CN101355304B - Circuit for reusing leakage inductance energy and flyback converter containing the circuit - Google Patents

Circuit for reusing leakage inductance energy and flyback converter containing the circuit Download PDF

Info

Publication number
CN101355304B
CN101355304B CN2007101232858A CN200710123285A CN101355304B CN 101355304 B CN101355304 B CN 101355304B CN 2007101232858 A CN2007101232858 A CN 2007101232858A CN 200710123285 A CN200710123285 A CN 200710123285A CN 101355304 B CN101355304 B CN 101355304B
Authority
CN
China
Prior art keywords
diode
switch
electric capacity
circuit
conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007101232858A
Other languages
Chinese (zh)
Other versions
CN101355304A (en
Inventor
林俊良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leadtrend Technology Corp
Original Assignee
Leadtrend Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leadtrend Technology Corp filed Critical Leadtrend Technology Corp
Priority to CN2007101232858A priority Critical patent/CN101355304B/en
Publication of CN101355304A publication Critical patent/CN101355304A/en
Application granted granted Critical
Publication of CN101355304B publication Critical patent/CN101355304B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The present invention discloses a leakage inductance energy reusing circuit and a flyback transducer with the same. The flyback transducer comprises a transformer and the leakage inductance energy reusing circuit. The leakage inductance energy reusing circuit comprises a clamp circuit, an energy storage circuit and a switch which is connected between the clamp circuit and the energy storage circuit, wherein a primary side winding of the transformer is electrically connected to a power switch. The clamp circuit is used for clamping the voltage of the power switch to a predetermined voltage. The energy storage circuit is used for storing the leakage inductance energy of the primary side winding. When the switch is turned on, the clamp circuit receives and stores the leakage inductance energy of the primary side winding of the transformer, and clamps the voltage of the power switch to be the predetermined voltage. When the switch is turned on, the energy stored in the clamp circuit is stored in the energy storage circuit via the switch.

