CN101338437A - Method for preparing graded multicomponent metal mixing oxide anode - Google Patents

Method for preparing graded multicomponent metal mixing oxide anode Download PDF

Info

Publication number
CN101338437A
CN101338437A CN 200810140104 CN200810140104A CN101338437A CN 101338437 A CN101338437 A CN 101338437A CN 200810140104 CN200810140104 CN 200810140104 CN 200810140104 A CN200810140104 A CN 200810140104A CN 101338437 A CN101338437 A CN 101338437A
Authority
CN
China
Prior art keywords
oxide anode
preparation
titanium matrix
matrix
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200810140104
Other languages
Chinese (zh)
Inventor
王均涛
韩严
许立坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
725th Research Institute of CSIC
Original Assignee
725th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 725th Research Institute of CSIC filed Critical 725th Research Institute of CSIC
Priority to CN 200810140104 priority Critical patent/CN101338437A/en
Publication of CN101338437A publication Critical patent/CN101338437A/en
Pending legal-status Critical Current

Links

Abstract

The invention relates to a preparation method of a gradient multi-metal mixed oxide anode, which belongs to the field of electrochemistry. The oxide anode prepared by the invention can be widely used for electrochemical industry, such as sea water electrolysis, cathode protection, sewage disposal and plating, etc. The preparation method comprises the procedures as follows: titanium matrix that has been pre-processed is cut into a flaky test sample; the masking liquids of the surface layer of the oxide anode are prepared respectively and have five different weight percentage concentrations that are numbered; the surface of the titanium matrix is coated with the masking liquids of the surface layer in sequence twice; after being coated once, the surface of the titanium matrix is dried under 100 DEG C for 10 minutes and sintered under 400 DEG C for 10 minutes; with the completion of last coating and sintering, the titanium matrix is sintered under 400 DEG C for one hour to be made into the gradient multi-metal mixed oxide anode. The masking liquid of the surface layer of the invention has appropriate preparation, good stability and convenient coating. In addition, the anode is easy to be prepared and the product has long service life, low cost, wide application and good cost performance.

