CN101335431A - Overhead power transmission line optimized line selection method based on airborne laser radar data - Google Patents

Overhead power transmission line optimized line selection method based on airborne laser radar data Download PDF

Info

Publication number
CN101335431A
CN101335431A CN 200810073725 CN200810073725A CN101335431A CN 101335431 A CN101335431 A CN 101335431A CN 200810073725 CN200810073725 CN 200810073725 CN 200810073725 A CN200810073725 A CN 200810073725A CN 101335431 A CN101335431 A CN 101335431A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
data
line
dom
dem
according
Prior art date
Application number
CN 200810073725
Other languages
Chinese (zh)
Inventor
何勇波
刘改进
吕健春
张正均
坚 彭
徐祖舰
陈 曾
李新科
王滋政
锋 阳
伟 黄
黄文京
Original Assignee
广西电力工业勘察设计研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention discloses an optimal route selection method for overhead transmission line route. Onboard lidar equipment is adopted to acquire laser point cloud data and aerial digital photo data of the transmission line route corridor range; the onboard lidar data is processed after the wave filtering and the sorting of the laser point cloud data, and the points of the ground surface are made into a digital elevation model with high precision; then data processing is carried out by utilizing the data of the digital elevation model with high precision and ortho-rectification is carried out to the aerial photo by utilizing the internal and external orientation elements of the aerial digital photo to generate digital orthophoto maps; through the overlying of the digital elevation model and the digital orthophoto maps, the tridimensional visualization of the transmission line route corridor can be realized to optimize the transmission line route selection; finally prearrangement of power pole and power pole arrangement are carried out according to the data of plane cross sections. The route selection platform of the invention has simple operation and lifelike tridimensional scene, thus being convenient for full roaming and multi-view observation and greatly improving the efficiency of the inner plane cross section survey operation. Compared with the optimal route selection technology based on the aerial photographing measuring method, the efficiency of the inner plane cross section survey operation can be improved by about 75 percent.