Description

Leakage inductance energy utilizes circuit and the flyback converter with this circuit again
Technical field
The present invention relates to a kind of flyback converter, relate in particular to a kind of flyback converter that leakage inductance (leakage-inductance) energy utilizes circuit again that has.
Background technology
Figure 1 shows that existing flyback converter (flyback converter) 100, DC input voitage Vin is coupled to the first side winding Lp of transformer TX, and power switch Q1 connects with the first side winding Lp of transformer TX, and power switch Q1 is a MOS.Controller 102 output one pulse-width modulation signal is with conducting or the not conducting of power switched switch Q1, conducting by power switch Q1 or not conducting with the conversion input voltage vin to the secondary side winding Ls of transformer TX to produce output voltage V o.Sensing resistor R2 connects with the first side winding Lp of transformer TX, in order to detect first side winding electric current I p.
When power switch Q1 is subjected to the control of pulse-width modulation signal and transfers not conducting (Off) to by conducting (On), the voltage Vd of power switch Q1 drain electrode as shown in Figure 2, moment in not conducting of power switch Q1 will produce instantaneous pressure, be attended by ripple and produce, may cause power switch Q1 collapse and damage.In order to solve such problem, can one clamp (clamp) circuit be set at the first side winding Lp of transformer Tx usually.
Clamp circuit 104 is electrically connected at the first side winding Lp of transformer TX, include first resistance R 1 and first capacitor C 1 is in parallel, first resistance R 1 is connected with first end of the first side winding Lp of transformer TX with first end of first capacitor C 1, the negative electrode of the first diode D1 is connected with second end of first resistance R 1 with first capacitor C 1, and the anode of the first diode D1 is connected with second end of first side winding Lp.
When power switch Q1 is subjected to the control of pulse-width modulation signal and transfers not conducting (Off) to by conducting (On), be stored in the leakage inductance L of the first side winding Lp of transformer TX LKEnergy 1/2L LKI P 2Can be earlier to the charging of the parasitic capacitance Cds between the drain-source of power switch Q1, when treating that drain voltage Vd rises to the voltage Vc1 at first capacitor C, 1 two ends and DC input voitage Vin sum, the first diode D1 conducting, this moment the leakage inductance electric current I LLKTo 1 charging of first capacitor C, thus, the drain voltage Vd of power switch Q1 will be clamped at Vc1+Vin by clamp circuit, damage to prevent power switch Q1 collapse by the first diode D1.Next the first diode D1 transfers not conducting to because of natural resonance, leakage inductance L LKEnter resonance with the stray capacitance of circuit, energy stored in first capacitor C 1 is by 1 discharge of first resistance R, so these energy will consume in the mode of heat.
Power switch Q1 is subjected to the control of pulse-width modulation signal and conducting and not conducting periodically, and therefore above-mentioned charge and discharge process also is to repeat periodically.Owing to will dissipating in the mode of heat after the energy discharge stored in first capacitor C 1, therefore will have the inside that unnecessary heat energy accumulates on flyback converter, and stored energy slatterns virtually also in first capacitor C 1.
Summary of the invention
Technical problem to be solved by this invention is to provide circuit that a kind of leakage inductance energy utilizes again and a kind of flyback converter with circuit that leakage inductance energy utilizes again, it is in the not conducting moment of power switch, the energy of transformer leakage inductance will be stored in, convert available energy to by switch and conversion line, with the feed-in accessory power supply or be supplied to other circuit to use, with the operating voltage that reaches clamp power switch simultaneously and transfer the invalid energy to the effective energy and use, to promote the conversion efficiency of flyback converter.
For achieving the above object, the circuit that leakage inductance energy disclosed in this invention utilizes again, be applied to a flyback converter, the circuit that this leakage inductance energy utilizes again includes a clamp circuit, an energy storage circuit and a switch, wherein this first side winding of a clamp circuit and a transformer electrically connects, in order to the cross-pressure of power-limiting switch in a predetermined voltage; Switch is electrically connected between clamp circuit and the energy storage circuit, wherein when not conducting of switch, clamp circuit receives and stores the leakage inductance energy of the first side winding of transformer, and when switch conduction, the energy that is stored in the clamp circuit is discharged in the energy storage circuit via switch.