Description

A kind of preparation method of graded multicomponent metal mixing oxide anode
Technical field:
The invention belongs to electrochemical field, relate to a kind of preparation method of graded multicomponent metal mixing oxide anode, the oxide anode of its preparation can be widely used in electrochemical industry occasions such as seawater electrolysis, galvanic protection, sewage disposal and plating.
Background technology:
At present, characteristics such as the anode of working in the industrialization electrolytic cell should satisfy generally that electric conductivity is good, physics and stable, corrosion-resistant, the easy processing of chemical property, good electro catalytic activity and selectivity, dimensionally stable anode (DSA) can satisfy above requirement preferably, and this point is existing the introduction in U.S.Pat.No.3632498.After Overheating Treatment prepares, its advantage is the oxide anode that can prepare different qualities by the kind and the proportioning of change mixed noble metal salt to the DSA anode, as adopting titanium base RuO at titanium-based surface coating mixed noble metal salt 2-TiO 2Anode adopts titanium base IrO as analysing chlorine type oxide anode 2-Ta 2O 5Anode is as analysing oxygen type anode etc.
In the widely used electrolytic industry of Mixed Metal Oxide Coated Titanium Anodes, anode surface is generally understood the aerobic generation during electric tank working, and no matter whether this electrode is that selectivity is analysed oxygen anodes, and electrolytic bath is pressed and also can be raise gradually.After electrolytic process proceeded to a certain degree, too high groove pressure can cause anode passivation, and electrolyzer quits work.Be penetrated into the interface of titanium matrix and oxide on surface coating and the anode passivation most important reason is the oxygen of separating out in the electrolytic process, destroyed the semiconductor doping structure at interface, formed nonconducting TiO 2Oxide compound.This nonconducting TiO 2Oxide interface also might cause precious metal oxide coating to peel off, and makes anode unavailable fully.Therefore when the development metal oxides coating of anode, at first to solve the problem of passivation of titanium.
Existing technology shows, to the alligatoring on metal titanium surface and apply the middle layer can address this problem to some extent between metal oxide containing precious metals layer and titanium base.The alligatoring on titanium surface helps the cast setting raising bonding force between the two by coating and titanium, thus the passivation that slows down titanium; Applying the middle layer then is to prevent the passivation of titanium by forming fine and close blocking layer on the titanium surface, thereby makes the life-span of electrode system obtain prolonging.Middle layer kind and interpolation middle layer method are more at present, have introduced a kind of polymkeric substance among the United States Patent (USP) U.S.Pat.No.4435313 as the middle layer; The hybrid metal metal oxide of having introduced employing Pt+ (Ti or Sn)+(Ta or Nb) among the United States Patent (USP) U.S.Pat.No.4554176 is as the middle layer; Introduced employing Nb among the United States Patent (USP) U.S.Pat.No.5290415, Ti, Ta, oxide compound at least a among the Zr is as the middle layer.Another similar method of producing the middle layer is first at matrix surface galvanic deposit resistant metal, and then by thermal treatment, makes the middle layer be reflected at interfacial layer by high-temperature interface and form sosoloid or compound.Matsumotoetal also proposes a kind of middle layer reparation technology of novelty, promptly form one deck high resistance oxide film by anodic polarization on the titanium surface earlier, and then form porous oxide film on the surface by special processing (as making the oxide film spark discharge), and then the coating Catalytic Layer, in fact this played the coating middle layer and reached the cast setting effect by the alligatoring to the middle layer.
Though the work-ing life of adopting the method in interpolation middle layer can improve oxide anode, but middle layer component and upper layer are inequality, even differ greatly, need adopt more complicated technology when causing preparing oxide anode, the control difficulty increases during scale operation; Need to purchase a greater variety of raw materials for production simultaneously, production cost increases.Therefore be necessary to develop the production field that a kind of method with higher ratio of performance to price is applied to oxide anode.
It must be the valve metal with unidirectional current-carrying character that oxide anode (DSA) requires matrix, as titanium, tantalum, zirconium, niobium etc., the most suitable DSA matrix of doing of the stability of tantalum and electroconductibility, but it costs an arm and a leg, and thermolysis needs oxygen free condition, complex process, no practical value in the making processes; Zr, Nb and Ta are similar; And the Ti low price, density is little, and is easy to process, therefore, generally selects the matrix of Ti as DSA.In the concrete application of DSA,, add the 3rd constituent element in tradition and be necessary in order to improve some property of traditional Ru-Ti anode coating.Present widely used metal oxide anode mainly contain in the elements such as Ru, Ti, Ir, Ta, Pt, Sn, Pd, Rh, Sb, Co three kinds and more than, wherein the atom of Ir, Sn (ion) radius and Ru, Ti ten minutes are close, IrO 2, SnO 2, RuO 2And TiO 2Identical rutile crystal structure is arranged; The electronegativity of Sn (1.8) is less with the difference of Ru (2.2), Ir (2.2).
Summary of the invention:
The objective of the invention is to overcome the shortcoming that prior art exists, multivariant oxide anodic gradient design method (FGM) is studied and improved, design the FGM manufacture method that a kind of suitable multivariant oxide anode uses.Because the FGM manufacture method only need change the concentration of each layer or which floor masking liquid, therefore when small serial production or pilot scale, can prepare the masking liquid of different ratios, and in the production of extensive oxide anode, can control the add-on of various pioneer's liquid by computer program, therefore can not increase production cost, and the oxide anode life-span of preparation significantly improves, have higher performance, have application promise in clinical practice.
