CN101355547A - 一种媒体接入控制专用信道数据包大小的配置方法及装置 - Google Patents

一种媒体接入控制专用信道数据包大小的配置方法及装置 Download PDF

Info

Publication number
CN101355547A
CN101355547A CNA2007101194057A CN200710119405A CN101355547A CN 101355547 A CN101355547 A CN 101355547A CN A2007101194057 A CNA2007101194057 A CN A2007101194057A CN 200710119405 A CN200710119405 A CN 200710119405A CN 101355547 A CN101355547 A CN 101355547A
Authority
CN
China
Prior art keywords
mac
size
pdu
pdu size
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101194057A
Other languages
English (en)
Other versions
CN101355547B (zh
Inventor
王伟华
赵春华
成建敏
刘壮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TD Tech Ltd
Original Assignee
TD Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TD Tech Ltd filed Critical TD Tech Ltd
Priority to CN2007101194057A priority Critical patent/CN101355547B/zh
Publication of CN101355547A publication Critical patent/CN101355547A/zh
Application granted granted Critical
Publication of CN101355547B publication Critical patent/CN101355547B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种媒体接入控制专用信道数据包(MAC-d PDU)大小的配置方法,包括:预先获取各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率;根据用户设备(UE)的高速下行共享信道物理层能力等级,及所述能力等级下各MAC-d PDU大小对应的传输效率的高低信息,为UE选择一种传输效率高的MAC-d PDU大小进行配置。此外,本发明还公开了一种MAC-d PDU大小的配置装置,本发明中的方案能够提高传输效率。