And, for achieving the above object, the invention provides a kind of flyback converter with circuit that leakage inductance energy utilizes again, described flyback converter includes a transformer, a clamp circuit, an energy storage circuit and and is connected in the switch between clamp circuit and the energy storage circuit.Transformer wherein, have a first side winding and a secondary side winding, wherein the first side winding of transformer is electrically connected with a power switch, power switch is subjected to a controller and controls, conducting that controller is exported a pulse-width modulation signal controlling power switch and not conducting, conducting by power switch or not conducting are so that flyback converter is changed a direct current input voltage is a direct current output voltage.The first side winding of clamp circuit and transformer electrically connects, in order to the cross-pressure of power-limiting switch in a predetermined voltage.Energy storage circuit is in order to store the leakage inductance energy of first side winding.Switch is electrically connected between clamp circuit and the energy storage circuit, wherein when not conducting of switch, clamp circuit receives and stores the leakage inductance energy of the first side winding of transformer, with voltage clamp to a predetermined voltage with power switch, when switch conduction, the energy that is stored in the clamp circuit is discharged in the energy storage circuit via switch.
Adopt the present invention, the first side winding Lp leakage inductance energy of transformer TX can store by energy storage circuit, and with the conversion efficiency of raising flyback converter, and the heat of minimizing flyback converter inside is to reduce temperature rise.On the other hand, the disclosed embodiment of the present invention can cooperate circuit design with stored energy integration in integrated circuit, to save outside accessory power supply.
More than about the explanation of the explanation of content of the present invention and following execution mode in order to demonstration with explain spirit of the present invention and principle, and provide claim of the present invention further to explain.According to the disclosed content of this specification, claim and accompanying drawing, those skilled in the art can understand purpose and the advantage that the present invention is correlated with easily.
Description of drawings
Fig. 1 is the disclosed flyback converter of prior art;
Fig. 2 is the drain voltage of not conducting of the power switch moment in the disclosed flyback converter of prior art;
Fig. 3 is first embodiment of the disclosed flyback converter of the present invention;
Fig. 4 is second embodiment of the disclosed flyback converter of the present invention;
Fig. 5 is second embodiment of the disclosed flyback converter of the present invention.
Wherein, Reference numeral:
100: flyback converter 102: controller
104: clamp circuit 200: flyback converter
202: controller 204: clamp circuit
206: energy storage circuit 208: energy storage circuit
210: energy storage circuit Vin: DC input voitage
TX: transformer Lp: first side winding
Ls: secondary side winding Q1: power switch
R1: first resistance R 2: sensing resistor
C1: 2: the second electric capacity of first capacitor C
Vo: output voltage Ip: first side winding electric current
D1: the first diode D2: second diode
D3: the 3rd diode D4: the 4th diode
Cds: parasitic capacitance Vd: drain voltage
Vc1: voltage SW: switch
N1: the first end N2: second end
L1: the first inductance CS: current source
LLK: leakage inductance
Embodiment
Below in execution mode, be described in detail detailed features of the present invention and advantage, its content is enough to make those skilled in the art to understand technology contents of the present invention and implements according to this, wherein said embodiment further describes the present invention, but non-to limit category of the present invention anyways.
Please refer to Fig. 3, be first embodiment of the disclosed flyback converter of the present invention.Flyback converter (flyback converter) 200 includes a transformer Tx, a clamp circuit 204, an energy storage circuit 206 and a switch SW.Clamp circuit 204 is electrically connected at the first side winding Lp of transformer TX.One end of switch SW is electrically connected at clamp circuit 204, and the other end is electrically connected at energy storage circuit 206.
Switch SW is subjected to the control of pulse-width modulation signal and conducting and not conducting periodically.In one embodiment, switch SW can be identical with the switch periods of power switch Q1, also is switch SW and synchronous conducting of power switch Q1 or not conducting.In another embodiment, switch SW is early than power switch Q1 and conducting or not conducting.In one embodiment, the pulse-width modulation signal can be by controller 202 outputs.
Include the first diode D1, the second diode D2, the 3rd diode D3 and first capacitor C 1 in the clamp circuit 204.The first diode D1, first capacitor C 1 are connected mutually with the second diode D2, and wherein first capacitor C 1 is electrically connected between the first diode D1 and the second diode D2.The negative electrode of the first diode D1 is electrically connected to the first end N1 of first side winding Lp, and the anode of the second diode D2 is electrically connected to the second end N2 of first side winding Lp.The negative electrode of the 3rd diode D3 is electrically connected between the anode and first capacitor C 1 of the first diode D1, and the anode of the 3rd diode D3 is electrically connected to earth terminal.