Description

基于机载激光雷达数据的架空送电线路优化选线方法技术领域本发明属于架空送电线路优化选线技术领域,即基于机载激光雷达数据的架空送电线路优化选线方法,它适用于架空高压输电线路工程在勘测设计阶段的优化选线。 Sending on an overhead airborne laser radar data Line Optimization LINE TECHNICAL FIELD The present invention is in Overhead Line Optimization field line selection, which is based on aerial airborne laser radar data transmission lines optimization method to select, it is suitable for optimizing route selection overhead high-voltage transmission line project in the survey design stage. 背景技术目前,国内的架空高压输电线路工程(220kV以上等级)优化选线通常采用航空摄影测量方法来实现,即根据线路可研推荐路径方案或初步设计路径方案,通过航空摄影获取线路走廊范围的立体像对影像(如若非数码影像,则需进行像片底片冲洗并进行扫描数字化), 然后利用航外像控测量成果在全数字摄影测量系统内进行内业空三加密数据处理,以恢复像对立体模型,通过像对立体模型来再现线路走廊范围内的地形地貌,在此基础上,设计人员进行优化选线作业。 BACKGROUND At present, the domestic high voltage overhead transmission line project (220kV above grade) to optimize line selection usually used aerial photography methods to achieve that, according to the line feasibility study recommended route plan or preliminary design path of the program, get line corridor range by aerial photography stereo pair images (e.g., digital video, if not, need to be washed and scanned photographic negatives digitize), and then by the outer flight control measurements like achievements within the industry, three empty processing encrypted data in digital photogrammetry system to recover as three-dimensional model, the three-dimensional model is reproduced as terrain corridors within the scope of the line, based on this, the designer to optimize the route selection operations. 根据优化选线路径成果坐标,航测内业作业人员利用全数字摄影测量系统逐点进行平断面图采集。 The line selection path optimization results coordinates, within the industry, the worker using aerial digital photogrammetry system level pointwise sectional view acquisition. 根据平断面图数据,由设计人员进行预排杆和排杆。 The flat sectional view data, and the pre-shift stick shift stick by the designer. 尽管基于航空摄影测量方法的优化选线技术应用已有近十年的历史,但该技术存在如下缺陷却是不争的事实:1. 精度低。 Although optimized route selection technology based on aerial photogrammetry methods nearly a decade of history, but there is a drawback to this technique, it is an indisputable fact: 1 low accuracy. 尤其是对于植被覆盖茂密地区,由于测标无法准确切准地表,导致内业平断面图采集作业精度较低;2. 效率低。 Especially for dense vegetation coverage area, since the registration accuracy measurement mark can not cut the surface, within the industry, resulting in a lower level of accuracy sectional view of acquisition operations; 2. inefficient. 内业数据处理必须借助野外像控测量成果方可进行;3. 作业环境的适应性较差。 The data processing within the industry, to be controlled by means of the measurement results of the image field before proceeding; 3 poor working environment adaptability. 对于一些植被覆盖密集以及无人区,由于无法进行航外像控测量而导致无法实施;4. 航飞作业气象条件适应性较差。 For some dense vegetation cover and no man's land, since the aircraft can not be outside the control of the measurement result image can not be implemented; 4. aircraft flying job poor adaptability weather conditions. 航空摄影测量作业对航飞气象条件要求较高,甚至对太阳高度角等都有要求,主要在于该技术为被动遥感技术;5. 优化选线硬件平台要求高。 Aerial photography work on aircraft flying weather conditions are higher, even on the sun angle, etc. are required, mainly in the technology as passive remote sensing techniques; 5. Selection of hardware platforms optimized high requirements. 基于航空摄影测量方法的优化选线技术其软件平台必须在摄影测量工作站上方可运行,包括要求垂直扫描频率大于100Hz的CRT显示器及其它用于立体观测的辅助设备(立体眼镜、手轮、脚盘及立体显示屏,或其他替代设备);6. 在线路走廊三维可视化效果方面,基于航空摄影测量的三维场景系通过恢复像对立体模型所获得,作业人员必须佩戴立体眼镜方可看到,作业人员的眼睛非常容易疲劳,且立体效果有发虚的感觉。 Line selection based optimization method aerophotogrammetry its software running on the platform must only photogrammetric workstation, including the vertical scanning frequency is greater than 100Hz claim CRT display and other auxiliary equipment (stereo glasses for stereoscopic observation, the hand wheel, footdisk and three-dimensional display, or other alternative devices); 6. in the three-dimensional visualization line corridor effect, based on the three-dimensional scene based Aerophotogrammetry image obtained by restoring three-dimensional model, the operator must wear the stereoscopic glasses to see before, work eye fatigue person is, and the three-dimensional effect with a virtual hair feel. 机载激光雷达技术是一项集激光扫描、全球定位(GPS)以及惯性导航(INS)等高新技术于一体的高效三维主动航空遥感技术,采用该技术能够实现快速获取高时空分辨率空间三维地理数据,系目前国际上最为先进的航空遥感技术。 Airborne laser radar technology is a set of laser scanning, global positioning (GPS) and inertial navigation (INS) and other high-tech in one of the active and efficient three-dimensional aerial remote sensing technology, using this technology enables rapid access to high spatial and temporal resolution three-dimensional geographic space data, the Department currently the most advanced airborne remote sensing technology. 与航空摄影测量技术相比,该技术具有高精度、高效率、作业环境适应性强、航飞作业气象条件适应性好、优化选线硬件平台配置要求低以及地形地貌三维可视化效果更加逼真等优势。 Compared with aerial photogrammetry technology, which has a high-precision, high efficiency, adaptability operating environment, operating aircraft flying weather conditions adaptability, optimized route selection hardware platform configuration requirements and low terrain more realistic three-dimensional visual effects and other advantages . 发明内容本发明针对目前基于航空摄影测量方法的架空送电线路优化选线方法存在的缺陷,提出了一种基于机载激光雷达数据的架空送电线路优化选线方法,实现包括架空高压输电线路优化选线、平断面测图以及预排杆等。 SUMMARY OF THE INVENTION Method for the current-based overhead power transmission line aerial photogrammetry optimization method to select the defects, a new overhead power transmission line based on airborne laser radar data optimization method to select, to achieve high voltage overhead transmission lines comprising optimizing route selection, plan sectional view and a pre-discharge measuring rod or the like. 该技术具有测量精度高、野外工作量小、线路走廊三维可视化效果逼真、航飞作业气象条件以及作业环境适应性好且对优化选线硬件平台配置要求低等优势,具有显著的社会经济效益。 The technology has high accuracy, small field work, line corridor realistic three-dimensional visual effects, good weather conditions and aircraft flying job working environment adaptability and optimization of route selection and low hardware platform configuration requirements advantages, has significant social and economic benefits. 本发明的架空送电线路优化选线方法的技术方案是这样实现的:它包括航飞数据采集、 数据处理、选线和排杆,其特点是:(1) 设计路径方案,用机载激光雷达设备采集数据;(2) 将机载激光雷达数据处理生成数字高程模型DEM数据和数字正射影像图DOM数据;(3) 将数字高程模型DEM数据和数字正射影像图DOM以及激光点云数据等导入优化选线平台,输出影像调绘图,并进行航外调绘作业;(4) 参考野外调绘成果,在优化选线平台中利用数字高程模型DEM数据以及数字正射影像图DOM几何叠加构建线路走廊三维场景,根据线路设计规范,进行线路优化选线;(5) 根据即时自动提取的断面图进行预排杆,预排杆通过后输出影像路径图;(6) 根据优化选线路径成果进行平断面图数据采集;(7) 优化排杆。 The overhead of the invention Transmission Line optimization method to select technical solution is achieved in that: it comprises aircraft flight data acquisition, data processing, select lines and the row of rods, characterized by: (1) design path scheme, using airborne laser the radar device to acquire data; (2) the airborne laser radar data processing to generate a digital elevation model (DEM) data, and digital orthophoto FIG DOM transactions; (3) a digital elevation model (DEM) data, and digital orthophoto FIG DOM and the laser point clouds data into and optimization options line internet, the output image tone mapping, and Air induce a schematic job; (4) a reference field and mapping results, digital elevation model (DEM) data, and a digital optimization Selection platforms Orthophotomap DOM geometry overlay Construction line corridor three-dimensional scenes, design specifications circuit performs route optimization Selection; (5) pre-discharge lever a sectional view of real-time automatic extraction, the pre-discharge after the lever by an output image roadmap; (6) the optimized route selection path achievements sectional view flat data acquisition; (7) Optimal Layout rod. 