Description

一种媒体接入控制专用信道数据包大小的配置方法及装置
技术领域
本发明涉及通信领域中的高速下行分组接入(HSDPA)系统,尤其涉及HSDPA系统中一种媒体接入控制专用信道(MAC-d)数据包大小的配置方法及装置。
背景技术
在通信领域中,将进入每个子层未被处理的数据称为服务数据单元(SDU),将经过子层处理后形成特定格式的数据称为协议数据单元(PDU),同时,本层形成的PDU即为下一层的SDU。
HSDPA在基站(Node-B)侧的媒体接入控制(MAC)层新增了MAC-hs实体,增加MAC-hs实体后HSDPA的下行数据处理过程大致为:无线网络控制器(RNC)在RLC层将RLC SDU进行处理后添加RLC头部,构成RLCPDU,然后将其映射到MAC-d子层的MAC-d SDU,在MAC-d子层,对所接收的MAC-d SDU进行处理后,构造成MAC-d PDU,然后通过RNC与Node-B之间的Iub接口,将MAC-d PDU映射给Node-B的MAC-hs子层的MAC-hs SDU;Node-B中的MAC-hs子层将MAC-hs SDU进行处理后,添加MAC-hs头部,构造成MAC-hs PDU。
为了在高速下行共享传输信道(HS-DSCH)上传输分组,目前的第三代合作组织(3GPP)技术规范文档中定义了HS-DSCH的传输块(TB)的大小,即MAC-hs PDU的大小,并且针对不同的HS-DSCH物理层能力等级(即表示用户设备(UE)具备的HS-DSCH传输中的不同能力,简称HS能力等级),定义了不同的TB大小集合,如表1(a)至表1(c)所示,表1(a)至表1(c)示出了协议25.321中对TDD LCR系统所制定的UE的HS能力等级与TB大小集合的对应关系表。
表1(a)为UE的HS能力等级在[1,6]区间范围内时所对应的TB大小集合的关系表:
 TB索引(k)   TB大小[bits]  TB索引(k)   TB大小[bits]  TB索引(k)   TB大小[bits]  TB索引(k)   TB大小[bits]
  0   NULL   16   543   32   1297   48   3100
  1   240   17   573   33   1370   49   3274
  2   253   18   605   34   1446   50   3457
  3   267   19   639   35   1527   51   3650
  4   282   20   675   36   1613   52   3854
  5   298   21   712   37   1703   53   4070
  6   315   22   752   38   1798   54   4298
  7   332   23   794   39   1899   55   4538
  8   351   24   839   40   2005   56   4792
  9   370   25   886   41   2118   57   5060
  10   391   26   936   42   2236   58   5344
  11   413   27   988   43   2361   59   5643
  12   436   28   1043   44   2493   60   5958
  13   461   29   1102   45   2633   61   6292
  14   487   30   1163   46   2780   62   6644
  15   514   31   1228   47   2936   63   7008
表1(a)
表1(b)为UE的HS能力等级在[7,12]区间范围内时所对应的TB大小集合的关系表:
 TB索引(k)   TB大小[bits]  TB索引(k)   TB大小[bits]  TB索引(k)   TB大小[bits]  TB索引(k)   TB大小[bits]
  0   NULL   16   594   32   1564   48   4118
  1   240   17   631   33   1662   49   4375
  2   254   18   671   34   1766   50   4648
  3   270   19   712   35   1876   51   4938
  4   287   20   757   36   1993   52   5246
  5   305   21   804   37   2117   53   5573
  6   324   22   854   38   2249   54   5920
  7   344   23   908   39   2389   55   6289
  8   366   24   964   40   2538   56   6681
  9   389   25   1024   41   2697   57   7098
  10   413   26   1088   42   2865   58   7541
  11   439   27   1156   43   3043   59   8011
  12   466   28   1228   44   3233   60   8510
  13   495   29   1305   45   3435   61   9041
  14   526   30   1386   46   3649   62   9605
