CN101294965A - 一种小型化无标记蛋白质芯片检测系统 - Google Patents

一种小型化无标记蛋白质芯片检测系统 Download PDF

Info

Publication number
CN101294965A
CN101294965A CNA2008101152383A CN200810115238A CN101294965A CN 101294965 A CN101294965 A CN 101294965A CN A2008101152383 A CNA2008101152383 A CN A2008101152383A CN 200810115238 A CN200810115238 A CN 200810115238A CN 101294965 A CN101294965 A CN 101294965A
Authority
CN
China
Prior art keywords
light
sample
protein chip
detecting system
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008101152383A
Other languages
English (en)
Inventor
靳刚
罗一丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Mechanics of CAS
Original Assignee
Institute of Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Mechanics of CAS filed Critical Institute of Mechanics of CAS
Priority to CNA2008101152383A priority Critical patent/CN101294965A/zh
Publication of CN101294965A publication Critical patent/CN101294965A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种小型化无标记蛋白质芯片检测系统包括光入射部分、样品调节台和光接收部分,其中,入射部分包括单色光源、聚焦透镜、光纤、光阑、准直透镜、起偏器和补偿器,光接收部分包括检偏器、成像镜头、图像传感器和图像采集卡,本发明结构小巧、精度高,能够满足单分子膜层检测、反映生物分子相互作用、大面积检测等测量功能和目的,其为蛋白质芯片向实用化普及、现场检测方向发展提供了条件,并有望应用于光学蛋白质芯片系统的实际检测,在生物医学领域具有广阔的应用前景。