该优化选线方法的具体步骤如下:(1)根据可研审查后的推荐路径方案或初步设计路径方案,利用1/1万、1/5万或者其它具有地理定位的遥感卫星影像进行航飞设计并进行机载激光雷达数据采集。 Specific steps of the optimization method to select as follows: (1) According to the embodiment recommended route feasibility or preliminary design review path scheme, using a 1/1 million and 1 / 50,000, or other remote sensing image having a geolocation for dead fly design and lIDAR data acquisition. 具体如下:1. DEM与DOM精度设计。 As follows:. 1 DEM and DOM precision design. DEM与DOM成果须达到1/2000比例尺精度要求;2. 航高设计。 DEM and DOM outcomes required to achieve precision scale 1/2000; 2. Hang high design. 根据DEM与DOM产品精度,确定激光点间隔为2.5米,影像分辨率不大于0.3米,据此确定航高,与机载激光雷达设备的性能相关;3. 在线路沿线范围内(并不一定必须在所需采集数据的线路走廊范围内)布设不少于2个地面GPS基站,并确保摄区内任意位置距离最近基站之间的距离不超过50KM,进行地面GPS基站点联测,获取WGS84坐标以及1954北京坐标系坐标。 The DEM and DOM precision, laser spot determined interval of 2.5 m, the image resolution is no greater than 0.3 m, whereby high-determined flight, associated with airborne laser radar apparatus performance;. 3 along the line in the range of (not necessarily must be within a desired range line corridor acquired data) laid less than 2 GPS ground station, the subject area and to ensure that no more than anywhere 50KM distance between the nearest base station, a base station GPS ground joint measurement, acquisition WGS84 coordinates and the 1954 Beijing coordinate system coordinates. 4.根据初设路径方案以及地形起伏情况,合理布设航线。 The preliminary design plan and path topography, a reasonable layout routes. 具体要求包括:1) 每条航线直线飞行时间不超过30分钟;2) 每一航带的宽度不小于2km;3) 若一条航带需要几条航线覆盖,必须确保航线间无绝对漏洞;4) 航飞范围应沿线路起点、终点处纵向各向外延伸lkm。 Requirements include: 1) each time these straight flight than 30 minutes; 2) each with a width of not less than flight 2km; 3) if an aircraft with the need to cover several routes, must ensure that no absolute between these vulnerabilities; 4 ) aircraft flying along the road range should start and end points of each of the longitudinally extending outwardly lkm. (2) 将机载激光雷达数据处理生成数字高程模型和数字正射影像图数据。 (2) The airborne laser radar data processing and generates a digital elevation model data digital orthophoto FIG. 具体如下:1. 激光点云数据解算。 As follows: a laser point cloud data solver. 利用机载POS数据、地面基站点GPS测量数据以及激光扫描数据,通过解算以获取用户选定坐标系下的激光点云数据;2. 利用机载激光雷达数据处理软件譬如TerraSolid软件进行激光点云数据的分类、 坐标系统转换以及1/2000比例尺DEM和DOM的生成;3. DEM与DOM数据分块。 Airborne POS data, ground station GPS-based measurements and laser scan data, selected by a user to obtain the point cloud data of the laser coordinate system by solving;. 2 using airborne laser radar data processing software such as software for the laser spot TerraSolid classification, the coordinate system converting 1/2000 scale cloud data and generating a DOM and DEM;.. 3 and DOM DEM data block. 为了便于数据快速调度与管理,将DEM与DOM数据按照正南正北分块,分块大小为3kmX3km,各分块间保持至少10米重叠。 To facilitate fast scheduling and managing data, the data in DEM and DOM north south block, the block size is 3kmX3km, among the holding block overlaps at least 10 meters. (3) 将数字高程模型和数字正射影像图以及激光点云数据等导入优化选线平台,输出影像调绘图,并进行航外调绘作业。 (3) The digital elevation model and digital orthophoto and FIG laser point cloud data into and optimized internet line selection, the output image tone mapping, and redeployment painted aircraft operations. 具体如下:1. 将DEM、DOM以及激光点云数据导入具有如图二所示功能的优化选线平台,以实现对DEM、 DOM和激光点云数据的快速调度、管理与应用;2. 输出影像调绘图。 As follows: 1 on DEM, DOM and a laser point cloud data lead line having a selected optimization function of the platform shown in Figure 2, in order to achieve on DEM, and fast scheduling DOM laser point cloud data, and application management; 2 output. image tone mapping. 通过将分块的DOM进行拼接,实现每一航带的DOM拼接输出,考虑到野外携带以及调绘的需要,通常按照1/10000比例尺输出并打印;3. 航外调绘。 DOM by the splicing block, the output of each flight to achieve DOM splicing tape, and taking into account the field carrying the required tone painted, and printed in the normal output scale of 1/10000; 3. Air drawn redeployment. 沿可研推荐路径或初设路径对路径左右两侧各300米范围进行调绘。 Left and right sides of the path 300 meters along each drawing can be adjusted RESEARCH recommended route or path preliminary design. 调绘内容包括平面位置以及高度及交叉角等。 Including drawing imaging plane position and the height and the intersection angle. 平面位置包括建筑物、电力线、通信线以及地下电缆、道路、水系以及经济作物区以及其它影响线路路径的地物。 Planar feature location comprises a building, power lines, communication lines and underground cables, roads, water, and other areas and crops affected line route. 高度及交叉角调绘包括建筑物高度、交叉跨越点高度、杆塔高度以及一、二级通信线及地下电缆与线路的交叉角等。 Schematic cross angle and height adjustment includes building height, across the intersection point height, and a tower height, two communication lines and underground cables crossing angle of the line. (4) 参考野外调绘成果,在优化选线平台中利用数字高程模型以及数字正射影像图几何叠加构建线路走廊三维场景,根据线路设计规范,进行线路优化选线。 (4) a reference field and Mapping results, using the Digital Elevation Model Selection and optimization of digital orthophotos platform superimposing geometric line corridor constructed three-dimensional scenes, design specifications line, line selection performed route optimization. 具体如下:1. 在优化选线平台中,通过对DEM、 DOM数据的快速压縮、索引实现对其快速调度与管理;2. 将DEM与DOM进行几何叠加,实现线路走廊三维场景的构建(线路走廊地形的三维建模);3. 设计人员参考航外调绘成果,在三维场景中进行优化选线。 As follows: 1. Selection optimization platform, by rapid compression DEM, DOM data, the index of their fast scheduling and management; the geometric superposition of DEM and DOM 2, line corridor constructed to achieve three-dimensional scene ( three-dimensional modeling line corridor terrain); 3. Air redeployment painted design guidance results, optimize line selection in the 3D scene. (5) 根据即时自动提取的断面图(包括中线以及左右边线)进行预排杆,预排杆通过后输出影像路径图,否则返回步骤4。 (5) is a sectional view of real-time automatic extraction (including neutral and left and right edge) walkthrough rod, the rod through the pre-discharge path FIG output image, otherwise Step 4. 具体如下:1. 根据所选路径,按照每5米采样间隔(视地形情况而定,对于地形平坦地区,可适当加大间隔,相反,对于地形复杂地区,可适当减小采样间隔)从DEM数据中自动提取断面数据,包括中线以及左右边线;2. 设计人员根据断面数据进行预排杆。 As follows: 1. Depending on the selected path, at every sampling interval 5 m (depending on the terrain the case may be, for flat terrain area, may be appropriate to increase the spacing, on the contrary, for a terrain area can be appropriately reduced sampling interval) from DEM automatic data extraction section data, including neutral and left and right edges;. 2 designer pre-discharge section according to the data bar. 预排杆通过,则输出影像路径图并进入下一步骤,否则返回步骤四。 Walkthrough rod passes, the image output path map and proceeds to the next step, otherwise returning to step four. (6) 根据优化选线路径成果进行平断面图数据采集。 (6) a flat sectional view according to the data acquisition line selection path optimization results. 具体如下:1. 根据优化选线路径成果,进行中线以及左右边线断面数据自动提取。 