  15   559   31   1473   47   3877   63   10204
表1(b)
表1(c)为UE的HS能力等级在[13,15]区间范围内时所对应的TB大小集合的关系表:
 TB索引(k)   TB大小[bits]  TB索引(k)   TB大小[bits]  TB索引(k)   TB大小[bits]  TB索引(k)   TB大小[bits]
  0   NULL   16   642   32   1836   48   5250
  1   240   17   686   33   1961   49   5606
  2   256   18   732   34   2094   50   5987
  3   273   19   782   35   2236   51   6393
  4   292   20   835   36   2388   52   6827
  5   312   21   892   37   2550   53   7290
  6   333   22   952   38   2723   54   7785
  7   355   23   1017   39   2908   55   8313
  8   380   24   1086   40   3105   56   8877
  9   405   25   1160   41   3316   57   9479
  10   433   26   1238   42   3541   58   10123
  11   462   27   1322   43   3781   59   10809
  12   494   28   1412   44   4037   60   11543
  13   527   29   1508   45   4311   61   12326
  14   563   30   1610   46   4604   62   13162
  15   601   31   1719   47   4916   63   14043
表1(c)
其中,MAC-hs PDU的大小是根据无线信道的状态动态变化的,无线信道状态越好(比如衰减小、干扰少或多径少),MAC-hs PDU就越大,信道带宽就越大,而每次UE接入并建立无线承载时,MAC-d PDU的大小通常被预先配置为一种,并且通常在接入过程中固定不变。因此,上述HSDPA的下行数据处理过程中,在HLC层构造RLC PDU时,通常是根据MAC-dPDU的大小,对大的RLC SDU进行分割,或对小的SDU进行聚合或填充空白数据,之后添加RLC头部后构成RLC PDU;而在MAC-d子层构造MAC-d PDU时,不再对MAC-d SDU进行分割或聚合,而直接构造成MAC-dPDU;在MAC-hs子层构造MAC-hs PDU时,只进行MAC-d PDU的聚合传输,而不将MAC-d PDU进行分割。此时,如果无线信道状态越好,MAC-hsPDU就越长,就可以聚合越多的MAC-hs SDU,即MAC-hs子层根据当前能够传输的MAC-hs PDU大小对MAC-hs SDU进行聚合,当聚合MAC-hs SDU后未占满当前MAC-hs PDU在表1(a)至表1(c)中所规定的大小时,则填充空白数据。
由上述描述可以看出:当RLC层没有合适的RLC SDU构造RLC PDU时,需要填充无用的空白数据;当MAC-hs子层没有合适的MAC-d PDU对应的MAC-hs SDU聚合成MAC-hs PDU时,也需要填充无用的空白数据。而空白数据对于系统而言是无效数据,如果空白数据的填充位过多,将大大影响传输效率。现有技术中,MAC-d PDU大小的配置是沿用专用信道(DCH)系统的配置方法来配置的,即对于各HS能力等级下,一般都将MAC-d PDU的大小配置为336,可见,这种方法中没有考虑传输效率的问题,使得传输效率较低。
发明内容
有鉴于此,本发明中一方面提供一种MAC-d数据包大小的配置方法,另一方面提供一种MAC-d数据包大小的配置装置,以便提高传输效率。
本发明所提供的MAC-d数据包大小的配置方法,预先获取各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率;该方法包括:
根据用户设备UE的高速下行共享信道物理层能力等级,及所述能力等级下各MAC-d PDU大小对应的传输效率的高低信息,为UE选择一种传输效率高的MAC-d PDU大小进行配置。
其中,所述各MAC-d PDU大小为:预设的MAC-d PDU大小集合中的各MAC-d PDU大小。
较佳地,获取各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率之后,进一步包括:按照所述传输效率由高到低或由低到高的顺序,对各高速下行共享信道物理层能力等级下的各MAC-d PDU大小进行排序,生成MAC-d PDU大小的排序表;
所述为UE选择一种传输效率高的MAC-d PDU大小为:从所述MAC-dPDU大小的排序表中为UE选择一种传输效率高的MAC-d PDU大小。
其中,所述传输效率高的MAC-d PDU大小为:在所有MAC-d PDU大小中传输效率最高的MAC-d PDU大小;
或者为:在预设的MAC-d PDU大小的区间内传输效率最高的MAC-d PDU大小。
其中,所述获取各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率为:根据各MAC-d PDU大小及各高速下行共享信道物理层能力等级下所用的媒体接入控制共享信道数据包MAC-hs PDU大小的集合,计算得到各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率。