Description

一种小型化无标记蛋白质芯片检测系统
技术领域
本发明涉及光学仪器领域,尤其是一种小型化无标记蛋白质芯片检测系统。
背景技术
随着蛋白质芯片技术的不断发展和完善,光学蛋白质芯片系统在生物医学等方面已经获得了一些成功应用,正在向实用化发展、向实际应用领域拓展,例如,临床疾病诊断:同时诊断艾滋病、流感、肝炎等疾病以及进行常规门诊检查等;采血车上的血检:在采血前进行快速、多种疾病排查,保证血源的可靠性;流行病的探测和防治:如禽流感病毒的实地检测和监控等等。
对于这些应用场合,由于检测环境多变,空间条件受限,传统的大型检测设备已不能满足检测要求,将它们简单地搬到现场也不能解决问题。因此,蛋白质芯片检测系统的小型化发展势在必行,现场的实际应用条件也对它提出了更高的要求:首先,仪器需要具有便携式、集成化、固定化的特点,适用于现场检测;其次,仪器需要降低成本,简便操作,使普及成为可能;同时,在小型化时还需保证仪器的高灵敏度和分辨率,达到良好的检测水平。
目前国际上还没有出现商品化的适合光学蛋白质芯片检测的专用检测系统,更没有小型化检测系统。而现有的蛋白质芯片检测系统为了满足多种样品的检验,入射角度、波长、偏振元件等可调,所以体积较大,结构复杂,成本高,只适合在实验室内应用,不能满足蛋白质芯片这一特定体系的实用化检测,限制了蛋白质芯片的应用范围,也为光学蛋白质芯片系统的普及推广带来一定困难。因此,构建适合蛋白质芯片检测的小型、专用系统已成为实际的需求。
发明内容
针对现有技术存在的问题,本发明的目的在于提供一种简便、小型、高精度和专业化的小型化无标记蛋白质芯片检测系统。
为实现上述目的,本发明小型化无标记蛋白质芯片检测系统包括光入射部份、样品调节台和光接收部份,其中,入射部份包括单色光源、聚焦透镜、光纤、光阑、准直透镜、起偏器和补偿器,单色光源发出的单色光经聚焦透镜会聚后由光纤传输到光阑,光阑将该接收到的光转化为点光源,准直透镜将点光源扩展为宽的准直光束,起偏器将准直光束转换为线偏振光,补偿器将线偏振光转换为椭圆偏振光;该椭圆偏振光经过样品调节台上设置的样品反射,其所得的反射光由光接收部份接收处理;所述光接收部份包括检偏器、成像镜头、图像传感器和图像采集卡,所述反射光经检偏器后转化为线偏振光,成像镜头接收线偏振光后形成样品二维光强分布的光学图像,图像传感器将光学图像转变成一维时序电信号,并通过图像采集卡将一维时序电信号转化成计算机能够处理的数字图像信号。
进一步,所述样品调节台上设置有平移、俯仰调整的方位调整装置。
进一步,所述小型化无标记蛋白质芯片检测系统还设置有对准器,该对准器与所述样品调节台相配合使用,用于校准样品方位。
进一步,所述单色光源为LED光源。
本发明小型化无标记蛋白质芯片检测系统结构小巧、精度高,能够满足单分子膜层检测、反映生物分子相互作用、大面积检测等测量功能和目的,其为蛋白质芯片向实用化普及、现场检测方向发展提供了条件,并有望应用于光学蛋白质芯片系统的实际检测,在生物医学领域具有广阔的应用前景。
附图说明
图1为本发明结构示意图;
图2为AMC7135用于LED的驱动电路图;
图3为自准直方法原理图;
图4为对准器工作原理图。
具体实施方式
如图1所示,本发明小型化无标记蛋白质芯片检测系统:单色光源1发出的光经聚焦透镜2会聚进入光纤3,光纤3出射端设置一小孔光阑4,其位于准直透镜5的焦点,经过准直透镜5后,点光源被扩展为宽的准直光束,经起偏器6和补偿器7变换成为偏振态可控的椭圆偏振光,并倾斜入射到固定在样品调节台8上的蛋白质芯片样品14表面,并且样品的方位可通过样品调节台8上设置的方位调整装置来调整其平移和俯仰,并借助对准器13来检验,以确保样品表面处于理想的空间方位,并保证多次测量的一致性。蛋白质芯片样品14对入射光波进行调制,使得反射光波的偏振态发生变化,反射光波进入检偏器9后成为线偏振光,然后由成像镜头10把样品成像在图像传感器(CCD)11上,从而获得样品的椭偏图像。图像的视频信号首先进入数据采集和控制部分的图像采集卡12,变换成计算机可接收的数字信号,结果以灰度图形式保存下来,然后由分析软件可以进行进一步分析。
其中,起偏器6和检偏器9均属于线偏振元件,器件本身并无差别,仅使用目的不同。理想的线偏振元件仅使具有一定振动方向的光波通过这个振动方向称为该元件的主方向。但是对于实际的线偏振元件,当自然光入射后,透射光中不仅含有平行于主方向的振动成分,而且还含有少量的垂直振动的成分。如果元件对沿主方向振动成分的透过率为Ty,对沿垂直于主方向的振动成分的透过率为Tx,则元件的消光比P定义为
P = T x T y
理想线偏振元件的Tx=0,Ty=1,P=0。
消光比是线偏振元件最重要的质量指标,除此之外,线偏振元件的主要参数还有偏振度、光能利用率、通光口径、光谱范围和稳定度等。根据工作原理和材料的不同,目前已有多种类型的线偏振元件,如反射式、折射式、二向色性偏振片和各种晶体偏振元件等。在本系统中,要求线偏振元件有较高的消光比,通光口径要大于光束直径。根据系统设计要求,选用二向色性线性偏振片,它是将人造的塑料二向色性偏振片夹在两个无应力的各向同性玻璃片之间制成的,重量轻,体积小。
本系统中应用补偿器7使线偏振光转变成椭圆偏振光。补偿器7属于线性延迟器,它可以使光波在两个相互垂直的方向上产生一定的位相延迟差。当偏振光垂直透过时,延迟器将光波分解为两个线偏振分量,振动方向分别平行和垂直于延迟器的光轴。这两个方向的光波在延迟器中的传播对应着不同的折射率,分别为ne和no,则延迟器引入的位相差δ和光程差L的公式为
