出一特定频率射频脉冲对原子核进行激发,原子核就会吸收能量而共振,即产生磁共振现象。当射频发生器停止发射该射频脉冲,该原子核会把所吸收的能量释放出来,其相位和能级会恢复到激发前的状态,这个过程称为弛豫过程(Relaxation Process),所经历时间称为弛豫时间(Relaxation Time,其包括纵向弛豫时间及横向弛豫时间)。这些能级变化及相位变化所产生的信号均可被磁共振信号接收器感测到,再由计算机的运算处理转变成反应原子核运动特征的图像,从而被观察到。
随着磁共振成像的广泛应用,人们希望它能够提高对微细被测物组织的分辩率,这就需要提高磁共振成像的敏感度及准确度,各类的磁共振成像对比剂(Magnetic ResonanceImaging Contrast Agent)从而便得到开发和应用。这些磁共振成像对比剂通常具有顺磁性,其在被注入被测物内部后,会结合于被测物内部组织上,被测物内部不同组织上的原子核均提高弛豫速率,从而有助于成像。不同组织,例如正常组织与病变组织在对比剂作用下产生不同强度的信号,从而增强了影像对比度。
《第一军医大学学报》2004年第24卷第1期上发表的《新型磁共振靶向对比剂Gd-DTPA链霉亲和素的制备及其反应条件的实验研究》一文揭示Gd-DTPA-SA对比剂的开发,然而,钆(Gd)元素本身具有一定毒性,与二乙三胺五乙酸链霉亲和素(DTPA-SA)衍生物配体后,毒性未必降低到对一些敏感的被测物组织也安全的程度,而且对一些微细的被测物组织未能达到明显的影像对比增强作用。
发明内容
有鉴于此,提供一种更加安全、具有更好敏感度及准确度的磁共振成像对比剂实为必要
一种磁共振成像对比剂,其包括:多个中空碳纳米微粒,以及分别填充在该多个中空碳纳米微粒内部的含铁纳米微粒。
与现有技术相比,所述磁共振成像对比剂应用中空碳纳米微粒包裹修饰含铁纳米微粒。整个磁共振成像对比剂可以有含铁纳米微粒的性质,例如顺磁性、毒副作用小,也可以具有碳纳米微粒的性质,例如高比表面积,低表面能,可以更好地结合于被测物组织上,有助于对一些微细区域的成像。
附图说明
图1是本发明的实施例提供的磁共振成像对比剂结合于人体组织的示意图。
具体实施方式
下面结合附图对本发明提供的磁共振成像对比剂作进一步详细说明。
请参阅图1,本发明的实施例提供的磁共振成像对比剂10作用于人体组织20,其包括多个中空碳纳米球12,以及分别填充在该多个中空碳纳米球12内部的含铁纳米微粒14。
所述中空碳纳米球12的壳体为多层石墨以球中球形式组成的多面体碳簇,其外形可以为球状或椭球状,外径可以大约在100纳米至2000纳米之间,内径可以大约在50纳米至1200纳米之间,优选地,该外径大约在200纳米至1000纳米之间,该内径大约在50纳米至850纳米之间。
所述含铁纳米微粒14可以为铁单质(Fe),铁氧化物,例如氧化铁(Fe2O3)、氧化亚铁(FeO)等,还可以为其它合适的铁化合物。所述含铁纳米微粒14的粒径可以在10纳米至500纳米之间,优选地,在20纳米至200纳米之间。所述含铁纳米微粒14尺寸小,具有超顺磁性。
碳纳米球12与填充在其内的含铁纳米微粒14可以通过电弧放电法同步一体形成。碳纳米球12对含铁纳米微粒14具有一包裹修饰作用。碳纳米球12具有较好的水溶性,因而实际上其改善了含铁纳米微粒14的水溶性,从而磁共振成像对比剂10可以以注射液的方式输入人体组织20内。并且,当含铁纳米微粒14对人体组织20具有一定毒性,例如用剂量超过应用于人体的标准时,碳纳米球12实际上起到降低含铁纳米微粒14毒性的作用,从而使整个磁共振成像对比剂10对人体真正安全。
碳纳米球12具有高比表面积及低表面能,其能够很好附于人体组织20上,即可以较长时间地停留在人体组织20上,不会迅速随血液流出,从而有助于对一些微细区域的成像。
人体组织20不同区域,例如正常区域与病变区域含水量,即含H质子数量不同,病变区域H质子数量多于正常区域,因此磁共振成像对比剂10对不同区域作用不同,病变区域产生的磁共振信号高于正常区域,因而病变区域容易被观测到。而由于含铁纳米微粒14具有超顺磁性,其在人体组织20内不均匀分布,即给人体组织20带来不均匀磁场,因而加速了H质子的自旋,缩短H质子的弛豫时间,从而,病变区域产生的磁共振信号与正常区域产生的磁共振信号更加明显地区别开来,即具有影像对比增强作用。
可以理解的是,中空碳纳米球12也可以由其它形态的中空碳纳米微粒,例如碳纳米管片断所取代。必要时,该碳纳米管片断可以进行一端封口或两端封口,而如果需要依靠注射液的方式输入人体组织内,该碳纳米管片断可以经过一些高分子修饰。
对在本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思做出其它各种相应的改变和变形,而所有这些改变和变形都应属在本发明权利要求的保护范围。