其中,所述根据各MAC-d PDU大小及各高速下行共享信道物理层能力等级下所用的MAC-hs PDU大小的集合,计算得到各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率为:
对各高速下行共享信道物理层能力等级下各MAC-d PDU大小,利用公式 MeanMAChs _ eff = 1 N · Σ n = 1 N MAChsSDUSize ( n ) MAChsPDUSize ( n ) MeanMAChs _ eff = 1 N · Σ n = 1 N MAChsSDUSize ( n ) + Header MAChsPDUSize ( n ) , n=1,2,...,N,计算得到当前高速下行共享信道物理层能力等级下当前MAC-dPDU大小对应的传输效率;
其中,MeanMAChs_eff为当前MAC-d PDU大小对应的传输效率;N为当前MAC-d PDU大小在当前高速下行共享信道物理层能力等级下所用的MAC-hsPDU大小的集合中最多能聚合的个数;MAChsPDUSize(n)为当前MAC-d PDU大小在聚合n个时,拥有最少空白数字填充位的MAC-hs PDU大小的集合中的元素的大小;MAChsSDUSize(n)为当前MAC-d PDU大小在聚合n个时的大小;Header为MAC-hs PDU的头部开销。
或者,所述根据各MAC-d PDU大小及各高速下行共享信道物理层能力等级下所用的MAC-hs PDU大小的集合,计算得到各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率为:
对各高速下行共享信道物理层能力等级下各MAC-d PDU大小,利用公式ρ=RLC_eff·MeanMAChs_eff式中, RLC _ eff = RLC _ Payload RLC _ PDUSize , MeanMAChs _ eff = 1 N · Σ n = 1 N MAChsSDUSize ( n ) MAChsPDUSize ( n ) MeanMAChs _ eff = 1 N · Σ n = 1 N MAChsSDUSize ( n ) + Header MAChsPDUSize ( n ) , n=1,2,...,N,计算得到当前高速下行共享信道物理层能力等级下当前MAC-dPDU大小对应的传输效率;
其中,ρ为当前MAC-d PDU大小对应的传输效率;RLC_PDUSize为与当前MAC-d PDU大小一致的RLC PDU的大小;RLC_Payload为RLC PDU中承载的净荷;N为当前MAC-d PDU大小在当前高速下行共享信道物理层能力等级下所用的MAC-hs PDU大小的集合中最多能聚合的个数;MAChsPDUSize(n)为当前MAC-d PDU大小在聚合n个时,拥有最少空白数字填充位的MAC-hs PDU大小的集合中的元素的大小;MAChsSDUSize(n)为当前MAC-d PDU大小在聚合n个时的大小;Header为MAC-hs PDU的头部开销。
本发明所提供的MAC-d数据包大小的配置装置,包括:
信息获取模块,用于获取各高速下行共享信道物理层能力等级下,各MAC-d PDU大小及其对应的传输效率的信息;
大小配置模块,用于根据用户设备UE的高速下行共享信道物理层能力等级,及信息获取模块所获取的所述能力等级下各MAC-d PDU大小对应的传输效率的高低信息,为UE选择一种传输效率高的MAC-d PDU大小进行配置。
其中,所述装置进一步包括:传输效率计算模块,用于计算各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率,并将各高速下行共享信道物理层能力等级下各MAC-d PDU大小及其对应的传输效率的信息提供给信息获取模块。
其中,所述装置为无线网络控制器RNC。
从上述方案可以看出,本发明中预先获取各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率;进行MAC-d PDU大小配置时,根据UE的高速下行共享信道物理层能力等级,及该能力等级下各MAC-d PDU大小对应的传输效率的高低信息,为UE选择一种传输效率高的MAC-d PDU大小进行配置,从而使得每次所配置的MAC-d PDU大小能够获得较高的传输效率。
附图说明
图1为本发明实施例中MAC-d数据包大小的配置方法的示例性流程图;
图2为本发明实施例中MAC-d数据包大小的配置装置的示例性结构图。
具体实施方式
本发明实施例中,为了使每次配置的MAC-d PDU大小,能够使系统获得较高的传输效率,可预先获取各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率;进行MAC-d PDU大小配置时,根据UE的高速下行共享信道物理层能力等级,及该能力等级下各MAC-d PDU大小对应的传输效率的高低信息,为UE选择一种传输效率高的MAC-d PDU大小进行配置。
进一步地,还可以按照所获取的传输效率由高到低或由低到高的顺序,对各高速下行共享信道物理层能力等级下的各MAC-d PDU大小进行排序,生成MAC-d PDU大小的排序表,进而可从所生成的MAC-d PDU大小的排序表中为UE选择一种传输效率高的MAC-d PDU大小。
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明进一步详细说明。
图1示出了本发明实施例中MAC-d数据包大小的配置方法的示例性流程图。如图1所示,该流程包括如下步骤:
步骤101,预先获取各HS能力等级下,各MAC-d PDU大小对应的传输效率。