As follows: 1. The line selection path optimization results, and left and right edges midline section data automatically extracted. 对于风偏以及危险点则在三维场景中人工采集;2. 利用DOM对为线路中心线两侧各50m范围进行平面地物的快速采集,对于树高、 房高可利用激光点云数据以及DEM数据进行自动提取。 Partial dangerous to the wind and the manual collection points in the 3D scene; 2 performs rapid acquisition using the DOM plane feature is the centerline of each line on both sides 50m range, for height, high room available laser point cloud data and DEM automatic extraction data. 同时,对于一些隐蔽地物或者电力线等,则结合航外调绘成果进行采集。 Meanwhile, some hidden feature for power lines or the like, the combined results of Air induce a schematic collected. 3. 平断面图中,平面比例尺为1/5000,高程比例尺为1/500。 3. flat sectional view, the plane scale 1/5000, 1/500 scale elevation. (7) 排杆。 (7) the discharge rods. 设计人员根据平断面图数据以及设计规范利用优化排杆软件譬如道亨软件进行优化排杆。 Dao Heng example, software designers to optimize the use of optimized discharge lever shift stick software sectional view according to the level data and the design specifications. 上述详细步骤还说明如下: 步骤1:根据可研审查后的推荐路径方案或初步设计路径方案以及相关的规程规范,利用1/1万、1/5万或者其它具有地理定位的遥感卫星影像进行航飞设计并进行机载激光雷达数据采集。 The foregoing detailed further steps as follows: Step 1: According to the embodiment recommended route feasibility or preliminary design review and program path associated standards and regulations, the use of 1/1 million and 1 / 50,000 for images or other remote sensing satellites having geolocation Airlines flying to design and carry out airborne lidar data acquisition. 在此过程中执行的技术标准与规范包括:■ 《1 : 10000、 1 : 50000地形图IMU/DGPS辅助航空摄影技术规定(试行)》(2004年12 月,国家测绘局)■ 《架空送电线路航空摄影测量技术规程》DL/T 5138-2001 (中国电力行业标准)■ 《500kV架空送电线路勘测技术规程》 DL/T 5122-2000 (中国电力行业标准)■ 《110〜500kV架空送电线路设计技术规程》 DL/T 5092-1999 (中国电力行业标准)■ 《220kV〜500kV紧凑型架空送电线路设计技术规程》 DL/T 5217-05 (中国电力行业标准)具体内容包括:1.机载激光雷达航飞高度以采集所得的激光点云数据与航空数码影像数据经处理后可获得满足1/2000比例尺精度的DEM和DOM数据为原则来确定;2. 机载激光雷达航飞带宽通常不小于2km,根据线路路径以及机载激光雷达设备性能确定所需的航带数以及每条航带所需布设的航线数量,并确保各航带间以及 Technical standards and specifications performed in this process include: ■ "1: 10000, 1: 50000 topographic map of IMU / DGPS - supported Aerial photography (Trial)" (December 2004, the National Mapping Agency) ■ "Overhead Transmission technical specification for aerial photogrammetry line "DL / T 5138-2001 (Chinese power industry standard) ■" 500kV overhead transmission technical specification survey line "DL / T 5122-2000 (Chinese power industry standard) ■" 110~500kV overhead transmission technical code for designing line "DL / T 5092-1999 (Chinese power industry standard) ■" 220kV~500kV compact electric overhead transmission line design technical regulations "DL / T 5217-05 (China electric power industry standard) Topics include: 1. lIDAR aircraft flying height of the laser point cloud data and the digital image data acquisition aeronautical resulting accuracy obtained satisfies 1/2000 scale DEM and DOM data after treatment to determine principle; 2. lIDAR aircraft flying Bandwidth generally not less than 2km, determines the desired flight route number and the number of each flight strips with a desired layout according to the line paths and airborne laser radar apparatus performance, and to ensure flight strips, and among 一条航带的航线间无绝对漏洞;3. 根据摄区大小,在摄区内合理布设不少于2个基站,且摄区内任意位置与最近基站间距离不宜超过50KM。 One route among routes with absolutely no loopholes; 3 according to the size of the subject area, in the region taken reasonable layout least two base stations, and taken anywhere in the region and the distance between the nearest base station should not exceed 50KM. 采用IGS (国际GPS服务)精密星历和高精度GPS数据处理分析软件解算各基站点在国家GPS2000框架下WGS84坐标,也可与附近的已知高等级控制点联测, 实施GPS静态定位测量,并精确解算出基站WGS84坐标系和用户选定坐标系(通常为北京54坐标系)两套坐标。 Using the IGS (International GPS Service) precision and high accuracy GPS ephemeris data analysis software solver each base station in the framework of the national GPS2000 WGS84 coordinates, the control may be associated with a known high level near the measuring point, the implementation of static GPS positioning measurements , and calculates the exact solutions WGS84 coordinate system and the base station selected by the user coordinate system (coordinate system 54 generally Beijing) two coordinates. 步骤2:机载激光雷达数据处理,包括激光点云数据的解算以及DEM与DOM的生成。 Step 2: airborne laser radar data processing, comprising a resolver, and a laser point cloud data generated DEM and DOM. 通过对激光点云数据进行分类,将其分为地表激光点云数据以及非地表激光点云数据,利用地表激光点云数据生成DEM数据。 By classifying the laser point cloud data, which is divided into surface and a non-laser point cloud data of the laser point cloud of surface data, DEM data generated using a laser point cloud surface data. 借助DEM数据以及航空数码影像的内外方位元素实现对航空数码影像的正射纠正以获取DOM数据。 With DEM data as well as internal and external orientation elements of aerial digital images to achieve orthorectified aerial digital images for DOM data. 1. 激光点云数据解算。 1. The laser point cloud data solver. 利用机载POS数据、地面基站点GPS测量数据以及激光扫描数据,通过解算以获取用户选定坐标系下的激光点云数据;2. 利用机载激光雷达数据处理软件譬如TerraSolid (该软件系基于MicroStation平台运行,包括TerraScan、 TerraModeler以及TerraPhoto三个模块),或者Leica等公司的软件进行激光点云数据的分类、坐标系统转换以及DEM和DOM的生成;3. DEM与DOM须满足1/2000比例尺精度要求;4. DEM与DOM的分块按照正南正北进行分块,分块大小为3kmX3km,数据格式通常采用GeoTiff格式或其它通用格式。 Airborne POS data, ground station GPS-based measurements and laser scan data, selected by a user count to obtain a laser point cloud data by solving the coordinate system;. 2 using airborne laser radar data processing software such TerraSolid (the software-based MicroStation platform operation, including TerraScan, TerraModeler and TerraPhoto three modules), or other company Leica software classifies laser point cloud data, and converts the coordinate system generated based on DEM and DOM;. 3 DEM and DOM be met 1/2000 precision scale; 4 DEM and DOM sub-blocks according to the north south block, the block size is 3kmX3km, usually GeoTiff data format or other format common format. 步骤3:将DEM、 DOM以及激光点云数据等导入具备DEM与DOM儿何叠加构建三维场景、 优化选线、断面自动提取、平面地物快速采集、调绘图以及影像路径图输出、预排杆、海量空间数据快速调度与管理等基本功能的优化选线平台,并按航带输出影像调绘图(将分块后的正射影像图进行拼接),通常为1/1万比例尺,将其打印输出后进行航外调绘作业。 Step 3: The DEM, DOM and a laser point cloud data into and DEM and DOM have any children superimposed build three-dimensional scene, optimizing route selection, automatic extraction section, the plane fast acquisition feature, tone mapping and image output path diagram, the pre-shift stick optimize the basic functions of line selection platform massive spatial data fast scheduling and management, in accordance with the output image tone mapping flight (block after the orthophoto FIG splicing), typically 1/1 million scale, print it for dead after redeployment painting job output. 步骤4:在优化选线平台中,设计人员参考调绘资料并根据《110〜500kV架空送电线路设计技术规程》(DL/T 5092-1999)、《220kV〜500kV紧凑型架空送电线路设计技术规程》(DL/T 5217-05) 等规程进行优化选线。 Step 4: Selection optimization platform, designers and Mapping of reference materials and "transmission line design specification 110~500kV Overhead" (DL / T 5092-1999) according to, "220kV~500kV compact design of overhead transmission lines technical specification "(DL / T 5217-05) and the like are optimized route selection procedure. 步骤5:根据所选路径进行断面自动提取,设计人员在此断面基础上进行预排杆,如若预排杆通过,则输出影像路径图以及优化选线转角坐标成果,否则,返回步骤四重新进行优化选线作业。 