CN101363903B - 一种利用铁磁性纳米环巨磁电阻效应的磁场传感器 - Google Patents

一种利用铁磁性纳米环巨磁电阻效应的磁场传感器 Download PDF

Info

Publication number
CN101363903B
CN101363903B CN2008102223121A CN200810222312A CN101363903B CN 101363903 B CN101363903 B CN 101363903B CN 2008102223121 A CN2008102223121 A CN 2008102223121A CN 200810222312 A CN200810222312 A CN 200810222312A CN 101363903 B CN101363903 B CN 101363903B
Authority
CN
China
Prior art keywords
magnetic field
ring
nano
ferromagnetic
field sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008102223121A
Other languages
English (en)
Other versions
CN101363903A (zh
Inventor
潘礼庆
向睿
阴津华
徐美
黄筱玲
田跃
侯志坚
邱红梅
赵雪丹
秦良强
王凤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN2008102223121A priority Critical patent/CN101363903B/zh
Publication of CN101363903A publication Critical patent/CN101363903A/zh
Application granted granted Critical
Publication of CN101363903B publication Critical patent/CN101363903B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

本发明提供了一种利用铁磁性纳米环巨磁电阻效应的磁场传感器,属于磁性纳米传感器技术领域。该传感器由在基片上制备的纳米尺寸的铁磁性纳米环以及一组引线组成,在环的两端连接的这组引线同时作为恒流源接线和电压测量接线,铁磁性纳米环的外径D的范围在7纳米到10微米之间,内径d小于外径D,环宽范围在5纳米到1微米之间,纳米环的厚度在1纳米到500纳米之间。该传感器利用铁磁性纳米环在外磁场作用下,其电阻的巨大变化来探测外磁场的变化,制作非常简单,输出信号大,响应快速,特别适合于检测磁场变化的阈值,在磁场转变点的磁场灵敏度极高,可达2-10%/Oe或更高,同时该传感器还可作为磁存储单元。