本步骤中,各HS能力等级下各MAC-d PDU大小可以是预先设置的MAC-d PDU大小的集合中的各MAC-d PDU大小。其中,可根据实际需要设置MAC-d PDU大小的集合。例如,为了不至于使MAC-d PDU太小,以免增加RLC层处理时的负担,也为了不至于使MAC-d PDU太大,以免偏小的MAC-hs PDU无法使用,可预先设置合适的MAC-d PDU大小的集合。如,可设置MAC-d PDU大小的集合为{240,248,256,264,......,424}。
其中,传输效率的具体实现方法可有多种,如可进行仿真试验,利用各MAC-d PDU大小在RLC层对应的传输效率作为各HS能力等级下各MAC-dPDU大小对应的传输效率;或者也可利用各MAC-d PDU大小在MAC-hs层对应的传输效率作为各HS能力等级下各MAC-d PDU大小对应的传输效率;或者还可以是综合利用各MAC-d PDU大小在RLC层对应的传输效率及在MAC-hs层对应的传输效率作为各HS能力等级下各MAC-d PDU大小对应的传输效率。下面分别对上述三种方式进行详细描述:
方式一:利用各MAC-d PDU大小在RLC层对应的传输效率作为各HS能力等级下各MAC-d PDU大小对应的传输效率。
具体实现时,对各HS能力等级下各MAC-d PDU大小,可利用公式 RLC _ eff = RLC _ Payload RLC _ PDUSize , 计算得到当前高速下行共享信道物理层能力等级下当前MAC-d PDU大小对应的传输效率。
其中,RLC_eff为当前MAC-d PDU大小对应的传输效率;RLC_PDUSize为与当前MAC-d PDU大小一致的RLC PDU的大小;RLC_Payload为RLCPDU中承载的净荷。
例如:若RLC_PDUSize为336,而RLC_Payload为320,则该方式中对于当前MAC-d PDU大小为336的MAC-d PDU所对应的传输效率RLC_eff为: RLC _ eff = 320 336 .
方式二:利用各MAC-d PDU大小在MAC-hs层对应的传输效率作为各HS能力等级下各MAC-d PDU大小对应的传输效率。
具体实现时,对各HS能力等级下各MAC-d PDU大小,可利用公式 MeanMAChs _ eff = 1 N · Σ n = 1 N MAChsSDUSize ( n ) MAChsPDUSize ( n ) MeanMAChs _ eff = 1 N · Σ n = 1 N MAChsSDUSize ( n ) + Header MAChsPDUSize ( n ) , n=1,2,...,N,计算得到当前高速下行共享信道物理层能力等级下当前MAC-dPDU大小对应的传输效率。
其中,MeanMAChs_eff为当前MAC-d PDU大小对应的传输效率;N为当前MAC-d PDU大小在当前HS能力等级下所用的MAC-hs PDU大小的集合中最多能聚合的个数;MAChsPDUSize(n)为当前MAC-d PDU大小在聚合n个时,拥有最少空白数字填充位的MAC-hs PDU大小的集合中的元素的大小;MAChsSDUSize(n)为当前MAC-d PDU大小在聚合n个时的大小;Header为MAC-hs PDU的头部开销。
例如:若当前HS能力等级为15,当前MAC-d PDU大小为336,则当聚合1个大小为336的MAC-d PDU时,1×336=336,从表1(c)中可查到拥有最少空白数字填充位的MAC-hs PDU大小的集合中的元素应为355;当聚合2个大小为336的MAC-d PDU时,2×336=672,从表1(c)中可查到拥有最少空白数字填充位的MAC-hs PDU大小的集合中的元素应为686;依次类推,当聚合40个大小为336的MAC-d PDU时,40×336=13440,从表1(c)中可查到拥有最少空白数字填充位的MAC-hs PDU大小的集合中的元素应为14043;当聚合41个大小为336的MAC-d PDU时,41×336=13776,从表1(c)中可查到拥有最少空白数字填充位的MAC-hs PDU大小的集合中的元素应为14043。当聚合42个大小为336的MAC-d PDU时,42×336=14112,超出了表1(c)所示集合中元素所能聚合的范围。因此,对于HS能力等级为15,当前MAC-d PDU大小为336的情况,N为41。
而355,686,......,14043,14043分别是对应聚合1个,2个,......,40个,41个大小为366的MAC-d PDU时,拥有最少空白数字填充位的MAC-hs PDU大小的集合中的元素的大小。
另外,假设MAC-hs PDU的头部开销Header为21。
则该方式中,对于当前MAC-d PDU大小为336的MAC-d PDU所对应的传输效率MeanMAChs_eff为: MeanMAChs _ eff = 1 41 · ( 336 355 + 672 686 + · · · + 13440 14043 + 13776 14043 ) , 或者为: MeanMAChs _ eff = 1 41 · ( 336 + 21 355 + 672 + 21 686 + · · · + 13440 + 21 14043 + 13776 + 21 14043 ) .
方式三:综合利用各MAC-d PDU大小在RLC层对应的传输效率及在MAC-hs层对应的传输效率作为各HS能力等级下各MAC-d PDU大小对应的传输效率。