Claims (10)

1.一种磁共振成像对比剂,其特征在于,其包括:多个中空碳纳米微粒,以及分别填充在该多个中空碳纳米微粒内部的含铁纳米微粒。
2.如权利要求1所述的磁共振成像对比剂,其特征在于,所述中空碳纳米微粒为中空碳纳米球。
3.如权利要求2所述的磁共振成像对比剂,其特征在于,所述中空碳纳米球外径在100纳米至2000纳米之间。
4.如权利要求2所述的磁共振成像对比剂,其特征在于,所述中空碳纳米球外径在200纳米至1000纳米之间。
5.如权利要求1所述的磁共振成像对比剂,其特征在于,所述中空碳纳米微粒为碳纳米管片断。
6.如权利要求5所述的磁共振成像对比剂,其特征在于,所述碳纳米管片断一端封口或两端封口。
7.如权利要求1所述的磁共振成像对比剂,其特征在于,所述含铁纳米微粒为铁单质或铁化合物。
8.如权利要求7所述的磁共振成像对比剂,其特征在于,所述铁化合物为铁氧化物。
9.如权利要求1所述的磁共振成像对比剂,其特征在于,所述磁性微粒的粒径在10纳米至500纳米之间。
10.如权利要求1所述的磁共振成像对比剂,其特征在于,所述磁性微粒的粒径在20纳米至200纳米之间。
CNA2007102013472A 2007-08-13 2007-08-13 磁共振成像对比剂 Pending CN101366952A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNA2007102013472A CN101366952A (zh) 2007-08-13 2007-08-13 磁共振成像对比剂
US11/946,447 US20090047220A1 (en) 2007-08-13 2007-11-28 Contrast medium for administration to a patient for magnetic resonance imaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2007102013472A CN101366952A (zh) 2007-08-13 2007-08-13 磁共振成像对比剂

Publications (1)

Publication Number Publication Date
CN101366952A true CN101366952A (zh) 2009-02-18

Family

ID=40363126

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007102013472A Pending CN101366952A (zh) 2007-08-13 2007-08-13 磁共振成像对比剂

Country Status (2)