Step 5: According to the automatic extraction of the selected path section, the designer of this pre-discharge section on the basis of the lever, should the lever by the pre-discharge, the image output path, and FIG Selection corner coordinate optimization results, otherwise, returns to step four re Selection job optimization. 步骤6:根据优化选线路径成果进行平断面图数据采集。 Step 6: Flat sectional view according to the data acquisition line selection path optimization results. 具体来讲,断面数据(包括左右边线以及中线)通过DEM数据自动提取,但是对于风偏以及危险点,则在三维场景中人工采集。 Specifically, the section data (including the left and right edges and the center line) is automatically extracted by the DEM data, but dangerous to the wind and the biasing point is collected in an artificial three-dimensional scene. 平面数据通过DOM数据进行人工快速采集,对于房高、树高等信息则利用DEM、 DOM以及激光点云数据进行自动提取。 Rapid collection plane data manually through the DOM data, for a high room, the use information on DEM HIGHER tree, and DOM laser point cloud data is automatically extracted. 步骤7:设计人员根据平断面图数据利用已有排杆软件进行优化排杆作业。 Step 7: shift stick existing software designers to optimize the discharge operation lever sectional view according to data utilization level. 本发明与目前所采用的基于航空摄影测量方法的优化选线技术相比,其突出的实质性特点和显著的进步是:1. 作业环境的适应范围更广。 Compared with the present invention is based on the method of optimization Aerophotogrammetry line selection currently used, its prominent substantive features and notable progress is: 1. accommodate a wider range of operating environments. 尤其是对于植被茂密以及无人区,航空摄影测量作业由于无法布设像控往往无法进行,但对于机载激光雷达航飞数据采集与处理而言,则无须此顾虑;2. 测量精度更高。 Especially for lush vegetation and no man's land, aerial photogrammetry jobs often can not be laid as the inability to control, but for radar data acquisition and processing Airlines flying airborne laser, you do not worry about this; 2. higher measurement accuracy. 尤其是对于植被覆盖较多地区,由于激光具有一定的穿透能力,能够获取到更高精度的地形表面数据,航空摄影测量作业方法需要作业人员估计树高,方可获取到地形表面数据,因此其测量误差较大,尤其是高程精度;3. 优化选线更加精确,塔位选择更加合理,工程投资精细控制,有效减少森林砍伐、 农田占用以及房屋拆迁等,最大限度避免线群矛盾。 Especially for large area coverage of vegetation, the laser has a certain penetration, can obtain more accurate topographical surface data, aerial photogrammetry method of operation requires an operator tree height estimate, before the terrain surface acquired data, the measurement error is large, especially in the height accuracy; 3 optimized route selection more precise, the tower bit more reasonable choice, fine control project investment, reduce deforestation, farmland occupation and house demolition, etc., to avoid possible conflicts line group. 高精度DEM数据、DOM数据以及激光点云数据的支持,使得对地形地物的判读、空间信息的量测与获取更加准确和便捷,诸如房高、树高以及塔高等信息可借助激光点云数据方便地自动提取,有利于在选线过程中对一些重要地物的避让,譬如公路、村庄、规划区、庙宇、榕树、矿区等,设计人员能够更加精确细致地进行路径选择,更加精细地控制工程投资,更加合理地选择塔位,最大限度避免线群矛盾的发生;4. 更有利于实现数字电网。 DEM data with high accuracy, the data support the DOM, and the laser point cloud data, such that the interpretation of the terrain, the measuring and obtaining more accurate and convenient, such as high rooms, height and column information may be higher by means of laser point clouds spatial information automatically extract data easily, help avoid some of the important feature in the line selection process, such as roads, villages, district planning, temples, banyan, mining and other designers to choose the path more precisely detailed, more finely control engineering investment, a more reasonable choice to towers, the maximum to avoid conflicts of line groups; 4 more conducive to the realization of a digital grid. 数字电网的建设是必然趋势,高精度机载激光雷达数据可直接用于数字电网建设,业主无须再次投资进行航飞数据获取,能够为业主节省潜在投资并可加快数字电网建设;5. 更有利于实现终勘定位或施工过程中可能遇到的改线。 Construction of digital power grid is an inevitable trend, high-precision airborne lidar data can be directly used in digital power grid construction, the owners do not need to invest again Airlines fly data acquisition, can save a potential investment for the owners and can speed up the digital grid construction; 5 more. conducive to achieving a final survey to locate or rerouted during construction may encounter. 机载激光雷达路径优化选线平台无需配备航空摄影测量所需的专业立体观测设备,并可非常方便地安装在便携机上,因此设计人员可在野外现场进行选线,并根据即时断面数据进行预排杆,大大提高改线作业效率;6.优化选线效率更高。 LIDAR Selection internet without route optimization with specialized equipment required for stereoscopic aerial photogrammetry, and easily mounted on a portable device, so the designer can be selected from the scene in the field line, and according to the immediate pre-section data discharge lever, greatly improving work efficiency rerouting; 6. Selection optimization more efficiently. 机载激光雷达数据处理自动化程度更高,无须进行航外像控测量。 LIDAR data processing higher degree of automation, without the need for external control like flight measurement. 选线平台操作简便,三维场景更加逼真,可方便进行全线漫游以及多视角观察,便于设计人员从整体上把握线路路径。 Selection platform is simple, more realistic three-dimensional scene, and roaming across the board can be easily multi-angle observation, the designer to facilitate grasp a whole line paths. 内业平断面测图作业效率大大提高。 Within the industry, flat sectional mapping operation efficiency is greatly improved. 经统计,与基于航空摄影测量方法的优化选线技术相比,其内业平断面测图作业效率可提高75%左右。 The statistics, compared with optimization line selection method based on aerial photography, within the industry, which is a plan sectional view of a work efficiency can be increased as measured about 75%. 附图说明图1为基于机载激光雷达数据的架空送电线路优化选线作业流程图; 图1的解释见具体实施方式。 Figure 1 is a flowchart Transmission Line Overhead line selection Optimization of airborne laser radar data; see FIG. 1 explained specific embodiments. 图2为基于机载激光雷达数据的架空送电线路优化选线平台功能图;图2中,架空送电线路优化选线平台功能包括DEM与DOM几何叠加构建线路走廊三维场景、优化选线、断面自动提取、平面地物快速采集、影像调绘图输出、影像路径图输出、 预排杆以及海量空间数据的快速调度与管理。 FIG 2 is a power transmission line based on the overhead airborne laser radar data optimization Selection internet function diagram; FIG. 2, Overhead Line Optimization Selection internet function comprising DEM and DOM geometric superposition Construction line corridor three-dimensional scene, optimizing route selection, automatic extraction section, the plane fast acquisition feature, fast scheduling and management of graphics output video transfer, the video output path diagram, the pre-shift stick and mass spatial data. 图3为架空送电线路排杆成果图。 3 transmission line is a row of rods results overhead FIG. 图3中的上部分为断面图;下部分是平面图。 An upper part in FIG. 3 is a sectional view; is a plan view of the lower portion. 具体实施方式下面以广西壮族自治区大新-南宁500kV架空送电线路工程为例,按照图l所示工作流程,详细说明如下:步骤一:机载激光雷达航飞设计与数据采集1. 根据初步设计路径方案以及相关的规程规范,利用1/1万、1/5万或者其它具有地理定位的遥感卫星影像进行航飞设计并进行机载激光雷达数据采集;2. 坐标系统设计。 DETAILED DESCRIPTION In Guangxi Dah - Nanning 500kV overhead transmission line project, for example, according to the workflow shown in FIG. L, described in detail as follows: Step 1: LIDAR and aircraft flight data acquisition Design 1. The initial path design programs and related standards and regulations, the use of 1/1 million and 1 / 50,000, or other remote sensing image will be geo-located and designed aircraft flying airborne liDAR data acquisition; 2 coordinate system design. 采用1954北京坐标系,高斯投影,3度带。 Using the 1954 Beijing coordinate system, Gauss projection, with 3 degrees. 