具体实现时,对各HS能力等级下各MAC-d PDU大小,可利用公式ρ=RLC_eff·MeanMAChs_eff式中, RLC _ eff = RLC _ Payload RLC _ PDUSize , MeanMAChs _ eff = 1 N · Σ n = 1 N MAChsSDUSize ( n ) MAChsPDUSize ( n ) MeanMAChs _ eff = 1 N · Σ n = 1 N MAChsSDUSize ( n ) + Header MAChsPDUSize ( n ) , n=1,2,...,N,计算得到当前高速下行共享信道物理层能力等级下当前MAC-dPDU大小对应的传输效率。
其中,ρ为当前MAC-d PDU大小对应的传输效率;RLC_PDUSize为与当前MAC-d PDU大小一致的RLC PDU的大小;RLC_Payload为RLC PDU中承载的净荷;N为当前MAC-d PDU大小在当前高速下行共享信道物理层能力等级下所用的MAC-hs PDU大小的集合中最多能聚合的个数;MAChsPDUSize(n)为当前MAC-d PDU大小在聚合n个时,拥有最少空白数字填充位的MAC-hs PDU大小的集合中的元素的大小;MAChsSDUSize(n)为当前MAC-d PDU大小在聚合n个时的大小;Header为MAC-hs PDU的头部开销。
例如:假设基于方式一和方式二所示例的条件,则该方式中,对于当前MAC-d PDU大小为336的MAC-d PDU所对应的传输效率ρ为: ρ = 320 336 · 1 41 · ( 336 355 + 672 686 + · · · + 13440 14043 + 13776 14043 ) , 或为: ρ = 320 336 · 1 41 · ( 336 + 21 355 + 672 + 21 686 + · · · + 13440 + 21 14043 + 13776 + 21 14043 ) .
对于上述方式二和方式三中的情况,均是根据各MAC-d PDU大小及各高速下行共享信道物理层能力等级下所用的MAC-hs PDU大小的集合,计算得到各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率。
步骤102,按照传输效率由高到低或由低到高的顺序,对各HS能力等级下的各MAC-d PDU大小进行排序,生成MAC-d PDU大小的排序表。
本步骤中,以步骤101中所设置的MAC-d PDU大小的集合为{240,248,256,264,......,424}的情况为例,若按照步骤101中所描述的方式三进行计算的话,按照所得到的传输效率由高到低排序的话,可得到如表二所示的排序表:
Figure A20071011940500151
表二
步骤103,根据UE的HS能力等级,及该能力等级下各MAC-d PDU大小对应的传输效率的高低信息,为UE选择一种传输效率高的MAC-d PDU大小进行配置。
本步骤中,可从表二中进行选取,假设UE的HS能力等级为15,则可在表二中对应HS能力等级为(13~15)的列中选取对应传输效率最高的MAC-d PDU大小424,为该UE配置MAC-d PDU的大小为424。
此外,若对MAC-d PDU的大小的范围有要求,可预先设置所需要的MAC-d PDU大小的区间,例如,若设置区间为[270,300],则从表二中可以得到该区间中对应传输效率最高的MAC-d PDU大小为304,因此可为该UE配置MAC-d PDU的大小为304。
以上对本发明实施例中MAC-d数据包大小的配置方法进行了详细描述,下面再对本发明实施例中MAC-d数据包大小的配置装置进行详细描述。
图2示出了本发明实施例中MAC-d数据包大小的配置装置的示例性结构图。如图2所示,该装置包括:信息存储模块和MAC-d PDU大小配置模块。
其中,信息获取模块,用于获取各高速下行共享信道物理层能力等级下,各MAC-d PDU大小及其对应的传输效率的信息。
大小配置模块,用于根据用户设备UE的高速下行共享信道物理层能力等级,及信息获取模块所获取的所述能力等级下各MAC-d PDU大小对应的传输效率的高低信息,为UE选择一种传输效率高的MAC-d PDU大小进行配置。
进一步地,该装置还可以包括传输效率计算模块,用于计算各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率,并将各高速下行共享信道物理层能力等级下各MAC-d PDU大小及其对应的传输效率的信息提供给信息获取模块。此外,传输效率计算模块也可位于装置之外,作为一个单独的模块而存在。
具体实现时,各模块的具体操作可以与图1所示方法流程中所描述的步骤一致。例如,传输效率计算模块可按照图1所示步骤101中描述的三种方式实现计算。
上述装置可以是RNC等控制网元。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1、一种媒体接入控制专用信道数据包MAC-d PDU大小的配置方法,其特征在于,预先获取各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率;该方法包括:
根据用户设备UE的高速下行共享信道物理层能力等级,及所述能力等级下各MAC-d PDU大小对应的传输效率的高低信息,为UE选择一种传输效率高的MAC-d PDU大小进行配置。
2、如权利要求1所述的方法,其特征在于,所述各MAC-d PDU大小为:预设的MAC-d PDU大小集合中的各MAC-d PDU大小。
3、如权利要求1所述的方法,其特征在于,获取各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率之后,进一步包括:按照所述传输效率由高到低或由低到高的顺序,对各高速下行共享信道物理层能力等级下的各MAC-d PDU大小进行排序,生成MAC-d PDU大小的排序表;