δ = 2 π λ d ( n e - n o ) - - - ( 3.2 )
L=d(ne-no)
其中d为延迟器的厚度,λ为光波波长。
利用光通过晶体可以改变入射光波的振幅和相位差、从而改变光波的偏振态的特点,可以选用不同的晶体制成延迟器。常用材料通常有云母、石英、氟化镁晶体等,选用位相延迟片作为补偿器,位相延迟标称名义值为90°。
图像传感器11是将二维光强分布的光学图像转变成一维时序电信号的光电转换器件。它把入射到传感器光敏面上空间分布的光强信息转换为按时序串行输出的电信号,从而再现入射的光辐射图像。根据图像的分解形式不同,图像传感器主要可分成三种类型:光机扫描、电子束扫描和固体自扫描图像传感器。目前,应用于成像系统中的主要是固体图像传感器,包括电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)等。CMOS成本和功耗较低,但CCD在灵敏度、分辨率、噪声控制等方面都优于CMOS传感器。
CCD是由一系列排列紧密的MOS电容组成,其可为模拟型或数字型。它以电荷作为信号,实现电荷的产生、存储、传输和检测。根据系统的设计要求,选用黑白视频CCD摄像头。
图像采集卡12是将图像传感器输出的一维模拟电信号转化成计算机能够处理的数字图像信号,其关键部件为一个A/D(模拟/数字)转换器。
在系统中,成像镜头10将样品成像在图像传感器上。成像镜头的性能主要由焦距、相对孔径和视场角等光学特性参数决定。由于镜头成实像时物点在两倍焦距之外,所以焦距决定了最短成像距离。相对孔径与镜头光圈F值互为倒数,它决定了镜头的最大通光口径,影响像平面的光照度。视场角决定了被摄样品的范围。在本系统中,为了在短距离内成像,选择短焦距镜头。
本系统选用LED作为本系统的单色光源1,并为了保证光强,选用LED光源。为了提高LED的发光稳定性,采取恒流驱动和温控的方法。本实施例中选用稳流芯片AMC7135,与LED相匹配,可以达到在直流电压驱动的条件下稳流的效果,工作电路图如图2所示,在2.7-6V的电压驱动下,可以采用两片AMC7135联用的方式驱动3W LED。同时,在实验中采取了为LED加散热片并与金属接触的方法,使其散热充分。
在椭偏测量中,椭偏参数的测量结果与入射角度有直接的关系,为了减小入射角标称值与实际值之间的误差,必须对样品进行准确的定位。而且在多次测量时,为了使测量结果具有可比性和一致性,也需要使样品每次均放置在同一位置。因此,为了确保样品表面处于理想的空间方位,样品台需要有多维调节功能,并需要通过对准装置进行检验,作为调校依据。本系统采用立式结构,检测时样品与水平面平行。制作好的样品放入样品盒中,由限位装置固定在样品调节台8上。样品调节台8上设置的方位调整装置选用多个空间方位调节器件的组合,可以进行沿空间坐标系x、y、z方向的平移和旋转。在系统安装时,利用激光器作为准直光源确定起偏部分和检偏部分的光轴,使光轴与样品中心相交,可确定样品中心在水平面内x、y轴的位置。在样品前置一矩形光阑,当其像的中心处于CCD几何中心时,可确定样品的纵向位置。为了确定样品放置是否与水平面平行,可以利用自准直的方法对样品进行校准。它可以高灵敏度地检测到样品与水平面的微小倾角,一般角度分辨率可达到秒量级,其原理如图3所示。点光源16位于准直透镜的焦点,经准直透镜15投射出一束准直光。若被测平面与光束截面存在夹角θ,则反射回来的光点17与准直透镜的焦点产生偏离,两点之间的距离d可表示为
d=f′tan2θ
其中f′为透镜焦距。因此,通过测量两点的距离可以得到待测平面的倾角。
由于样品尺寸固定,当更换样品时,样品的轴向偏移量较小,此时仅需调整样品的倾斜。所以在系统中,将对准器13固定于样品台上方,光轴与水平面垂直。对准器13原理图如图4所示,光源22发出的光经过透镜21和光阑20变为点光源,在经过半反透镜19和准直透镜18入射到样品14上,反射光经过半反透镜19的反射进入目镜24观测区域。经样品14平面反射后的像点位于分划板23中心时,说明样品与对准器13的光轴垂直。当样品14偏离垂直位置时,亮点偏离分划板23中心,结果可通过目镜24观察到。在更换样品后,调节样品调节台的台面倾斜旋钮,通过对准器13的目镜24观察,当样品14反射的像点在分划板23中心时,说明样品放置准确定位。
系统采样的关键是成像镜头与图像传感器配合,使样品在短距离内清晰成像。为了达到短距成像的目的,并提高系统的分辨能力,成像时样品应尽量充满像面,使系统放大倍率与像接收面相匹配,实现了近距离成像。
为了进一步提高成像清晰度,可以采取空间滤波的方法,减小系统杂散光干扰。探测光束中的平行光部分会聚于成像透镜的焦点,而非平行光分量偏离焦点。在理想情况下,应仅对平行光部分成像,可获得样品的有效信息。根据频率域分析,成像透镜的后焦面即为物的频谱面,在该面上可以得到物的傅里叶频谱。而物边缘的衍射效应和系统的噪声干扰在频率域都属于高频分量,若在频谱面上置一小孔光阑,可看作一个在傅里叶平面上直径为D0的圆形低通滤波器,可以达到仅使低频光通过的目的。所以,在成像透镜的后焦点处加一个小孔光阑,可以阻挡非平行光部分成像,遮挡杂散光,抑制高频分量,从而提高图像清晰度,优化成像效果。