高程基准采用1956黄海高程;3. DEM与DOM精度设计。 1956 using the Yellow elevation reference elevation;. 3 DEM and DOM precision design. DEM与DOM成果须达到1/2000比例尺精度要求;4. 航高设计。 DEM and DOM outcomes required to achieve precision scale 1/2000; 4. Hang high design. 根据DEM与DOM产品精度,确定激光点间隔为2.5米,影像分辨率不大于0.3米,据此确定航高,与机载激光雷达设备的性能相关;5. 在线路沿线范围内(并不一定必须在所需采集数据的线路走廊范围内)布设不少于2 个地面GPS基站,并确保摄区内任意位置距离最近基站之间的距离不超过50KM,进行地面GPS基站点联测,获取WGS84坐标以及1954北京坐标系坐标。 The DEM and DOM precision, laser spot determined interval of 2.5 m, the image resolution is no greater than 0.3 m, whereby high-determined flight, associated with airborne laser radar apparatus performance;. 5 along the line in the range of (not necessarily must be within a desired range line corridor acquired data) laid less than 2 GPS ground station, the subject area and to ensure that no more than anywhere 50KM distance between the nearest base station, a base station GPS ground joint measurement, acquisition WGS84 coordinates and the 1954 Beijing coordinate system coordinates. 6. 根据初设路径方案以及地形起伏情况,合理布设航线。 The preliminary design plan and path topography, a reasonable layout routes. 具体要求包括:1) 每条航线直线飞行时间不超过30分钟;2) 每一航带的宽度不小于2km;3) 若一条航带需要几条航线覆盖,必须确保航线间无绝对漏洞;4) 航飞范围应沿线路起点、终点处纵向各向外延伸lkm。 Requirements include: 1) each time these straight flight than 30 minutes; 2) each with a width of not less than flight 2km; 3) if an aircraft with the need to cover several routes, must ensure that no absolute between these vulnerabilities; 4 ) aircraft flying along the road range should start and end points of each of the longitudinally extending outwardly lkm. 7. 飞行平台采用运-5或运-12。 7. flight platform or ship transport -12 -5. 步骤二:机载激光雷达数据处理1. 激光点云数据解算。 Step two: LIDAR data processing 1. The laser point cloud data solver. 利用机载POS数据、地面基站点GPS测量数据以及激光扫描数据,通过解算以获取用户选定坐标系下的激光点云数据;2. 利用机载激光雷达数据处理软件譬如TerraSolid软件(该软件系基于MicroStation平台运行,包括TerraScan、 TerraModeler以及TerraPhoto三个模块)进行激光点云数据的分类、 坐标系统转换以及1/2000比例尺DEM和DOM的生成;3. DEM与DOM数据分块。 Airborne POS data, ground station GPS-based measurements and laser scan data, selected by a user count to obtain a laser point cloud data by solving the coordinate system;. 2 using airborne laser radar data processing software such TerraSolid software (software that MicroStation operation is based on internet, including TerraScan, TerraModeler and TerraPhoto three modules) classifies laser point cloud data, and the coordinate system conversion 1/2000 scale DEM and DOM generation;.. 3 and DOM DEM data block. 为了便于数据快速调度与管理,将DEM与DOM数据按照正南正北分块,分块大小为3kmX3km,各分块间保持至少10米重叠。 To facilitate fast scheduling and managing data, the data in DEM and DOM north south block, the block size is 3kmX3km, among the holding block overlaps at least 10 meters. 步骤三:DEM、 DOM及激光点云数据导入优化选线平台,输出影像调绘图并进行航外调绘1. 将DEM、 DOM以及激光点云数据导入具有如图二所示功能的优化选线平台,以实现对DEM、 DOM和激光点云数据的快速调度、管理与应用;2. 输出影像调绘图。 Step three: DEM, DOM and laser point cloud data lead optimization internet line selection, the output image tone mapping and navigation induce a schematic 1. DEM, DOM and a laser point cloud data lead having a platform FIG optimized route selection function shown two , in order to achieve on DEM, and fast scheduling DOM laser point cloud data, and application management; 2 tone output image drawing. 通过将分块的DOM进行拼接,实现每一航带的DOM拼接输出, 考虑到野外携带以及调绘的需要,通常按照1/10000比例尺输出并打印;3. 航外调绘。 DOM by the splicing block, the output of each flight to achieve DOM splicing tape, and taking into account the field carrying the required tone painted, and printed in the normal output scale of 1/10000; 3. Air drawn redeployment. 沿可研推荐路径或初设路径对路径左右两侧各300米范围进行调绘。 Left and right sides of the path 300 meters along each drawing can be adjusted RESEARCH recommended route or path preliminary design. 调绘内容包括平面位置以及高度及交叉角等。 Including drawing imaging plane position and the height and the intersection angle. 平面位置包括建筑物、电力线、通信线以及地下电缆、道路、水系以及经济作物区以及其它影响线路路径的地物。 Planar feature location comprises a building, power lines, communication lines and underground cables, roads, water, and other areas and crops affected line route. 高度及交叉角调绘包括建筑物高度、交叉跨越点高度、杆塔高度以及一、二级通信线及地下电缆与线路的交叉角等。 Schematic cross angle and height adjustment includes building height, across the intersection point height, and a tower height, two communication lines and underground cables crossing angle of the line. 步骤四:参考航外调绘成果,在优化选线平台中利用DEM、 DOM构建线路走廊三维场景, 根据相关设计规范,进行优化选线1.在优化选线平台中,通过对DEM、 DOM数据的快速压縮、索引实现对其快速调度与管理;2. 将DEM与DOM进行几何叠加,实现线路走廊三维场景的构建(线路走廊地形的三维建模);3. 设计人员参考航外调绘成果,在三维场景中进行优化选线。 Step Four: Reference Air induce a painted results in optimizing the use of line selection DEM platform, DOM line corridor constructed three-dimensional scene, according to the relevant design specifications, to optimize line selection 1. Selection optimization platform, through the DEM, DOM data fast compression, indexing for fast dispatch and its management; 2. the DEM geometric superposition and DOM, achieve line corridor to build three-dimensional scene (three-dimensional terrain modeling line corridor); 3. Air redeployment painted design guidance results, optimizing route selection in the 3D scene. 步骤五:根据所选路径进行断面自动提取,包括中线以及左右边线,利用断面数据进行预排杆1. 根据所选路径,按照每5米采样间隔(视地形情况而定,对于地形平坦地区,可适当加大间隔,相反,对于地形复杂地区,可适当减小采样间隔)从DEM数据中自动提取断面数据,包括中线以及左右边线;2. 设计人员根据断面数据进行预排杆。 Step Five: for automatic extraction section based on the selected path, and left and right edges including the center line, using the data pre-discharge section bar 1. The selected path, at every sampling interval 5 m (depending on the terrain the case may be, for flat terrain area, may be appropriate to increase the spacing, on the contrary, for a terrain area can be appropriately reduced sampling interval) to automatically extract data from the DEM data section, including the middle and left and right edges;. 2 designer pre-discharge section according to the data bar. 预排杆通过,则输出影像路径图并进入下一步骤,否则返回步骤四。 Walkthrough rod passes, the image output path map and proceeds to the next step, otherwise returning to step four. 步骤六:平断面图数据采集1. 根据优化选线路径成果,进行中线以及左右边线断面数据自动提取。 Step Six: 1. Data Acquisition flat sectional view according to line selection path optimization results, and left and right edges midline section data automatically extracted. 对于风偏以及危险点则在三维场景中人工采集;2. 利用DOM对为线路中心线两侧各50m范围进行平面地物的快速采集,对于树高、 房高可利用激光点云数据以及DEM数据进行自动提取。 Partial dangerous to the wind and the manual collection points in the 3D scene; 2 performs rapid acquisition using the DOM plane feature is the centerline of each line on both sides 50m range, for height, high room available laser point cloud data and DEM automatic extraction data. 同时,对于一些隐蔽地物或者电力线等,则结合航外调绘成果进行采集。 Meanwhile, some hidden feature for power lines or the like, the combined results of Air induce a schematic collected. 3. 平断面图中,平面比例尺为1/5000,高程比例尺为1/500。 3. flat sectional view, the plane scale 1/5000, 1/500 scale elevation. 步骤七:排杆设计人员根据平断面图数据以及设计规范利用优化排杆软件譬如道亨软件进行优化排杆。 Step 7: shift stick designers specifications using optimization software such as shift stick shift stick Dao Heng software optimized level in accordance with the design data and the sectional view. 如图三所示。 Shown in Figure III.