所述为UE选择一种传输效率高的MAC-d PDU大小为:从所述MAC-dPDU大小的排序表中为UE选择一种传输效率高的MAC-d PDU大小。
4、如权利要求3所述的方法,其特征在于,所述传输效率高的MAC-d PDU大小为:在所有MAC-d PDU大小中传输效率最高的MAC-d PDU大小;
或者为:在预设的MAC-d PDU大小的区间内传输效率最高的MAC-d PDU大小。
5、如权利要求1至4中任一项所述的方法,其特征在于,所述获取各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率为:根据各MAC-d PDU大小及各高速下行共享信道物理层能力等级下所用的媒体接入控制共享信道数据包MAC-hs PDU大小的集合,计算得到各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率。
6、如权利要求5所述的方法,其特征在于,所述根据各MAC-d PDU大小及各高速下行共享信道物理层能力等级下所用的MAC-hs PDU大小的集合,计算得到各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率为:
对各高速下行共享信道物理层能力等级下各MAC-d PDU大小,利用公式 MeanMAChs _ eff = 1 N · Σ n = 1 N MAChsSDUSize ( n ) MAChsPDUSize ( n ) MeanMAChs _ eff = 1 N · Σ n = 1 N MAChsSDUSize ( n ) + Header MAChsPDUSize ( n ) , n=1,2,...,N,计算得到当前高速下行共享信道物理层能力等级下当前MAC-dPDU大小对应的传输效率;
其中,MeanMAChs_eff为当前MAC-d PDU大小对应的传输效率;N为当前MAC-d PDU大小在当前高速下行共享信道物理层能力等级下所用的MAC-hsPDU大小的集合中最多能聚合的个数;MAChsPDUSize(n)为当前MAC-d PDU大小在聚合n个时,拥有最少空白数字填充位的MAC-hs PDU大小的集合中的元素的大小;MAChsSDUSize(n)为当前MAC-d PDU大小在聚合n个时的大小;Header为MAC-hs PDU的头部开销。
7、如权利要求5所述的方法,其特征在于,所述根据各MAC-d PDU大小及各高速下行共享信道物理层能力等级下所用的MAC-hs PDU大小的集合,计算得到各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率为:
对各高速下行共享信道物理层能力等级下各MAC-d PDU大小,利用公式ρ=RLC_eff·MeanMAChs_eff式中, RLC _ eff = RLC _ Payload RLC _ PDUSize , MeanMAChs _ eff = 1 N · Σ n = 1 N MAChsSDUSize ( n ) MAChsPDUSize ( n ) MeanMAChs _ eff = 1 N · Σ n = 1 N MAChsSDUSize ( n ) + Header MAChsPDUSize ( n ) , n=1,2,...,N,计算得到当前高速下行共享信道物理层能力等级下当前MAC-dPDU大小对应的传输效率;
其中,ρ为当前MAC-d PDU大小对应的传输效率;RLC_PDUSize为与当前MAC-d PDU大小一致的RLC PDU的大小;RLC_Payload为RLC PDU中承载的净荷;N为当前MAC-d PDU大小在当前高速下行共享信道物理层能力等级下所用的MAC-hs PDU大小的集合中最多能聚合的个数;MAChsPDUSize(n)为当前MAC-d PDU大小在聚合n个时,拥有最少空白数字填充位的MAC-hs PDU大小的集合中的元素的大小;MAChsSDUSize(n)为当前MAC-d PDU大小在聚合n个时的大小;Header为MAC-hs PDU的头部开销。
8、一种媒体接入控制专用信道数据包MAC-d PDU大小的配置装置,其特征在于,该装置包括:
信息获取模块,用于获取各高速下行共享信道物理层能力等级下,各MAC-d PDU大小及其对应的传输效率的信息;
大小配置模块,用于根据用户设备UE的高速下行共享信道物理层能力等级,及信息获取模块所获取的所述能力等级下各MAC-d PDU大小对应的传输效率的高低信息,为UE选择一种传输效率高的MAC-d PDU大小进行配置。
9、如权利要求8所述的装置,其特征在于,所述装置进一步包括:传输效率计算模块,用于计算各高速下行共享信道物理层能力等级下,各MAC-d PDU大小对应的传输效率,并将各高速下行共享信道物理层能力等级下各MAC-dPDU大小及其对应的传输效率的信息提供给信息获取模块。
10、如权利要求8或9所述的装置,其特征在于,所述装置为无线网络控制器RNC。
CN2007101194057A 2007-07-23 2007-07-23 一种媒体接入控制专用信道数据包大小的配置方法及装置 Expired - Fee Related CN101355547B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101194057A CN101355547B (zh) 2007-07-23 2007-07-23 一种媒体接入控制专用信道数据包大小的配置方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101194057A CN101355547B (zh) 2007-07-23 2007-07-23 一种媒体接入控制专用信道数据包大小的配置方法及装置