Claims (5)

1、小型化无标记蛋白质芯片检测系统,其特征在于,该系统包括光入射部份、样品调节台和光接收部份,其中,入射部份包括单色光源、聚焦透镜、光纤、光阑、准直透镜、起偏器和补偿器,单色光源发出的单色光经聚焦透镜会聚后由光纤传输到光阑,光阑将该接收到的光转化为点光源,准直透镜将点光源扩展为宽的准直光束,起偏器将准直光束转换为线偏振光,补偿器将线偏振光转换为椭圆偏振光;该椭圆偏振光经过样品调节台上设置的样品反射,其所得的反射光由光接收部份接收处理;所述光接收部份包括检偏器、成像镜头、图像传感器和图像采集卡,所述反射光经检偏器后转化为线偏振光,成像镜头接收线偏振光后形成样品二维光强分布的光学图像,图像传感器将光学图像转变成一维时序电信号,并通过图像采集卡将一维时序电信号转化成计算机能够处理的数字图像信号。
2、如权利要求1所述的小型化无标记蛋白质芯片检测系统,其特征在于,所述样品调节台上设置有平移、俯仰调整的方位调整装置。
3、如权利要求1所述的小型化无标记蛋白质芯片检测系统,其特征在于,所述小型化无标记蛋白质芯片检测系统还设置有对准器,该对准器与所述样品调节台相配合使用,用于校准样品方位。
4、如权利要求1所述的小型化无标记蛋白质芯片检测系统,其特征在于,所述单色光源为LED光源。
5、如权利要求1所述的小型化无标记蛋白质芯片检测系统,其特征在于,所述图像传感器为模拟型或数字型。
CNA2008101152383A 2008-06-19 2008-06-19 一种小型化无标记蛋白质芯片检测系统 Pending CN101294965A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008101152383A CN101294965A (zh) 2008-06-19 2008-06-19 一种小型化无标记蛋白质芯片检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008101152383A CN101294965A (zh) 2008-06-19 2008-06-19 一种小型化无标记蛋白质芯片检测系统

Publications (1)

Publication Number Publication Date
CN101294965A true CN101294965A (zh) 2008-10-29

Family

ID=40065381

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008101152383A Pending CN101294965A (zh) 2008-06-19 2008-06-19 一种小型化无标记蛋白质芯片检测系统

Country Status (1)