Energy storage circuit 206 includes one first resistance R 1 and second capacitor C 2, and both connect mutually.
In one embodiment, flyback converter 200 includes a controller 202 and a power switch Q1 in addition, and power switch Q1 connects with the first side winding Lp of transformer TX.Controller 202 is in order to export conducting or the not conducting of a pulse-width modulation signal with power switched switch Q1.DC input voitage Vin is coupled to the first side winding Lp of transformer TX, and conducting by power switch Q1 or not conducting produce output voltage V o with conversion DC input voitage Vi to the secondary side winding Ls of transformer TX.Sensing resistor R2 connects with the first side winding Lp of transformer TX, in order to detect first side winding electric current I p.
When power switch Q1 transfers not conducting to by conducting, the synchronous or specific power switch Q1 not conducting earlier of switch SW and power switch Q1.This moment, the 3rd diode D3 also was a not on-state.The leakage inductance energy that is stored in transformer Tx first side winding Lp charges to first capacitor C 1 via the second diode D2, first capacitor C 1 and formed first charge path of the first diode D1.When leakage inductance energy was stored to first capacitor C 1, the Vd of power switch Q1 also was clamped at the voltage Vc1 and the DC input voitage Vin sum at first capacitor C, 1 two ends, also is Vin+Vc1.
When power switch Q1 transferred conducting to by not conducting, this moment, the first diode D1 and the second diode D2 became not on-state.Synchronous or the specific power switch Q1 conducting earlier of switch SW and power switch Q1, this moment, the 3rd diode D3 also was in conducting state, therefore the energy that stores first capacitor C 1 can be via first resistance R, 1 formed second charge path to 2 chargings of second capacitor C, so that energy is transferred to second capacitor C 2 by first capacitor C 1.The energy that is converted to second capacitor C 2 can be used as the burden that accessory power supply used or shared auxiliary power.Thus, the leakage inductance energy of transformer Tx first side winding Lp just can not scatter and disappear and is stored in second capacitor C 2 with the form of heat energy.
Please refer to Fig. 4, be second embodiment of the disclosed flyback converter of the present invention, illustrate another embodiment of energy storage circuit 208 among the figure.Energy storage circuit 208 as shown in the figure includes first inductance L 1, second capacitor C 2 and the 4th diode D4 and forms.First inductance L 1 is connected with second capacitor C 2, and the other end of the negative electrode of the 4th diode D4 and first inductance L 1 electrically connects, and the other end of the anode of the 4th diode D4 and second capacitor C 2 electrically connects.When power switch Q1 transfers conducting to by not conducting, this moment, the first diode D1 and the second diode D2 became not on-state, this moment, the 3rd diode D3 also was in conducting state, therefore the energy that is stored in first capacitor C 1 can be via first inductance L, 1 formed second charge path to 2 chargings of second capacitor C, so that energy is transferred to second capacitor C 2 by first capacitor C 1.
Please refer to Fig. 5, be the 3rd embodiment of the disclosed flyback converter of the present invention.Illustrate another embodiment of energy storage circuit 210 among the figure.Energy storage circuit 210 as shown in the figure includes the current source CS and second capacitor C 2.When power switch Q1 transfers conducting to by not conducting, this moment, the first diode D1 and the second diode D2 became not on-state, this moment, the 3rd diode D3 also was in conducting state, therefore the energy that stores first capacitor C 1 can be via formed second charge path of current source CS to 2 chargings of second capacitor C, so that energy is transferred to second capacitor C 2 by first capacitor C 1.
The energy that is transferred to second capacitor C 2 by first capacitor C 1 can be supplied to controller 202 or other integrated circuit as power supply.Perhaps use to reduce the burden of auxiliary power as accessory power supply.
The disclosed embodiment according to the present invention, the first side winding Lp leakage inductance energy of transformer TX can store by energy storage circuit, and with the conversion efficiency of raising flyback converter, and the heat of minimizing flyback converter inside is to reduce temperature rise.On the other hand, the disclosed embodiment of the present invention can cooperate circuit design with stored energy integration in integrated circuit, to save outside accessory power supply.
Certainly; the present invention also can have other various embodiments; under the situation that does not deviate from spirit of the present invention and essence thereof; being familiar with those of ordinary skill in the art ought can make various corresponding changes and distortion according to the present invention, but these corresponding changes and distortion all should belong to the protection range of the appended claim of the present invention.