Description

一种利用铁磁性纳米环巨磁电阻效应的磁场传感器
技术领域
本发明属于磁性纳米传感器技术领域,特别涉及一种使用铁磁性纳米环结构材料的磁场检测传感器。
背景技术
磁场检测是磁测量中的重要方面之一,在国民经济中有着广泛的应用,如信息工业中磁记录读出头,航海中地磁方位的测量,飞行器上磁场方位的测量,石油勘探中的地磁大小和方位的测量,工业生产中漏磁、剩磁的测量,冶金、航空工业中产品质量的无损检测,弱磁防伪技术中的应用等,现有的技术中主要采用各向异性磁电阻材料,如NiFe、NiCo等金属薄膜材料,自从1988年以来,随着研究工作的深入,各种新型磁电阻材料不断涌现,如金属多层膜巨磁电阻材料,自旋阀磁电阻材料,颗粒膜巨磁电阻材料,磁隧道结磁电阻材料等都有各自的特点。
目前使用较多的磁传感器有各向异性磁电阻传感器、自旋阀巨磁电阻传感器、磁隧道结巨磁电阻传感器等,各向异性磁电阻传感器由于材料磁电阻小,输出信号小,噪声较大;自旋阀巨磁电阻传感器的磁场灵敏度较各向异性磁电阻传感器有显著的提高,可达到1%/Oe,但总的磁电阻变化只有2-5%,输出信号幅度也不大;而磁隧道结巨磁电阻传感器相比前面两种传感器,其制备技术要求更高,需要制备1个纳米的超薄、均匀的绝缘层,并且大批量生产时难以保证其一致性。
发明内容
本发明的目的在于采用巨磁电阻材料的铁磁性纳米环,该材料在外磁场作用下,其电阻发生变化,从而导致纳米环两端的电压变化,通过检测纳米环两端的电压变化,将磁场信号转换成电信号,达到检测外磁场变化的目的,并且提高磁场传感器的磁电阻变化和磁场灵敏度,使制备更加简单。
本发明磁场传感器由在基片5上制备的纳米尺寸的铁磁性纳米环1以及一组引线4和4’组成;在环的两端连接的这组引线4和4’同时作为恒流源接线2和电压测量接线3;铁磁性纳米环1的几何尺寸是:外径D的范围在7纳米到10微米之间,内径d小于外径D,环宽(=D/2-d/2)范围在5纳米到1微米之间,纳米环的厚度在1纳米到500纳米之间。
所述铁磁性纳米环1材料包括铁、钴、镍单质铁磁性金属中的一种;或是以铁、钴、镍为基的铁磁性合金材料中的一种;或是铁磁性氧化物中的一种。
所述引线4和4’材料包括导电性良好的金、银、铜、铝等非磁性金属材料,或非磁性金属合金材料。
所述基片5材料包括非磁性的绝缘体材料。
所述磁场传感器所检测的外磁场范围:0.1毫特斯拉~1特斯拉的外磁场。
本发明设计的磁性纳米环为结构单元的磁场传感器的工作原理如下:
铁磁性纳米环在外磁场作用下,会发生在磁涡旋态和磁双畴态之间的转换,从而会引起纳米环的电阻发生显著变化,如果在纳米环直径的两端点各连接一个电极,在两电极之间施加电流I,并探测相应电压V,在外磁场作用下,输出电压信号就会发生有规律的变化。纳米环在外磁场作用下达到磁化饱和时,纳米环处于磁化双畴态,电阻为一定值;随着外场的减小,纳米环的面内磁矩发生偏转,形成特殊的磁化涡旋态,磁电阻显著减小,产生一个台阶式的变化,在外磁场进一步减小最后达到反向饱和时,纳米环磁化状态变为朝向反向磁场方向的双畴态,磁电阻又跳变到最初值。该传感器利用探测纳米环两端电压的变化从而检测出外场大小的变化,二者是一一对应关系。
本发明的优点在于:该传感器制作非常简单,输出信号大,响应快速,特别适合于检测磁场变化的阈值,在磁场转变点的磁场灵敏度极高。同时该传感器还可作为磁存储单元,涡旋态和双畴态分别作为记录单元的“0”和“1”。与现有磁场传感器相比,本发明的磁场传感器磁电阻变化大,磁场灵敏度高,可达2-10%/Oe或更高。
附图说明
图1铁磁性纳米环磁场传感器示意图。1表示铁磁性纳米环,D表示纳米环外径,d表示纳米环内径,2表示用于恒流源的接线,3表示用于电压测量的接线,4和4’表示用于测量的引出线及接点,5表示基片,H表示外磁场方向。
图2纳米环中的磁涡旋态示意图,图中箭头表示磁矩方向。
图3纳米环中的磁双畴态示意图,图中箭头表示磁矩方向。
图4该纳米环传感器电阻随外磁场变化曲线。图中箭头表示纳米环中的磁矩方向。
具体实施方式
实施例1
在石英玻璃基片上制作由钴铁合金铁磁性纳米环和铜测量引线构成的磁场传感器。
第一步,先选取石英玻璃基片5,切割成长10mm、宽10mm、厚0.5mm大小,用丙酮超声波清洗后,用去离子水超声波清洗,最后用无水乙醇超声波清洗干净,用高纯氮气吹干备用;第二步,准备在基片上制备钴铁合金铁磁性纳米环1,将基片放到磁控溅射镀膜设备的镀膜室内,把镀膜室抽到2×10-5帕斯卡的真空度,用磁控溅射方法在基片上沉积40纳米厚的钴铁合金薄膜,工作气体为0.8帕斯卡的氩气,随后取出,用光刻胶涂敷在沉积的薄膜上,用电子束曝光,产生附图1中的纳米环形状(纳米环的外径为300纳米,内径为240纳米,环宽30纳米,纳米环的厚度40纳米),将未曝光部分洗掉,留下纳米环形状的光刻胶覆盖区域,用Ar离子束刻蚀,形成钴铁合金铁磁性纳米环1,再除去表面覆盖的光刻胶;第三步,在前述纳米环直径两端制作引线接点,将上述形成的钴铁合金纳米环涂敷光刻胶(与前面所用的相反),用电子束曝光,产生如图1中引线及接点形状4和4’,引线长100微米mm,宽1微米,接点大小为100微米×100微米的正方形,将曝光部分洗掉,放进镀膜室沉积100纳米厚的铜薄膜,工作室条件与前相同,随后取出,再除去表面覆盖的光刻胶,即可得到如图1所示的纳米环及引线结构(具体尺寸未按示意图比例)。测试用电流表和电压表的两端分别接在两个方形铜接点上,这样在石英基片上形成的钴铁合金纳米环以及铜引线及接点就构成了用于外磁场测量的磁场传感器。