Claims (8)

  1. 1、一种架空送电线路优化选线方法,它包括航飞数据采集、数据处理、选线和排杆,其特征在于:其步骤如下: 1)航飞设计,并进行机载激光雷达航飞数据采集; 2)将机载激光雷达数据处理生成数字高程模型DEM数据和数字正射影像图DOM数据; 3)将数字高程模型DEM数据和数字正射影像图DOM以及激光点云数据等导入优化选线平台,输出影像调绘图,并进行航外调绘作业; 4)参考野外调绘成果,在优化选线平台中利用数字高程模型DEM数据以及数字正射影像图DOM几何叠加构建线路走廊三维场景,根据线路设计规范,进行线路优化选线; 5)根据即时自动提取的断面图进行预排杆,预排杆通过后输出影像路径图; 6)根据优化选线路径成果进行平断面图数据采集; 7)优化排杆。 An overhead transmission line selection circuit optimization method comprising flying aircraft data acquisition, data processing, and a discharge line selection lever, characterized in that: the following steps: 1) flying aircraft design and aircraft airborne LiDAR flight data acquisition; 2) the airborne laser radar data processing to generate a digital elevation model (DEM) data, and digital orthophoto FIG DOM transactions; 3) a digital elevation model (DEM) data, and digital orthophoto import images of the DOM, and the laser point cloud data and the like optimization Selection internet, the output image tone mapping, and Air induce a schematic operations; 4) a reference field and mapping results, digital elevation model (DEM) data, and a digital optimization Selection platforms Orthophotomap DOM geometric superposition Construction line corridor D scene, according to the design specifications circuit performs route optimization line selection; 5) pre-discharge lever a sectional view of real-time automatic extraction, the pre-shift stick through an output image path map; 6) is a flat sectional view showing the data optimization according Selection path results acquisition; 7) optimization row bar.
  2. 2、 根据权利要求1所述的架空送电线路优化选线方法,其特征在于:航飞设计,利用机载激光雷达以及航空数码影像设备采集数据的步骤是:根据可研审查后的推荐路径方案或初步设计路径方案,利用1/1万、1/5万或者其它具有地理定位的遥感卫星影像进行航飞设计并进行机载激光雷达数据采集,具体如下:① DEM与DOM精度设计,DEM与DOM成果须达到1/2000比例尺精度要求;② 航高设计,根据DEM与DOM产品精度,确定激光点间隔为2.5米,影像分辨率不大于0.3米,据此确定航高,与机载激光雷达设备的性能相关;③ 在线路沿线范围内布设不少于2个地面GPS基站,并确保摄区内任意位置距离最近基站之间的距离不超过50KM,进行地面GPS基站点联测,获取WGS84坐标以及1954北京坐标系坐标;④ 根据初设路径方案以及地形起伏情况,合理布设航线,具体要求包括:1) 每 2, according to an overhead power transmission line according to claim optimization method to select, comprising: flying aircraft design, the use of airborne LiDAR digital imaging devices and a step of aviation data are collected: the recommended route can be reviewed in the light RESEARCH path scheme or preliminary design scheme, using 1/1 million and 1 / 50,000 for aircraft designed to fly or other remote sensing image and having a geolocation liDAR data acquisition, as follows: ① DEM DOM precision design and, on DEM DOM is required to achieve results with precision dimensions 1/2000; ② design flying height, according to the DOM DEM precision, laser spot determined interval of 2.5 m, the image resolution is no greater than 0.3 m, whereby high-flight determination, and airborne laser related to the performance of the radar apparatus; ③ along the lines laid in the range of not less than 2 GPS ground station, the subject area and to ensure that no more than anywhere 50KM distance between the nearest base station, a base station GPS ground joint measurement, acquisition WGS84 1954 Beijing coordinate system coordinates, and coordinates; ④ according to the preliminary design plan and path topography circumstances, a reasonable layout routes, specific requirements include: 1) each 航线直线飞行时间不超过30分钟;2) 每一航带的宽度不小于2km;3) 若一条航带需要几条航线覆盖,必须确保航线间无绝对漏洞;4) 航飞范围应沿线路起点、终点处纵向各向外延伸lkm。 Airline flying straight time is not more than 30 minutes; 2) the width of each flight with no less than 2km; 3) If a flight with the need to cover several routes, must absolutely ensure that no loopholes between routes; 4) aircraft flying range should be the starting point along the road , at the end of each extending longitudinally outwardly lkm.
  3. 3、 根据权利要求1所述的架空送电线路优化选线方法,其特征在于:将机载激光雷达数据处理生成数字高程模型DEM数据和数字正射影像图DOM数据的过程具体如下:① 激光点云数据解算,对激光点云数据进行滤波、分类后,利用机载POS数据、地面基站点GPS测量数据以及激光扫描数据,通过解算以获取用户选定坐标系下的激光点云数据;② 利用机载激光雷达数据处理软件譬如TerraSolid软件,该软件系基于MicroStation 平台运行,包括TerraScan、 TerraModeler以及TerraPhoto三个模块,进行激光点云数据的分类、坐标系统转换以及1/2000比例尺DEM和DOM的生成;③ DEM与DOM数据分块,将DEM与DOM数据按照正南正北分块,分块大小为3kmX3km,各分块间保持至少10米重叠。 3, according to an overhead power transmission line according to claim optimization method to select, characterized in that: the process airborne LiDAR data generation DEM - processing data, and digital orthophoto FIG DOM specific data as follows: ① Laser solver point cloud data, the laser point cloud data filtering, after classification, onboard the POS data, ground station GPS measurement data group and laser scanning data, by solving for the user at the selected point cloud data of the laser coordinate system ; ② using airborne laser radar data processing software such TerraSolid software that runs on the platform based MicroStation, including TerraScan, TerraModeler and TerraPhoto three modules, are classified laser point cloud data, and converts the coordinate system and 1/2000 scale DEM DOM generation; ③ DEM and DOM data block, the data block DEM and DOM according north south, the block size is 3kmX3km, among the holding block overlaps at least 10 meters.
  4. 4、 根据权利要求1所述的架空送电线路优化选线方法,其特征在于:参考野外调绘成果,在优化选线平台中利用数字高程模型DEM数据以及数字正射影像图DOM几何叠加构建线路走廊三维场景,根据线路设计规范,进行线路优化选线的过程具体如下:① 将DEM、 DOM以及激光点云数据导入具有如图二所示功能的优化选线平台,以实现对DEM、 DOM和激光点云数据的快速调度、管理与应用;② 输出影像调绘图,通过将分块的DOM进行拼接,实现每一航带的DOM拼接输出;③ 航外调绘,沿可研推荐路径或初设路径对路径左右两侧各300米范围进行调绘, 调绘内容包括平面位置以及高度及交叉角等,平面位置包括建筑物、电力线、通信线以及地下电缆、道路、水系以及经济作物区以及其它影响线路路径的地物,高度及交叉角调绘包括建筑物高度、交叉跨越点高度、杆塔 4, according to claim 1, wherein said overhead power transmission line optimization method to select, characterized in that: the reference field and Mapping results using DEM of digital data, and the optimization Selection platforms Orthophotomap DOM geometric superposition Construction process line corridor three-dimensional scene, according to the design specifications line while a line is selected to optimize the line as follows: ① the DEM, DOM and a laser point cloud data lead line having a selected optimization function of the platform shown in Figure 2, in order to achieve DEM, DOM fast scheduling and laser point cloud data, and application management; ② the output image tone mapping, stitching the DOM by the block, the output of each flight to achieve DOM splicing tape; ③ redeployment painted aircraft, along the recommended route or early feasibility the left and right sides of the path of the path provided for each of 300 meters and Mapping, including drawing imaging plane position and the height and the cross angle, the position of the plane including buildings, power lines, communication lines and underground cables, roads, water and cash crop areas and other feature Effect of line paths, the height and angle of intersection comprises building height adjustment schematic, cross-cutting point height, tower 度以及一、二级通信线及地下电缆与线路的交叉角。 And a degree, two communication lines and underground cables crossing angle of the line.
  5. 5、 根据权利要求1所述的架空送电线路优化选线方法,其特征在于:根据即时自动提取的断面图进行预排杆,预排杆通过后输出影像路径图的过程具体如下:① 在优化选线平台中,通过对DEM、 DOM数据的快速压縮、索引实现对其快速调度与管理;② 将DEM与DOM进行几何叠加,实现线路走廊三维场景的构建,即线路走廊地形的三维建模;③ 设计人员参考航外调绘成果,在三维场景中进行优化选线; 5, according to claim 1, wherein said overhead power transmission line optimization method to select, characterized in that: the pre-shift stick a sectional view of real-time automatic extraction, the pre-discharge process of the output image of the road map by the rear bar follows: ① in the optimizing route selection platform, through the rapid compression DEM, DOM data, the index for fast dispatch and its management; ② the DEM geometric superposition and DOM, achieve line corridor to build three-dimensional scene, that is three-dimensional topography of the construction line corridor die; ③ Air induce a schematic design guidance results, optimized route selection in the 3D scene;
  6. 6、 根据权利要求1所述的架空送电线路优化选线方法,其特征在于:根据优化选线路径成果进行平断面图数据采集的过程具体如下:①根据所选路径,按照每5米采样间隔,从DEM数据中自动提取断面数据,包括中线以及左右边线;©设计人员根据断面数据进行预排杆,预排杆通过,则输出影像路径图并进入下一步骤,否则返回步骤四; 6, according to claim 1, wherein said overhead power transmission line optimization method to select, characterized in that: the process of data acquisition flat sectional view according to line selection path optimization results specifically as follows: ① The selected path, with the sampling every 5 m interval, automatically extracted from the DEM data, section data, including neutral and left and right edges; © designer to section data according to the pre-discharge lever, the lever by the pre-discharge, the image output path map and proceeds to the next step, otherwise returning to step four;
  7. 7、 根据权利要求1所述的架空送电线路优化选线方法,其特征在于:根据优化选线路径成果进行平断面图数据采集的过程具体如下:① 根据优化选线路径成果,进行中线以及左右边线断面数据自动提取,对于风偏以及危险点则在三维场景中人工采集;② 利用DOM对为线路中心线两侧各50m范围进行平面地物的快速采集,对于树高、 房高可利用激光点云数据以及DEM数据进行自动提取,同时,对于一些隐蔽地物或者电力线等,则结合航外调绘成果进行采集;③ 平断面图中,平面比例尺为1/5000,高程比例尺为1/500; 7, according to claim 1, wherein said overhead power transmission line optimization method to select, characterized in that: the process of data acquisition flat sectional view according to line selection path optimization results specifically as follows: ① The line selection path optimization results, and midline automatic extraction section data about edges, and the risk for partial wind the manual collection points in the 3D scene; ② using DOM performs rapid acquisition plane feature is the centerline of each line on both sides 50m range, for height, high room available DEM laser point cloud data and the extracted data automatically, simultaneously, some hidden feature for the power line or the like, the combined results of Air induce a schematic collected; ③ a flat cross-sectional view, the plane scale 1/5000, 1/500 scale elevation ;
  8. 8、 根据权利要求]所述的架空送电线路优化选线方法,其特征在于:优化排杆的过程具体如下;设计人员根据平断面图数据以及设计规范利用优化排杆软件进行优化排杆。 8, according to claim] overhead transmission lines according to the optimization method to select, characterized in that: the optimization process follows the discharge rods; designer software specifications using the optimized shift stick shift stick optimized level in accordance with the design data and the sectional view.
CN 200810073725 2008-07-27 2008-07-27 Overhead power transmission line optimized line selection method based on airborne laser radar data CN101335431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810073725 CN101335431A (en) 2008-07-27 2008-07-27 Overhead power transmission line optimized line selection method based on airborne laser radar data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810073725 CN101335431A (en) 2008-07-27 2008-07-27 Overhead power transmission line optimized line selection method based on airborne laser radar data