Claims (18)

1. circuit that leakage inductance energy utilizes again, be applied to a flyback converter, this flyback converter has a transformer, this transformer has a first side winding and a secondary side winding, wherein this first side winding is electrically connected to a power switch, this power switch is subjected to a controller and controls, this controller is exported the conducting and not conducting of this power switch of pulse-width modulation signal controlling, conducting by this power switch or not conducting are so that this flyback converter is changed a direct current input voltage is a direct current output voltage, it is characterized in that the circuit that this leakage inductance energy utilizes again includes:
One clamp circuit electrically connects with this first side winding of this transformer, in order to the cross-pressure that limits this power switch in a predetermined voltage;
One energy storage circuit; And
One switch, be electrically connected between this clamp circuit and this energy storage circuit, wherein when this not conducting of switch, this clamp circuit receives and stores the leakage inductance energy of this first side winding of this transformer, when this switch conduction, the energy that is stored in this clamp circuit is discharged in this energy storage circuit via this switch.
2. circuit according to claim 1, it is characterized in that, this clamp circuit includes: one first diode, one second diode, one the 3rd diode and one first electric capacity, this first diode, this first electric capacity is connected mutually with this second diode, this first electric capacity is electrically connected between this first diode and this second diode, the negative electrode of this first diode is electrically connected to first end of this first side winding, the anode of this second diode is electrically connected to second end of this first side winding, the negative electrode of the 3rd diode is electrically connected between the anode and this first electric capacity of this first diode, and the anode of the 3rd diode is electrically connected to earth terminal.
3. circuit according to claim 2 is characterized in that, this predetermined voltage is voltage and this DC input voitage sum at these first electric capacity two ends.
4. circuit according to claim 1 is characterized in that, this energy storage circuit includes one first resistance and connects mutually with one second electric capacity, and when this switch conduction, the energy that is stored in this clamp circuit is stored in this second electric capacity via this switch.
5. circuit according to claim 1, it is characterized in that, this energy storage circuit includes one first inductance, one second electric capacity and one the 4th diode and forms, it is characterized in that, one end of this first inductance and an end of this second electric capacity are connected in series, the other end of the negative electrode of the 4th diode and this first inductance electrically connects, the other end of the anode of the 4th diode and this second electric capacity electrically connects, when this switch conduction, the energy that is stored in this clamp circuit is stored in this second electric capacity via this switch.
6. circuit according to claim 1 is characterized in that, this energy storage circuit includes a current source and connects mutually with one second electric capacity, and when this switch conduction, the energy that is stored in this clamp circuit is stored in this second electric capacity via this switch.
7. circuit according to claim 1 is characterized in that, this switch is subjected to this controller and controls.
8. circuit according to claim 1 is characterized in that, the conducting of this this switch of pulse-width modulation signal controlling and not conducting.
9. circuit according to claim 1 is characterized in that, asynchronous conducting with this power switch of this switch or asynchronous not conducting.
10. the flyback converter with circuit that leakage inductance energy utilizes again is characterized in that, includes:
One transformer has a first side winding and a secondary side winding;
One power switch is electrically connected to this first side winding of this transformer, and conducting by this power switch or not conducting are so that this flyback converter is changed a direct current input voltage is a direct current output voltage;
One controller is in order to export the conducting and not conducting of a pulse-width modulation signal to control this power switch;
One clamp circuit electrically connects with this first side winding of this transformer, in order to the cross-pressure that limits this power switch in a predetermined voltage;
One energy storage circuit; And
One switch, be electrically connected between this clamp circuit and this energy storage circuit, when this not conducting of switch, this clamp circuit receives and stores the leakage inductance energy of this first side winding of this transformer, when this switch conduction, the energy that is stored in this clamp circuit is discharged in this energy storage circuit via this switch.
11. flyback converter according to claim 10, it is characterized in that, this clamp circuit includes: one first diode, one second diode, one the 3rd diode and one first electric capacity, this first diode, this first electric capacity is connected mutually with this second diode, this first electric capacity is electrically connected between this first diode and this second diode, the negative electrode of this first diode is electrically connected to first end of this first side winding, the anode of this second diode is electrically connected to second end of this first side winding, the negative electrode of the 3rd diode is electrically connected between the anode and this first electric capacity of this first diode, and the anode of the 3rd diode is electrically connected to earth terminal.
12. flyback converter according to claim 11 is characterized in that, this predetermined voltage is voltage and this DC input voitage sum at these first electric capacity two ends.
13. flyback converter according to claim 10, it is characterized in that, this energy storage circuit includes one first resistance and connects mutually with one second electric capacity, and when this switch conduction, the energy that is stored in this clamp circuit is stored in this second electric capacity via this switch.
14. flyback converter according to claim 10, it is characterized in that, this energy storage circuit includes one first inductance, one second electric capacity and one the 4th diode and forms, one end of this first inductance and an end of this second electric capacity are connected in series, the other end of the negative electrode of the 4th diode and this first inductance electrically connects, the other end of the anode of the 4th diode and this second electric capacity electrically connects, when this switch conduction, the energy that is stored in this clamp circuit is stored in this second electric capacity via this switch.
15. flyback converter according to claim 10, it is characterized in that this energy storage circuit includes a current source and connects mutually with one second electric capacity, it is characterized in that, when this switch conduction, the energy that is stored in this clamp circuit is stored in this second electric capacity via this switch.
16. flyback converter according to claim 10 is characterized in that, this switch is subjected to this controller and controls.
17. flyback converter according to claim 10 is characterized in that, the conducting of this this switch of pulse-width modulation signal controlling and not conducting.
18. flyback converter according to claim 10 is characterized in that, asynchronous conducting with this power switch of this switch or asynchronous not conducting.
CN2007101232858A 2007-07-23 2007-07-23 Circuit for reusing leakage inductance energy and flyback converter containing the circuit Expired - Fee Related CN101355304B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101232858A CN101355304B (en) 2007-07-23 2007-07-23 Circuit for reusing leakage inductance energy and flyback converter containing the circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101232858A CN101355304B (en) 2007-07-23 2007-07-23 Circuit for reusing leakage inductance energy and flyback converter containing the circuit