To achieve these goals, the FGM preparation method who the present invention relates to determines the substrate types of oxide anode and the component of surfactivity layer, designs then that the coating to the surfactivity layer applies scheme from matrix.The present invention under the situation that the upper layer composition is determined, prepares the different upper layer masking liquid of each component concentration respectively, wherein with TiO according to the principle of similar compatibility 2The element that structure is identical or close (as Ti, Sn) or oxygen resistance inert element (Ta) content is from high to low to identical with the surfactivity layer preferably, and higher element (as Pt, Ir, Ru, the Co etc.) content of catalytic activity is then from low to high to identical with upper layer; In the process of preparation oxide anode, at first on the titanium matrix of handling well, coat and TiO 25~10 layers of the most close masking liquids of structure are coated and TiO then 25~10 layers of the inferior close masking liquids of structure, by that analogy, until being coated with 5~20 layers of upper surface layers; Whenever be coated with one deck all oven dry, sintering under suitable temperature, brush one deck down fully after the cooling again; Use the oxide anode masking liquid proportioning of this method preparation should be not less than 5, the number of plies of coating is calculated according to design carrying capacity and every layer of average carrying capacity, being coated with the number of plies and should keeping identical as far as possible of each prescription.
The titanium matrix of being carried among the present invention is industrially pure titanium or titanium alloy, and base shape is the shape of tabular, netted, tubulose or other any needs; Coating brush system uses hairbrush to brush or matrix dip-coating or roller coat or electrostatic spraying or other method in masking liquid are uniformly applied on the matrix; The titanium matrix that oxide anode adopts is generally thick titanium plate of 1mm or titanium expansion web; Preparation oxide anode pre-treatment step is: be that 60~200 orders, air pressure are (1~6) * 10 in the silicon carbide granularity earlier 5After under the condition of Pa the titanium matrix surface being carried out sandblasting, water cleans, and removes the sand grains and the scrap metal of remained on surface; Be that 5~25% oxalic acid solution was 85~95 ℃ of following etches 60~240 minutes again with the titanium matrix weight percent concentration after the sandblast; Then, water cleans the titanium matrix after the pickling, cleans with distilled water after brushing away the titanous oxalate settling of matrix surface with scrub-brush simultaneously again, is placed in the distilled water and preserves, and dries during use to get final product; The preparation of oxide anode is that the titanium matrix through pre-treatment is tailored the slabbing sample, and the oxide anode upper layer masking liquid of preparing five kinds of Different Weight percentage concentrations more respectively is also respectively by 5,4,3,2,1 numbering; The upper layer masking liquid is respectively brushed on the titanium matrix surface two times respectively successively by 5,4,3,2, No. 1 orders respectively, 100 ℃ of dryings 10 minutes sintering 10 minutes under 400 ℃ of conditions again after every brushing one time, brush again after the cooling next time, after the brushing sintering is finished the last time, again titanium matrix sintering under 400 ℃ of conditions was made graded multicomponent metal blended oxide anode in 1 hour.Described upper layer masking liquid is by ruthenium trichloride, chloro-iridic acid, tetrabutyl titanate preparation, or by chloro-iridic acid, ruthenium chloride, dibutyl tin laurate preparation, its solvent is a propyl carbinol; The weight percent content of the Ru of upper layer masking liquid, Ir, Ti is Ru: Ir: Ti or Sn=0~25: 10~40: 40~80 or 45~85; Total concentration of metal ions is 0.25mol/L.
Fields such as the oxide anode of the present invention preparation can be antifouling at electrolysis antifouling, electrolytic brine, sewage disposal, swimming-pool water sterilization, galvanic protection and electrometallurgy industry are extensive use of; The oxide anode of similar face layer formula, by adopting the present invention mentioned design of FGM thought and manufacture method, improved more than 30% its work-ing life, and when this oxide anode is used for the flowing water electrolysis, improve more than 50% than the oxide anode life-span of ordinary method preparation work-ing life; Adopt this method to prepare oxide anode simultaneously, preparation technology remains unchanged substantially, therefore is easy to control, and manufacturing cost can not increase; Therefore manufacture method involved in the present invention has higher performance, has application promise in clinical practice.
Embodiment:
Further the present invention is described below by embodiment.
Embodiment 1:
Earlier the titanium matrix is carried out the oxide anode pre-treatment.To make 2 of 30mm * 60mm sheet sample through the titanium matrix of pre-treatment, take by weighing chloro-iridic acid 1.00 grams, ruthenium chloride 0.79 gram, measure 3.05 milliliters of dibutyl tin laurates, it is dissolved in the 20ml propyl carbinol stirs, as oxide anode upper layer masking liquid, this moment Ru: Ir: Sn=25: 30: 45 (wt.%), i.e. No. 1 masking liquid.Prepare Ru: Ir: Sn=25 then respectively: 30: 45 (wt.%); Ru: Ir: Sn=20: 25: 55 (wt.%); Ru: Ir: Sn=15: 20: 65 (wt.%); Ru: Ir: Sn=10: 15: 75 (wt.%); Ru: Ir: Sn=5: 10: 85 (wt.%) five kinds of masking liquids, and be numbered masking liquid respectively 1~No. 5.No. 1 upper layer masking liquid that at first will prepare evenly is painted on first titanium matrix surface, at 400 ℃ of following sintering 10min, repeats above process 10 times behind 100 ℃ of dry 10min, makes No. 1, oxide anode sample as a comparison at 400 ℃ of following sintering 1h at last; Brush No. 5, No. 4, No. 3, No. 2, No. 1 each masking liquid respectively successively and brush twice respectively on second titanium matrix, the drying and sintering step that every brushing one-time surface floor masking liquid repeats No. 1 sample is prepared into oxide anode No. 2, as the anode of present embodiment preparation; Oxide anode carrying capacity by above-mentioned two kinds of methods preparation is respectively 10.25g/m through calculating 2And 9.92g/m 2, the intensified electrolysis life-span is respectively 37.2h and 49h, and the life-span has improved 31.7%, and the precious metal usage quantity decreases relatively, therefore the oxide anode of preparation has higher performance in this way.
Embodiment 2:
Earlier the titanium matrix is carried out the oxide anode pre-treatment.To make 2 of 30mm * 60mm sheet sample through the titanium matrix of pre-treatment, the ruthenium trichloride of weighing suitable quantity, chloro-iridic acid and tetrabutyl titanate are mixed with Ru: Ir: Ti=20: 40: 40 (wt%), solvent is a propyl carbinol, total concentration of metal ions is the oxide anode masking liquid of 0.25mol/L, with this component masking liquid as the upper layer masking liquid; Prepare Ru: Ir: Ti=20 then respectively: 40: 40 (wt.%), Ru: Ir: Ti=15: 35: 50 (wt.%), Ru: Ir: Ti=10: 30: 60 (wt.%), Ru: Ir: Ti=5: 25: 70 (wt.%), Ru: Ir: Ti=0: 20: 80 (wt.%) five kinds of masking liquids are numbered masking liquid respectively 1~No. 5; Repeat the subsequent step of embodiment 1.Oxide anode carrying capacity by above-mentioned two kinds of methods preparation is respectively 9.85g/m2 and 10.08g/m2 through calculating, the intensified electrolysis life-span is respectively 123h and 180h, life-span has improved 46.3%, and the precious metal usage quantity decreases relatively, and therefore the oxide anode of preparation has higher performance in this way.