Publications (2)

Publication Number Publication Date
CN101355547A true CN101355547A (zh) 2009-01-28
CN101355547B CN101355547B (zh) 2011-06-15

Family

ID=40308142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101194057A Expired - Fee Related CN101355547B (zh) 2007-07-23 2007-07-23 一种媒体接入控制专用信道数据包大小的配置方法及装置

Country Status (1)

Country Link
CN (1) CN101355547B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103476063A (zh) * 2008-08-01 2013-12-25 日本电气株式会社 移动通信系统、控制设备、基站设备、系统控制方法和设备控制方法
CN107786533A (zh) * 2016-08-23 2018-03-09 宏碁股份有限公司 L2层数据包处理方法和使用该方法的电子装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1972282B (zh) * 2005-11-24 2010-11-03 上海原动力通信科技有限公司 提供多载波hsdpa后向兼容的系统和方法
CN1859037A (zh) * 2005-11-30 2006-11-08 华为技术有限公司 一种高速媒体接入控制分组数据单元的发送和接收方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103476063A (zh) * 2008-08-01 2013-12-25 日本电气株式会社 移动通信系统、控制设备、基站设备、系统控制方法和设备控制方法
US9307480B2 (en) 2008-08-01 2016-04-05 Nec Corporation Mobile communication system, control device, base station device, system control method and device control method
CN103476063B (zh) * 2008-08-01 2016-08-10 日本电气株式会社 移动通信系统、控制设备、基站设备、系统控制方法和设备控制方法
US9565121B2 (en) 2008-08-01 2017-02-07 Nec Corporation Mobile communication system, control device, base station device, system control method and device control method
US9787541B2 (en) 2008-08-01 2017-10-10 Nec Corporation Mobile communication system, control device, base station device, system control method and device control method
US10404536B2 (en) 2008-08-01 2019-09-03 Nec Corporation Mobile communication system, control device, base station device, system control method and device control method
CN107786533A (zh) * 2016-08-23 2018-03-09 宏碁股份有限公司 L2层数据包处理方法和使用该方法的电子装置
CN107786533B (zh) * 2016-08-23 2020-10-20 宏碁股份有限公司 L2层数据包处理方法和使用该方法的电子装置

Also Published As

Publication number Publication date
CN101355547B (zh) 2011-06-15

Similar Documents

Publication Publication Date Title
CN1324864C (zh) 固定大小的协议数据单元经过透明无线链路控制的传输
CN100431374C (zh) 高速下行分组接入业务用户终端在多载波小区的工作方法
CN100393174C (zh) 时分同步码分多址系统多载波高速下行分组接入实现方法
CN101026429B (zh) 为多载波用户设备分配高速下行共享信道的方法
CN107079442B (zh) 通信方法和通信设备
EP1900146B1 (en) Resource allocation method, communication system, network element, module, computer program product and computer program distribution medium
CN101189809B (zh) 经加强专用信道控制传输方法及装置
CN101198092A (zh) 实现向用户设备发送数据的方法、系统及设备
CN101355547B (zh) 一种媒体接入控制专用信道数据包大小的配置方法及装置
CN109863733B (zh) 动态指示qfi的方法和用户设备
EP4102892A1 (en) Relay communication method and related device
CN101945440B (zh) 一种数据传输处理方法和系统
EP3884586B1 (en) Control over multiple user multiple input multiple output (mu-mimo) by device type and location
CN109219968B (zh) 一种csi-rs传输方法及网络设备
CN101384072A (zh) 一种提高高速下行分组接入业务传输速率的方法
CN101127725A (zh) 信道单元调度的方法、装置和系统
CN101790192A (zh) 一种扩展tsn的方法、装置和系统
CN101578789A (zh) 发送机
CN102111212B (zh) 终端mu-mimo能力的通知方法及系统
CN102118783B (zh) 一种载波测量方法和装置
CN101420262B (zh) 一种传输速率控制方法及无线网络控制器以及用户设备
CN1756254B (zh) 无线链路控制层的分段方法
CN101365171B (zh) 一种专用信道业务传输速率调整方法及装置
CN101442776B (zh) 通过激活集更新消息传递harq进程分配信息的方法
CN101584139B (zh) 无线传送/接收单元及其可编程处理器处理数据的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110615

Termination date: 20160723

CF01 Termination of patent right due to non-payment of annual fee