Publications (1)

Publication Number Publication Date
CN101335431A true true CN101335431A (en) 2008-12-31

Family

ID=40197820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810073725 CN101335431A (en) 2008-07-27 2008-07-27 Overhead power transmission line optimized line selection method based on airborne laser radar data

Country Status (1)

Country Link
CN (1) CN101335431A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074047A (en) * 2011-01-06 2011-05-25 天津市星际空间地理信息工程有限公司 High-fineness urban three-dimensional modeling method
CN102184570A (en) * 2011-04-28 2011-09-14 广东省电力设计研究院 Three-dimensional optimization and line selection system, method and device for roaming establishment in stereoscopic scenes of three-dimensional optimization and line selection system
CN101702200B (en) 2009-11-03 2012-02-29 武汉大学 Automatic classification method of airborne laser radar point cloud data
CN102645203A (en) * 2012-05-18 2012-08-22 四川省科学城久利科技实业有限责任公司 Power line crossover measurement method based on airborne laser radar data
CN102706323A (en) * 2012-05-18 2012-10-03 四川省科学城久利科技实业有限责任公司 Tower footing section extracting method based on airborne laser radar data
CN102955160A (en) * 2011-08-19 2013-03-06 湖北省电力公司电力科学研究院 Three-dimensional laser radar technology based transmission line tower parameter determination method
CN103238167A (en) * 2010-11-30 2013-08-07 国际商业机器公司 Hazard detection for asset management
CN103529455A (en) * 2013-10-21 2014-01-22 中铁第四勘察设计院集团有限公司 Three-dimensional investigation method for dangerous falling rock based on air-borne laser radar
CN103759713A (en) * 2014-01-02 2014-04-30 中铁第四勘察设计院集团有限公司 Panoramic-image-based dangerous falling rock surveying method
CN103791886A (en) * 2014-01-15 2014-05-14 江苏省电力设计院 Google earth assisted short-distance transmission line plane section measurement method in plain regions
CN103791894A (en) * 2014-02-18 2014-05-14 北京恒华伟业科技股份有限公司 Tower positioning method and device for overhead power transmission line
CN103996991A (en) * 2014-06-13 2014-08-20 国家电网公司 Line selecting method and system for electric transmission line
CN104091168A (en) * 2014-07-18 2014-10-08 深圳供电局有限公司 Method for automatically extracting and locating power line based on unmanned aerial vehicle image
GB2521157A (en) * 2013-12-10 2015-06-17 Network Mapping Uk Ltd Infrastructure positioning
CN106778640A (en) * 2016-12-23 2017-05-31 航天星图科技(北京)有限公司 Method for generating land vegetation covering model in three-dimensional visualized environment
CN107238844A (en) * 2017-06-30 2017-10-10 贵州电网有限责任公司输电运行检修分公司 Laser point cloud radar data-based method for making cross-section diagram of power transmission line passage

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702200B (en) 2009-11-03 2012-02-29 武汉大学 Automatic classification method of airborne laser radar point cloud data
CN103238167A (en) * 2010-11-30 2013-08-07 国际商业机器公司 Hazard detection for asset management
CN103238167B (en) * 2010-11-30 2016-08-10 国际商业机器公司 For detecting hazardous conditions within the infrastructure of the location method and system
US9633258B2 (en) 2010-11-30 2017-04-25 International Business Machines Corporation Hazard detection for asset management
CN102074047A (en) * 2011-01-06 2011-05-25 天津市星际空间地理信息工程有限公司 High-fineness urban three-dimensional modeling method
CN102074047B (en) 2011-01-06 2012-08-08 天津市星际空间地理信息工程有限公司 High-fineness urban three-dimensional modeling method
CN102184570A (en) * 2011-04-28 2011-09-14 广东省电力设计研究院 Three-dimensional optimization and line selection system, method and device for roaming establishment in stereoscopic scenes of three-dimensional optimization and line selection system
CN102955160A (en) * 2011-08-19 2013-03-06 湖北省电力公司电力科学研究院 Three-dimensional laser radar technology based transmission line tower parameter determination method
CN102645203B (en) 2012-05-18 2014-07-30 绵阳天眼激光科技有限公司 Power line crossover measurement method based on airborne laser radar data
CN102706323B (en) 2012-05-18 2014-02-05 绵阳天眼激光科技有限公司 Tower footing section extracting method based on airborne laser radar data
CN102645203A (en) * 2012-05-18 2012-08-22 四川省科学城久利科技实业有限责任公司 Power line crossover measurement method based on airborne laser radar data
CN102706323A (en) * 2012-05-18 2012-10-03 四川省科学城久利科技实业有限责任公司 Tower footing section extracting method based on airborne laser radar data
CN103529455B (en) * 2013-10-21 2015-11-04 中铁第四勘察设计院集团有限公司 One kind of radar-based survey methods rockfall dimensional airborne laser unstable rock
CN103529455A (en) * 2013-10-21 2014-01-22 中铁第四勘察设计院集团有限公司 Three-dimensional investigation method for dangerous falling rock based on air-borne laser radar
GB2521157A (en) * 2013-12-10 2015-06-17 Network Mapping Uk Ltd Infrastructure positioning
CN103759713A (en) * 2014-01-02 2014-04-30 中铁第四勘察设计院集团有限公司 Panoramic-image-based dangerous falling rock surveying method
CN103759713B (en) * 2014-01-02 2015-12-02 中铁第四勘察设计院集团有限公司 One kind of survey methods based on unstable rock rockfall panoramic image
CN103791886A (en) * 2014-01-15 2014-05-14 江苏省电力设计院 Google earth assisted short-distance transmission line plane section measurement method in plain regions
CN103791894A (en) * 2014-02-18 2014-05-14 北京恒华伟业科技股份有限公司 Tower positioning method and device for overhead power transmission line
CN103996991A (en) * 2014-06-13 2014-08-20 国家电网公司 Line selecting method and system for electric transmission line
CN104091168B (en) * 2014-07-18 2016-04-13 深圳供电局有限公司 Location Based Automatic Extraction power line image UAV
CN104091168A (en) * 2014-07-18 2014-10-08 深圳供电局有限公司 Method for automatically extracting and locating power line based on unmanned aerial vehicle image
CN106778640A (en) * 2016-12-23 2017-05-31 航天星图科技(北京)有限公司 Method for generating land vegetation covering model in three-dimensional visualized environment
CN106778640B (en) * 2016-12-23 2018-09-25 航天星图科技(北京)有限公司 The method of generating a model of a three-dimensional vegetation covering the lower Visualization Environment
CN107238844A (en) * 2017-06-30 2017-10-10 贵州电网有限责任公司输电运行检修分公司 Laser point cloud radar data-based method for making cross-section diagram of power transmission line passage

Similar Documents

Publication Publication Date Title
Unger Connection between urban heat island and sky view factor approximated by a software tool on a 3D urban database
Li Mobile mapping: An emerging technology for spatial data acquisition
US7376284B2 (en) System, computer program and method for 3D object measurement, modeling and mapping from single imagery
Haala et al. Mobile LiDAR mapping for 3D point cloud collection in urban areas—A performance test
Al-Rousan et al. Automated DEM extraction and orthoimage generation from SPOT level 1B imagery
US20090185741A1 (en) Apparatus and method for automatic airborne LiDAR data processing and mapping using data obtained thereby
Du et al. 3D laser scanning and GPS technology for landslide earthwork volume estimation
US20070269102A1 (en) Method and System of Generating 3D Images with Airborne Oblique/Vertical Imagery, GPS/IMU Data, and LIDAR Elevation Data
CN101604018A (en) Method and system for processing high-definition remote sensing image data
CN101621191A (en) Three-dimensional visual processing method and system for extra high voltage transmission line
Tao Mobile mapping technology for road network data acquisition
CN101452072A (en) Electronic information system for earth monitor and method thereof
Kaartinen et al. Accuracy of 3D city models: EuroSDR comparison
Ridley et al. Evaluating the potential of the forthcoming commercial US high-resolution satellite sensor imagery at the ordnance survey (R)
Gruen Reality-based generation of virtual environments for digital earth
CN102052916A (en) Method for three-dimensional measurement of panoramic real scenes
CN101540020A (en) Three-dimensional line-selection method for road
CN102506824A (en) Method for generating digital orthophoto map (DOM) by urban low altitude unmanned aerial vehicle
Böhm et al. Efficient integration of aerial and terrestrial laser data for virtual city modeling uusing lasermaps
CN101950433A (en) Building method of transformer substation three-dimensional model by using laser three-dimensional scanning technique
CN103017739A (en) Manufacturing method of true digital ortho map (TDOM) based on light detection and ranging (LiDAR) point cloud and aerial image
JPH1193824A (en) Wind power generation system proper place selecting method
Taylor et al. Modelling and prediction of GPS availability with digital photogrammetry and LiDAR
CN101777189A (en) Method for measuring image and inspecting quantity under light detection and ranging (LiDAR) three-dimensional environment
CN102445186A (en) Method for generating road design surface information by laser radar scan

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)