CN101290506A - 控制系统及其调整方法 - Google Patents

控制系统及其调整方法 Download PDF

Info

Publication number
CN101290506A
CN101290506A CNA2007101013827A CN200710101382A CN101290506A CN 101290506 A CN101290506 A CN 101290506A CN A2007101013827 A CNA2007101013827 A CN A2007101013827A CN 200710101382 A CN200710101382 A CN 200710101382A CN 101290506 A CN101290506 A CN 101290506A
Authority
CN
China
Prior art keywords
signal
control system
adjustment
produce
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007101013827A
Other languages
English (en)
Inventor
蔡清雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Inc
Delta Optoelectronics Inc
Original Assignee
Delta Optoelectronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Optoelectronics Inc filed Critical Delta Optoelectronics Inc
Priority to CNA2007101013827A priority Critical patent/CN101290506A/zh
Publication of CN101290506A publication Critical patent/CN101290506A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

本发明公开了一种控制系统,用以控制一受控体所产生的一输出信号,包括一主控单元、一第一调整单元及一第二调整单元,通过第一倍率与第二倍率的两个权重参数的调整,达成控制系统的强健性、快速响应,且使受控体输出信号的超越量消失或趋近零。控制系统具备目标频宽、抵抗低频干扰与传递函数追随的技术特征,借由主控单元、第一调整单元与第二调整单元的设计,及第一倍率与第二倍率的两个权重参数的调整,以实时调控的方式达成上述的技术特征。