采用上述相同制备步骤得到钴铁合金铁磁性纳米环,纳米环外径D为300纳米,内径d为240纳米,环宽30纳米,纳米环的厚度40纳米。在环的两端连接的这组引线4和4’同时作为恒流源接线2和电压测量接线3。
由图4可知,钴铁合金铁磁性纳米环在外磁场作用下,会发生在磁涡旋态(见图2)和磁双畴态(见图3)之间的转换,从而会引起纳米环的电阻发生台阶式的显著变化,磁场灵敏度高可达2-10%/Oe,特别适合判别外磁场是否达到某个阈值。
实施例2
在单晶硅基片上制作由钴金属磁性纳米环和铜金合金测量引线构成的磁场传感器。
第一步,先选取单晶硅基片5,切割成长10mm、宽10mm、厚0.5mm大小,用丙酮超声波清洗后,用去离子水超声波清洗,最后用无水乙醇超声波清洗干净,用高纯氮气吹干备用;第二步,准备在基片上制备钴金属铁磁性纳米环1,将基片放到磁控溅射镀膜设备的镀膜室内,把镀膜室抽到2×10-5帕斯卡的真空度,用磁控溅射方法在基片上沉积40纳米厚的钴金属薄膜,工作气体为0.8帕斯卡的氩气,随后取出,用光刻胶涂敷在沉积的薄膜上,用电子束曝光,产生附图1中的纳米环形状(纳米环的外径为300纳米,内径为240纳米,环宽30纳米,纳米环的厚度40纳米),将未曝光部分洗掉,留下纳米环形状的光刻胶覆盖区域,用Ar离子束刻蚀,形成钴金属铁磁性纳米环1,再除去表面覆盖的光刻胶;第三步,在前述纳米环直径两端制作引线接点,将上述形成的钴金属纳米环涂敷光刻胶(与前面所用的相反),用电子束曝光,产生如图1中引线及接点形状4和4’,引线长100微米mm,宽1微米,接点大小为100微米×100微米的正方形,将曝光部分洗掉,放进镀膜室沉积100纳米厚的铜金合金薄膜,工作室条件与前相同,随后取出,再除去表面覆盖的光刻胶,即可得到如图1所示的纳米环及引线结构(具体尺寸未按示意图比例)。测试用电流表和电压表的两端分别接在两个方形铜金合金接点上,这样在单晶硅基片上形成的钴金属纳米环以及铜金合金引线及接点就构成了用于外磁场测量的磁场传感器。
采用上述制备步骤得到钴金属铁磁性纳米环,纳米环外径D为300纳米,内径d为240纳米,环宽30纳米,纳米环的厚度40纳米。在环的两端连接的这组引线4和4’同时作为恒流源接线2和电压测量接线3。
由图4可知,钴金属铁磁性纳米环在外磁场作用下,会发生在磁涡旋态(见图2)和磁双畴态(见图3)之间的转换,从而会引起纳米环的电阻发生台阶式的显著变化,磁场灵敏度高可达2-10%/Oe,特别适合判别外磁场是否达到某个阈值。
实施例3
在单晶硅基片上制作由二氧化铬铁磁性纳米环和铜锌合金测量引线构成的磁场传感器。
第一步,先选取单晶硅基片5,切割成长10mm、宽10mm、厚0.5mm大小,用丙酮超声波清洗后,用去离子水超声波清洗,最后用无水乙醇超声波清洗干净,用高纯氮气吹干备用;第二步,准备在基片上制备二氧化铬铁磁性纳米环1,将基片放到脉冲激光镀膜设备的镀膜室内,把镀膜室抽到1×10-7帕斯卡的真空度,用脉冲激光照射铬靶,通入400mTorr的氧气,在基片上沉积40纳米厚的二氧化铬薄膜,随后取出,用光刻胶涂敷在沉积的薄膜上,用电子束曝光,产生附图1中的纳米环形状(纳米环的外径为300纳米,内径为240纳米,环宽30纳米,纳米环的厚度40纳米),将未曝光部分洗掉,留下纳米环形状的光刻胶覆盖区域,用Ar离子束刻蚀,形成二氧化铬铁磁性纳米环1,再除去表面覆盖的光刻胶;第三步,在前述纳米环直径两端制作引线接点,将上述形成的二氧化铬纳米环涂敷光刻胶(与前面所用的相反),用电子束曝光,产生如图1中引线及接点形状4和4’,引线长100微米mm,宽1微米,接点大小为100微米×100微米的正方形,将曝光部分洗掉,放进磁控溅射镀膜室沉积100纳米厚的铜锌合金薄膜,工作室条件与前相同,随后取出,再除去表面覆盖的光刻胶,即可得到如图1所示的纳米环及引线结构(具体尺寸未按示意图比例)。测试用电流表和电压表的两端分别接在两个方形铜锌接点上,这样在单晶硅基片上形成的二氧化铬铁磁性纳米环以及铜锌合金引线及接点就构成了用于外磁场测量的磁场传感器。
采用上述制备步骤得到二氧化铬铁磁性纳米环,纳米环外径D为300纳米,内径d为240纳米,环宽30纳米,纳米环的厚度40纳米。在环的两端连接的这组引线4和4’同时作为恒流源接线2和电压测量接线3。
由图4可知,二氧化铬铁磁性纳米环在外磁场作用下,会发生在磁涡旋态(见图2)和磁双畴态(见图3)之间的转换,从而会引起纳米环的电阻发生台阶式的显著变化,磁场灵敏度高可达2-10%/Oe,特别适合判别外磁场是否达到某个阈值。
引线及接点的形状不受上述实施例的限制。