Country Link
CN (1) CN101294965A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435418A (zh) * 2011-09-15 2012-05-02 中国科学院长春光学精密机械与物理研究所 ArF激光光学薄膜元件综合偏振测量装置及测量方法
CN104955204A (zh) * 2014-03-28 2015-09-30 深圳市海洋王照明工程有限公司 带测气压定位功能的手电筒电路
CN104955194A (zh) * 2014-03-25 2015-09-30 深圳市海洋王照明工程有限公司 一种手电筒电路
CN104955202A (zh) * 2014-03-28 2015-09-30 深圳市海洋王照明工程有限公司 带计算器功能的手电筒电路
CN108872615A (zh) * 2018-04-26 2018-11-23 迪瑞医疗科技股份有限公司 一种耦合式凝血测试系统及方法
CN112236666A (zh) * 2018-03-15 2021-01-15 堀场(法国)有限公司 瞬时椭偏仪或散射仪及相关测量方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435418A (zh) * 2011-09-15 2012-05-02 中国科学院长春光学精密机械与物理研究所 ArF激光光学薄膜元件综合偏振测量装置及测量方法
CN102435418B (zh) * 2011-09-15 2013-08-21 中国科学院长春光学精密机械与物理研究所 ArF激光光学薄膜元件综合偏振测量装置及测量方法
CN104955194A (zh) * 2014-03-25 2015-09-30 深圳市海洋王照明工程有限公司 一种手电筒电路
CN104955194B (zh) * 2014-03-25 2019-02-22 深圳市海洋王照明工程有限公司 一种手电筒电路
CN104955204A (zh) * 2014-03-28 2015-09-30 深圳市海洋王照明工程有限公司 带测气压定位功能的手电筒电路
CN104955202A (zh) * 2014-03-28 2015-09-30 深圳市海洋王照明工程有限公司 带计算器功能的手电筒电路
CN104955204B (zh) * 2014-03-28 2019-02-22 深圳市海洋王照明工程有限公司 带测气压定位功能的手电筒电路
CN104955202B (zh) * 2014-03-28 2019-06-14 深圳市海洋王照明工程有限公司 带计算器功能的手电筒电路
CN112236666A (zh) * 2018-03-15 2021-01-15 堀场(法国)有限公司 瞬时椭偏仪或散射仪及相关测量方法
CN108872615A (zh) * 2018-04-26 2018-11-23 迪瑞医疗科技股份有限公司 一种耦合式凝血测试系统及方法

Similar Documents

Publication Publication Date Title
CN103969239B (zh) 一种分光瞳激光差动共焦拉曼光谱测试方法及装置
CN103411957B (zh) 高空间分辨双轴共焦图谱显微成像方法与装置
CN100451678C (zh) 高光谱全偏振三维成像集成探测系统
CN101308091B (zh) 测量光学非线性的4f相位相干成像方法
CN1144906A (zh) 薄膜厚度和折射率的成像检测法及其设备
CN101294965A (zh) 一种小型化无标记蛋白质芯片检测系统
CN101153914B (zh) 遥感机理测试装置及方法
CN101813558A (zh) 一种测量光学系统调制传递函数的装置及方法
CN102589428B (zh) 基于非对称入射的样品轴向位置跟踪校正的方法和装置
CN101021447A (zh) 测量1/4波片的相位延迟和快轴方向的方法和装置
CN104515748B (zh) 一种基于飞秒激光的太赫兹时域光谱仪
CN104165582A (zh) 一种基于反射光栅的相移点衍射干涉检测装置及检测方法
CN1900740A (zh) 高光谱全偏振成像遥感系统
CN102353451A (zh) 二次声光可调滤波超光谱成像方法和装置
CN103389284A (zh) 表面等离子体共振系统和其检测方法
CN109632264B (zh) 一种摄像装置环境试验稳定性的检测装置及方法
CN100451622C (zh) 表面等离子体共振生化多通道外差相位检测方法及系统
CN105067528A (zh) 二维共焦显微非线性强度扫描系统和测量方法
CN106338498A (zh) 水含量分布检测装置及其应用
CN109932162B (zh) 一种基于白光配准的腔模参数检测装置及检测方法
CN108572143B (zh) 全偏振测量显微镜
CN104931481A (zh) 激光双轴差动共焦诱导击穿-拉曼光谱成像探测方法与装置
US20100308205A1 (en) Method for auto focus searching of optical microscope
CN209264563U (zh) 一种折射率显微测量系统
CN206095586U (zh) 一种新型光纤折射率分布测量装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20081029