Claims (4)

1. the preparation method of a graded multicomponent metal mixing oxide anode is characterized in that the titanium matrix through pre-treatment is tailored the slabbing sample, prepares the oxide anode upper layer masking liquid of five kinds of Different Weight percentage concentrations more respectively and also numbers respectively; The upper layer masking liquid is respectively brushed on the titanium matrix surface two times respectively successively by the sequence number order respectively, 100 ℃ of dryings 10 minutes sintering 10 minutes under 400 ℃ of conditions again after every brushing one time, brush again after the cooling next time, after the brushing sintering is finished the last time, again titanium matrix sintering under 400 ℃ of conditions was made graded multicomponent metal blended oxide anode in 1 hour.
2. the preparation method of a kind of graded multicomponent metal mixing oxide anode according to claim 1, it is characterized in that described upper layer masking liquid is by ruthenium trichloride, chloro-iridic acid, tetrabutyl titanate preparation, or by chloro-iridic acid, ruthenium chloride, dibutyl tin laurate preparation, its solvent is a propyl carbinol; The weight percent content of the Ru of upper layer masking liquid, Ir, Ti is Ru: Ir: Ti or Sn=0~25: 10~40: 40~80 or 45~85; Total concentration of metal ions is 0.25mol/L.
3. the preparation method of a kind of graded multicomponent metal mixing oxide anode according to claim 1 is characterized in that titanium matrix pre-treatment step is is that 60~200 orders, air pressure are 1~6 * 10 in the silicon carbide granularity earlier 5After under the condition of Pa the titanium matrix surface being carried out sandblasting, water cleans, and removes the sand grains and the scrap metal of remained on surface; Be that 5~25% oxalic acid solution was 85~95 ℃ of following etches 60~240 minutes again with the titanium matrix weight percent concentration after the sandblast; Then, water cleans the titanium matrix after the pickling, cleans with distilled water after brushing away the titanous oxalate settling of matrix surface with scrub-brush simultaneously again, is placed in the distilled water and preserves.
4. the preparation method of a kind of graded multicomponent metal mixing oxide anode according to claim 1 is characterized in that coating uses hairbrush to brush or matrix dip-coating or roller coat or electrostatic spraying in masking liquid are uniformly applied on the matrix.
CN 200810140104 2008-08-07 2008-08-07 Method for preparing graded multicomponent metal mixing oxide anode Pending CN101338437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810140104 CN101338437A (en) 2008-08-07 2008-08-07 Method for preparing graded multicomponent metal mixing oxide anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810140104 CN101338437A (en) 2008-08-07 2008-08-07 Method for preparing graded multicomponent metal mixing oxide anode

Publications (1)

Publication Number Publication Date
CN101338437A true CN101338437A (en) 2009-01-07

Family

ID=40212606

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810140104 Pending CN101338437A (en) 2008-08-07 2008-08-07 Method for preparing graded multicomponent metal mixing oxide anode

Country Status (1)