Claims (5)

1.一种利用铁磁性纳米环巨磁电阻效应的磁场传感器,其特征在于:磁场传感器由在基片(5)上制备的纳米尺寸的铁磁性纳米环(1)以及一组引线一(4)和引线二(4’)组成;在环的两端连接的这组引线一(4)和引线二(4’)同时作为恒流源接线(2)和电压测量接线(3);铁磁性纳米环(1)外径D的范围在7纳米到10微米之间,内径d小于外径D,环宽范围在5纳米到1微米之间,纳米环的厚度在1纳米到500纳米之间。
2.如权利要求1所述的磁场传感器,其特征在于:所述铁磁性纳米环(1)材料为铁磁性金属铁、钴、镍中的一种;或是以铁、钴、镍为基的铁磁性合金材料中的一种;或是铁磁性氧化物中的一种。
3.如权利要求1所述的磁场传感器,其特征在于:所述引线一(4)和引线二(4’)材料为非磁性金属金、银、铜、铝,或非磁性金属合金材料。
4.如权利要求1所述的磁场传感器,其特征在于:所述基片(5)材料为非磁性的绝缘体材料。
5.权利要求1所述的磁场传感器的用途,其特征在于:检测的外磁场范围为0.1毫特斯拉~1特斯拉的外磁场。
CN2008102223121A 2008-09-16 2008-09-16 一种利用铁磁性纳米环巨磁电阻效应的磁场传感器 Expired - Fee Related CN101363903B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008102223121A CN101363903B (zh) 2008-09-16 2008-09-16 一种利用铁磁性纳米环巨磁电阻效应的磁场传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008102223121A CN101363903B (zh) 2008-09-16 2008-09-16 一种利用铁磁性纳米环巨磁电阻效应的磁场传感器

Publications (2)

Publication Number Publication Date
CN101363903A CN101363903A (zh) 2009-02-11
CN101363903B true CN101363903B (zh) 2011-05-18

Family

ID=40390376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008102223121A Expired - Fee Related CN101363903B (zh) 2008-09-16 2008-09-16 一种利用铁磁性纳米环巨磁电阻效应的磁场传感器

Country Status (1)