Description

控制系统及其调整方法
技术领域
本发明是关于一种控制系统及其调整方法,特别是关于一种具有强健性(Robustness)的控制系统及其调整方法。
背景技术
控制系统在促进现代文明及科技的发展中,扮演愈来愈重要的角色。举例来说,家用电气产品、汽车与浴室的马桶皆是控制系统,而控制系统在工业上的应用更是普遍。
在伺服机构应用中,通常会先根据系统的物理行为来建立数学模型,借由数学模型中的控制函数,可以方便地预测与控制系统的行为。
传统的比例积分微分(PID)控制器包含比例(Proportional)项、积分(Integral)项与微分(Derivative)项,比例项依据误差大小来调整控制器的输出,积分项用以消除稳态误差,微分项则有预测误差走向的作用。由于它的架构简单,所以至今还广受使用。
以马达为例来做说明,请参阅图1,其为现有的马达控制系统的方块示意图。在图1中,受控体11为马达,根据马达运转的物理行为,以建立本控制系统10受控体11的数学模型,模型的传递函数为Kt/((Jm+Jd)s+B),其中Jm为一马达惯量,Jd为一负载惯量,B为一阻尼系数,Kt为一比例值。受控体11接收一驱动信号PV,据以产生一输出信号PY,本例的输出信号PY为一转速。而马达在运转过程中会遭受外来的干扰(Disturbance),干扰可能来自电磁或机械,在此以一第三加总器111将干扰列入控制系统10的考虑因素,亦即第三加总器111加总来自前端一主控制器12所产生的一第三操作信号PU3与一干扰信号PW,以产生用以驱动马达的驱动信号PV。在图1的现有马达实施例中,做了简化的图示,较完整地说,第三操作信号PU3经过一高频宽的电流回路,再与干扰信号PW结合,此时,第三操作信号PU3为一等效的电枢电流,干扰信号PW为一干扰转矩。
图1的主控制器12为一比例积分(PI)控制器,控制器12的传递函数为KP+KI*1/s;其中包括一比例函数KP与一积分函数KI*1/s;而比例函数KP亦为一比例系数,用以提高控制系统10的一开回路增益频宽,使控制系统10能够快速响应;KI为一积分系数,用以降低控制系统10的稳态追随误差。由于控制系统10的一目标频宽Bw愈宽,其响应速度愈快,因此,一般而言,设定比例系数KP为2πBw(Jm+Jd)/Kt,以保证开回路增益具有目标频宽Bw。主控制器12接收一误差信号PE,误差信号PE经比例函数KP处理,以产生一第一操作信号PU1;误差信号PE经积分函数KI*1/s处理,以产生一第二操作信号PU2;第一操作信号PU1与第二操作信号PU2经由一第二加总器121的加总,产生第三操作信号PU3
控制系统10为一闭回路控制系统,具有一第一加总器141,第一加总器141将包含有设定值命令的输入信号PR减去受控体11的输出信号PY,以产生误差信号PE给主控器12。整个闭回路控制系统10的目的在尽量使输出信号PY的大小维持与输入信号PR的设定值一致,以不受干扰信号PW的影响。
请参阅图2,其为现有的控制系统的步阶响应图。图2中包括步阶函数命令输入信号曲线A1、图1的第三操作信号曲线A2与图1的输出信号曲线A3。如图2所示,输入信号PR设定为步阶函数命令,经主控制器12处理,将产生第三操作信号PU3,以提供给受控体11;当图1的控制系统10要求快速响应与微小误差时,会导致受控体10的输出信号PY具有较大的超越量。
另外,因为大部分的工业制程的响应很慢,当利用比例系数、积分系数与一微分函数中的一微分系数调整控制系统输出信号的响应时,会产生困难性。使用者可能必须等几分钟甚至是几小时,以观察由调整所产生的响应,使借由尝试错误来调整控制器,变为一个令人厌烦且耗时的工作;有时,甚至无法调整至满足系统的需求。
综上所论,可知:如何让控制系统在快速响应与微小误差时,减小受控体输出信号的超越量,减小调整的时间,且达成控制系统的强健性,为发展本发明的主要动机。
发明内容
鉴于上述现有技术存在的问题,本发明提出一种控制系统及其调整方法。
本发明提出一种控制系统,包括一主控单元、一第一调整单元及一第二调整单元;其中,根据受控体的物理行为及控制系统的频宽,设计主控单元;根据受控体的响应行为,设计第一调整单元,据以抵消受控体所遭受的一干扰信号;第二调整单元的设计,让控制系统的传递函数趋近第二调整单元的传递函数。如此,据以达成系统的强健性、快速响应,且使受控体输出信号的超越量消失或趋近零。
根据本发明的上述控制系统,用以控制一受控体所产生的一输出信号,包括一主控单元、一第一调整单元及一第二调整单元;其中,主控单元是根据受控体的物理行为所设计,使控制系统的一开回路频宽接近一目标频宽,并产生一第一操作信号;第一调整单元是根据受控体的响应行为所设计,接收第一操作信号,据以产生一第一调整信号,其中第一调整信号、输出信号与第一操作信号经运算产生一第二操作信号,使输出信号接近第一调整信号,据以抵消受控体所遭受的一干扰信号;第二调整单元接收一输入信号,据以产生一第二调整信号,其中第二调整信号、输出信号与输入信号经运算产生一第三操作信号,以提供给主控单元,使控制系统的传递函数趋近第二调整单元的传递函数。