Country Link
CN (1) CN101338437A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251252A (en) * 2011-07-20 2011-11-23 南京师范大学 Preparation method of seawater electrolytic reaction anode IrO2-RuO2-SnO2-TiO2 nanoparticle coating
CN102517603A (en) * 2011-11-30 2012-06-27 浙江大学 Preparation method for titanium-based low-precious-metal-content oxide coating anode
CN103121737A (en) * 2013-02-21 2013-05-29 福建工程学院 Method for electrochemically treating printing and dyeing wastewater
CN106011918A (en) * 2016-07-11 2016-10-12 青岛双瑞海洋环境工程股份有限公司 Seawater-electrolysis chlorine producing electrolytic bath used for resisting manganese pollution
CN106975894A (en) * 2017-03-01 2017-07-25 东莞市佳乾新材料科技有限公司 A kind of composite titan-based inert anode plate and preparation method thereof
CN108046380A (en) * 2017-12-13 2018-05-18 东华大学 A kind of titanium-based Sn-Sb-Ce oxide electrodes and its preparation method and application
CN109518221A (en) * 2019-01-08 2019-03-26 福州大学 A kind of surface is rich in the gradient distribution Ni―Ti anode and preparation method thereof of iridium dioxide
CN111137953A (en) * 2020-01-09 2020-05-12 江苏安凯特科技股份有限公司 Preparation process of titanium-based tin iridium oxide coating electrode

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251252A (en) * 2011-07-20 2011-11-23 南京师范大学 Preparation method of seawater electrolytic reaction anode IrO2-RuO2-SnO2-TiO2 nanoparticle coating
CN102517603A (en) * 2011-11-30 2012-06-27 浙江大学 Preparation method for titanium-based low-precious-metal-content oxide coating anode
CN103121737A (en) * 2013-02-21 2013-05-29 福建工程学院 Method for electrochemically treating printing and dyeing wastewater
CN103121737B (en) * 2013-02-21 2014-05-07 福建工程学院 Method for electrochemically treating printing and dyeing wastewater
CN106011918A (en) * 2016-07-11 2016-10-12 青岛双瑞海洋环境工程股份有限公司 Seawater-electrolysis chlorine producing electrolytic bath used for resisting manganese pollution
CN106975894A (en) * 2017-03-01 2017-07-25 东莞市佳乾新材料科技有限公司 A kind of composite titan-based inert anode plate and preparation method thereof
CN108046380A (en) * 2017-12-13 2018-05-18 东华大学 A kind of titanium-based Sn-Sb-Ce oxide electrodes and its preparation method and application
CN109518221A (en) * 2019-01-08 2019-03-26 福州大学 A kind of surface is rich in the gradient distribution Ni―Ti anode and preparation method thereof of iridium dioxide
CN111137953A (en) * 2020-01-09 2020-05-12 江苏安凯特科技股份有限公司 Preparation process of titanium-based tin iridium oxide coating electrode

Similar Documents

Publication Publication Date Title
US8580091B2 (en) Multi-layer mixed metal oxide electrode and method for making same
CN101338437A (en) Method for preparing graded multicomponent metal mixing oxide anode
Chen et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning
Abbasi et al. An investigation of the effect of RuO2 on the deactivation and corrosion mechanism of a Ti/IrO2+ Ta2O5 coating in an OER application
CN1060230C (en) Electrodes and methods of preparation thereof
US7247229B2 (en) Coatings for the inhibition of undesirable oxidation in an electrochemical cell
KR101707811B1 (en) Electrode for electrolytic applications
EP1670973B1 (en) Electrode
KR20110094055A (en) Electrode for electrolysis cell
ITMI20102193A1 (en) ANODE FOR CHLORINE ELECTROLYTIC EVOLUTION
CN106283125A (en) Metal electro-deposition coated titanium electrode and preparation method thereof
JPS6022074B2 (en) Durable electrolytic electrode and its manufacturing method
CN102762776A (en) Activated cathode for hydrogen evolution
JP6920998B2 (en) Anode for electrolysis generation of chlorine
US20230107452A1 (en) A New Interlayer Can Withstand Polarity Reversal
FI63604B (en) STABIL ELEKTROD FOER ELEKTROKEMISKA TILLAEMPNINGAR
CN111137953A (en) Preparation process of titanium-based tin iridium oxide coating electrode
US7566389B2 (en) Electrode
RU2689985C2 (en) Catalytic coating and method of its production
CN1795291A (en) Method for the formation of a coating of metal oxides on an electrically-conducting substrate, resultant activated cathode and use thereof for the electrolysis of aqueous solutions of alkaline metal c
JP3152499B2 (en) Electrode for oxygen generation and method for producing the same
JPH0238671B2 (en)
JPH0238672B2 (en)
JPH0238670B2 (en)
CN115466985A (en) Preparation method of metal oxide electrode containing amorphous rhodium oxide interlayer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090107