Country Link
CN (1) CN101363903B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748477B (zh) * 2011-08-18 2016-03-16 西门子公司 用于设备组成部分的状态监控的装置和方法
CN104426245B (zh) * 2013-08-29 2017-03-15 海尔集团技术研发中心 无线供电方法、供电装置及供电系统
CN105152226B (zh) * 2015-08-21 2017-05-10 浙江师范大学 磁性纳米环微波吸收剂的制备与应用
CN105845823B (zh) * 2016-04-04 2018-10-09 兰州大学 一种磁性器件及制备方法
CN111162163B (zh) * 2020-01-03 2023-04-18 大连民族大学 一种一维磁涡旋链的构筑方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1755387A (zh) * 2004-09-28 2006-04-05 雅马哈株式会社 利用巨磁致电阻元件的磁传感器及其制造方法
CN1794003A (zh) * 2005-11-02 2006-06-28 吉林大学珠海学院 巨磁阻抗磁场传感器
EP1814172A1 (en) * 2006-01-27 2007-08-01 IEE International Electronics & Engineering S.A.R.L. Magnetic field sensing element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1755387A (zh) * 2004-09-28 2006-04-05 雅马哈株式会社 利用巨磁致电阻元件的磁传感器及其制造方法
CN1794003A (zh) * 2005-11-02 2006-06-28 吉林大学珠海学院 巨磁阻抗磁场传感器
EP1814172A1 (en) * 2006-01-27 2007-08-01 IEE International Electronics & Engineering S.A.R.L. Magnetic field sensing element

Also Published As

Publication number Publication date
CN101363903A (zh) 2009-02-11

Similar Documents

Publication Publication Date Title
CN102270736B (zh) 一种用于磁敏传感器的磁性纳米多层膜及其制造方法
CN101363903B (zh) 一种利用铁磁性纳米环巨磁电阻效应的磁场传感器
CN105866715B (zh) 一种线性各向异性磁阻传感器的制备方法
US9557392B2 (en) Integrated magnetometer and its manufacturing process
CN112082579B (zh) 宽量程隧道磁电阻传感器及惠斯通半桥
CN100593122C (zh) 一种平面集成的三维磁场传感器及其制备方法和用途
CN205861754U (zh) 一种无需置位和复位装置的各向异性磁电阻电流传感器
WO2021036867A1 (zh) 一种基于电隔离隧道磁阻敏感元件的氢气传感器
CN105449096A (zh) 磁性薄膜结构及其制造、使用方法和磁敏传感单元、阵列
CN110176534A (zh) 测量范围可调的隧道结磁电阻传感器及其制备方法
CN109545956A (zh) 一种电压可调控的各向异性磁阻传感器及其制备方法
CN1955754B (zh) 用于检测物理量、特别是磁场的薄膜器件及相应检测方法
CN110412081B (zh) 一种稀土(re)-过渡族金属(tm)合金中非共线反铁磁耦合原子磁矩间夹角测量方法
KR20050053716A (ko) 메모리 소자 및 메모리 장치
CN1921003A (zh) 一种基于纳米晶软磁薄膜的磁三明治材料及其制备方法
Mouchot et al. Magnetoresistive sensors based on Ni/sub 81/Fe/sub 19//Ag multilayers
CN101692480B (zh) 一种提高Co/Cu/NiFe/FeMn自旋阀结构多层膜结构中偏置场稳定性的方法
CN100487938C (zh) 基于单层膜或多层膜纳米磁电子器件的无掩模制备方法
CN106129244A (zh) L10‑MnGa或MnAl基宽线性响应磁敏传感器及制备方法
CN100585898C (zh) 一种提高CoFe/Cu/CoFe/IrMn自旋阀结构多层膜结构中偏置场稳定性的方法
CN104851974B (zh) 一种具有整流磁电阻效应的磁传感器及其制备方法与应用
Zhou et al. Tunneling magnetoresistance (TMR) materials and devices for magnetic sensors
CN1248325C (zh) 隧道效应磁电阻器件及制备方法
CN101692375A (zh) 一种提高CoFe/AlOx/CoFe/IrMn自旋阀结构多层膜结构中偏置场稳定性的方法
CN2556792Y (zh) 隧道效应磁电阻器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110518

Termination date: 20130916