Publications (2)

Publication Number Publication Date
CN101355304A CN101355304A (en) 2009-01-28
CN101355304B true CN101355304B (en) 2010-06-09

Family

ID=40307941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101232858A Expired - Fee Related CN101355304B (en) 2007-07-23 2007-07-23 Circuit for reusing leakage inductance energy and flyback converter containing the circuit

Country Status (1)

Country Link
CN (1) CN101355304B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102053194B (en) * 2009-11-05 2015-01-14 上海立隆微电子有限公司 Output current sensing device and method used in primary side of flyback converter
US9000744B2 (en) 2010-07-21 2015-04-07 Fairchild Korea Semiconductor Ltd. Switch control device with zero-cross point estimation by edge detection, power supply device comprising the same, and switch control method with zero-cross point estimation by edge detection
CN103457489B (en) * 2013-09-25 2016-07-20 上海莱狮半导体科技有限公司 Switched-mode power supply system and power supply circuits thereof
CN104717784B (en) * 2013-12-13 2018-09-14 台达电子企业管理(上海)有限公司 Light source driving circuit
CN103874295B (en) * 2014-03-17 2016-06-08 杨岳毅 Single-stage type LED driving power
CN104022655A (en) * 2014-06-24 2014-09-03 上海大学 Electrolytic capacitor-free LED driving power supply based on flyback converter leakage inductance energy utilization
US10008941B1 (en) * 2016-12-22 2018-06-26 Appulse Power Inc. Auxiliary power supply for switch-mode power supplies
TWI729807B (en) * 2019-11-11 2021-06-01 立錡科技股份有限公司 Flyback power converter and active clamp snubber and overcharging protection circuit thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675796A (en) * 1985-05-17 1987-06-23 Veeco Instruments, Inc. High switching frequency converter auxiliary magnetic winding and snubber circuit
US6487094B1 (en) * 2001-10-10 2002-11-26 Koninklijke Philips Electronics N.V. High efficiency DC-DC power converter
CN1418398A (en) * 2000-11-20 2003-05-14 皇家菲利浦电子有限公司 Leakage energy recovering system and method for flyback converter
CN1636309A (en) * 2000-11-20 2005-07-06 皇家菲利浦电子有限公司 Voltage clamping system and method for a dc/dc power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675796A (en) * 1985-05-17 1987-06-23 Veeco Instruments, Inc. High switching frequency converter auxiliary magnetic winding and snubber circuit
CN1418398A (en) * 2000-11-20 2003-05-14 皇家菲利浦电子有限公司 Leakage energy recovering system and method for flyback converter
CN1636309A (en) * 2000-11-20 2005-07-06 皇家菲利浦电子有限公司 Voltage clamping system and method for a dc/dc power converter
US6487094B1 (en) * 2001-10-10 2002-11-26 Koninklijke Philips Electronics N.V. High efficiency DC-DC power converter

Also Published As

Publication number Publication date
CN101355304A (en) 2009-01-28

Similar Documents

Publication Publication Date Title
CN101355304B (en) Circuit for reusing leakage inductance energy and flyback converter containing the circuit
US7649757B2 (en) Leakage-inductance energy recycling circuit and flyback converter with leakage-inductance energy recycling circuit
TWI491153B (en) Discharge circuit and converter
US6717388B2 (en) Bidirectional converter with input voltage control by a primary switch and output voltage regulation by a secondary switch
TWI474572B (en) Power converter and voltage balancing method of input capacitor
US20070007933A1 (en) Soft-switching DC/DC converter having relatively better effectiveness
CN107733235B (en) Flyback active clamp circuit and control method thereof
CN108649792B (en) Boost circuit, switching power supply, power supply system and control method
CN103152951A (en) LED (light emitting diode) driving control circuit and driving circuit structure of LED driving control circuit
WO2022110813A1 (en) Power-down delay protection circuit and control method
TW201324071A (en) Power-factor-corrected resonant converter and parallel power-factor-corrected resonant converter
CN106961220B (en) A kind of efficient LLC resonant converter in parallel with equal properties of flow
EP4047804B1 (en) Converter and power adapter
CN103647448B (en) Integrated step-down-flyback type high power factor constant current circuit and device
CN102892239B (en) Flyback constant-current driving circuit and flyback constant-current driving control system containing flyback constant-current driving circuit
CN103269164A (en) Primary side constant current controlled quasi single-stage high power factor circuit and device
CN102611316B (en) Flyback converter controlled constant-current output circuit
CN203014666U (en) Quick start gate driving device and control module thereof
CN1479441B (en) Electric regenerative circuit and power conversion device
US20180183346A1 (en) Active clamp circuit for switched mode power supplies
CN112311239B (en) Voltage conversion device
CN203352471U (en) Photovoltaic inverter-used single end flyback-type switching power supply primary-side circuit
JP2002315331A (en) Power supply equipped with dc-dc converter
CN106602883A (en) Power MOS pipe switch power supply integration power supply circuit without auxiliary winding
CN201118440Y (en) A power on circuit and electronic device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100609

Termination date: 20210723

CF01 Termination of patent right due to non-payment of annual fee