Country Link
US (1) US20090047220A1 (zh)
CN (1) CN101366952A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891897A (zh) * 2010-07-16 2010-11-24 江苏大学 顺磁性聚膦腈纳米管磁共振成像对比剂的制备方法
CN102370995A (zh) * 2011-10-20 2012-03-14 沈阳建筑大学 具有全封闭中空结构的造影剂纳米胶囊及模板法组装工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010050644A1 (de) 2010-11-09 2012-05-10 Studiengesellschaft Kohle Mbh Verfahren zur Herstellung von mit Kohlenstoff geschützten superparamagnetischen oder magnetischen Nanosphären
WO2013135737A1 (en) * 2012-03-15 2013-09-19 Fresenius Kabi Deutschland Gmbh Compositions for dysphagia assessment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3668816B1 (ja) * 2004-12-16 2005-07-06 学校法人慶應義塾 磁気共鳴イメージング装置
US20080057001A1 (en) * 2006-05-25 2008-03-06 Xiao-Dong Sun Contrast agents for imaging

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891897A (zh) * 2010-07-16 2010-11-24 江苏大学 顺磁性聚膦腈纳米管磁共振成像对比剂的制备方法
CN101891897B (zh) * 2010-07-16 2012-07-04 江苏大学 顺磁性聚膦腈纳米管磁共振成像对比剂的制备方法
CN102370995A (zh) * 2011-10-20 2012-03-14 沈阳建筑大学 具有全封闭中空结构的造影剂纳米胶囊及模板法组装工艺

Also Published As

Publication number Publication date
US20090047220A1 (en) 2009-02-19

Similar Documents

Publication Publication Date Title
Caspani et al. Magnetic nanomaterials as contrast agents for MRI
Bai et al. Time‐dependent T1–T2 switchable magnetic resonance imaging realized by c (RGDyK) modified ultrasmall Fe3O4 nanoprobes
Norek et al. MRI contrast agents based on dysprosium or holmium
Smolensky et al. Scaling laws at the nanosize: the effect of particle size and shape on the magnetism and relaxivity of iron oxide nanoparticle contrast agents
Stephen et al. Magnetite nanoparticles for medical MR imaging
Akakuru et al. The transition from metal-based to metal-free contrast agents for T 1 magnetic resonance imaging enhancement
Lee et al. Paramagnetic inorganic nanoparticles as T1 MRI contrast agents
Rümenapp et al. Magnetic nanoparticles in magnetic resonance imaging and diagnostics
Na et al. Inorganic nanoparticles for MRI contrast agents
Sitharaman et al. Gadofullerenes and gadonanotubes: A new paradigm for high-performance magnetic resonance imaging contrast agent probes
Park et al. Highly water-dispersible PEG surface modified ultra small superparamagnetic iron oxide nanoparticles useful for target-specific biomedical applications
Lee et al. Magnetic nanoparticles for multi-imaging and drug delivery
Patel et al. The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents
Sitharaman et al. Gadonanotubes as new high-performance MRI contrast agents
Shokrollahi et al. Magnetic resonance imaging by using nano-magnetic particles
Shao et al. A novel one‐step synthesis of Gd3+‐incorporated mesoporous SiO2 nanoparticles for use as an efficient MRI contrast agent
Ahmad et al. Ni-Fe2O4 nanoparticles as contrast agents for magnetic resonance imaging
JP2011046735A (ja) 磁性粒子の空間分布を決める方法及び磁性粒子を投与する組成物
Moradi et al. Magnetite/dextran-functionalized graphene oxide nanosheets for in vivo positive contrast magnetic resonance imaging
Zheng et al. TbF 3 nanoparticles as dual-mode contrast agents for ultrahigh field magnetic resonance imaging and X-ray computed tomography
Matson et al. Nanotechnology and MRI contrast enhancement
Calucci et al. Boron nitride nanotubes as T 2-weighted MRI contrast agents
Clavijo‐Jordan et al. Principles and emerging applications of nanomagnetic materials in medicine
Meledandri et al. Low field magnetic resonance techniques in the development of nanomaterials for biomedical applications
Liu et al. Renal-clearable zwitterionic conjugated hollow ultrasmall Fe 3 O 4 nanoparticles for T 1-weighted MR imaging in vivo

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20090218