本发明提出另一种控制系统,包括一主控单元及一第一调整单元;其中,主控单元的设计,使其符合控制系统的目标频宽;第一调整单元的设计,使受控体的输出信号接近第一调整单元所产生的第一调整信号,据以抵消受控体所遭受的一干扰信号。如此,达成高效率与消除不确定因素的调整功效。
根据本发明的另一种控制系统,用以控制一受控体所产生的一输出信号,包括一主控单元及一第一调整单元;其中,主控单元使控制系统的一开回路频宽接近一目标频宽,并产生一第一操作信号;第一调整单元接收第一操作信号,据以产生一第一调整信号,其中第一调整信号、输出信号与第一操作信号经运算产生一第二操作信号,使输出信号接近第一调整信号,据以抵消受控体所遭受的一干扰信号。
本发明又提出一种控制系统的调整方法,借由控制系统的目标频宽,设计一控制函数;接着,借由控制函数所产生的一第一操作信号,产生一第一调整信号,并经由运算与反馈,使受控体所产生的一输出信号接近第一调整信号。若需要更进一步的稳定效果,则借由一第二调整函数的作用,使控制系统的传递函数趋近第二调整函数。如此,达成直觉式、容易性与友善的调整功效。
根据本发明的上述控制系统的调整方法,用以调整一受控体所产生的一输出信号,包括下列步骤:首先,制定控制系统的一目标频宽;接着,根据目标频宽,设计一控制函数,使控制系统的一开回路频宽接近目标频宽,并产生一第一操作信号;接着,借由该第一操作信号,产生一第一调整信号;然后,运算该第一调整信号、该输出信号与该第一操作信号,产生一第二操作信号,使该输出信号接近该第一调整信号。
附图说明
为让本发明的上述目的、特征和优点能更明显易懂,以下结合附图对本发明的具体实施方式作详细说明,其中:
图1为现有的马达控制系统的方块示意图;
图2为现有的控制系统的步阶响应图;
图3为本发明所提出的控制系统的方块示意图;
图4为本发明所提出的控制系统在受控体为马达时的方块示意图;
图5为图4的控制系统的第一步阶响应图;
图6为图4的控制系统的第二步阶响应图;
图7为图4的控制系统的第三步阶响应图;
图8为图4的控制系统的第四步阶响应图;及
图9为图4的控制系统的第五步阶响应图。
具体实施方式
为了叙述清楚本发明所提出的控制系统及其调整方法,下面列举多个较佳实施例加以说明:
请参阅图3,其为本发明所提出的控制系统的方块示意图。根据图3所实现的第一实施例中,控制系统30用以控制一受控体31所产生的一输出信号Y,包括一主控单元32、一第一调整单元33及一第二调整单元34。其中,主控单元32是控制系统30的核心部分,当第一调整单元33与第二调整单元34没有加入控制系统30的运作且控制系统30在开回路状态时,根据受控体31的物理行为设计主控单元32,使控制系统30的一开回路频宽接近一目标频宽Bw,并产生一第一操作信号U1。上述说明中,第一调整单元33没有加入控制系统30,是利用设定第一调整单元33所经回路中一第一放大器332的一第一倍率h为零来达成;第二调整单元34没有加入控制系统30,是利用设定第二调整单元34所经回路中一第二放大器344的一第二倍率m为零来达成。而所述的主控单元32通常包括一比例积分控制器。
受控体31在操作的过程中,会遭受到不确定因素的干扰(Disturbance),其大小为一干扰信号W,在此,利用一第三加总器311将干扰信号W纳入控制系统30的控制范围。干扰信号W会影响控制系统30的强健性,使控制系统30无法稳定地操作。
于是加入第一调整单元33,使控制系统30能够快速响应以抵消受控体31所遭受的干扰信号W,因此而增加控制系统30的强健性。第一调整单元33是根据受控体31的响应行为所设计,亦即第一调整单元33的传递函数是模拟受控体31的传递函数所设计;第一调整单元33接收第一操作信号U1,据以产生一第一调整信号Q1,其中第一调整信号Q1、输出信号Y与第一操作信号U1经运算,产生一第二操作信号U2;第三加总器311加总第二操作信号U2与干扰信号W,产生一驱动信号V,以驱动受控体31,而产生输出信号Y;经由反馈的作用,使输出信号Y接近第一调整信号Q1,据以抵消受控体31所遭受的干扰信号W。而第一调整单元33适用于抵抗低频干扰。
接着,说明运算第一调整信号Q1、输出信号Y与第一操作信号U1,以产生第二操作信号U2的情形。控制系统30还包括一第一加总器331、一第一放大器332及一第二加总器333;其中,第一加总器331将第一调整信号Q1减去输出信号Y,产生一第一结果信号T1;第一放大器332接收第一结果信号T1,并放大一第一倍率h,以产生一第二结果信号T2,经由调整第一倍率h,使输出信号Y接近第一调整信号Q1;第二加总器333加总第一操作信号U1与第二结果信号T2,以产生第二操作信号U2
当控制系统30的目标频宽Bw增大时,控制系统30所要求的响应速度也要加快,且希望更进一步减小误差、减小受控体输出信号Y的超越量与加强控制系统30的稳定性,于是加入第二调整单元34。第二调整单元34,接收一输入信号R,据以产生一第二调整信号Q2,其中第二调整信号Q2、输出信号Y与输入信号R经运算,产生一第三操作信号U3,以提供给主控单元32;经由控制系统30的作用,使控制系统30的传递函数趋近第二调整单元34的传递函数。
接着,说明运算第二调整信号Q2、输出信号Y与输入信号R,以产生第三操作信号U3的情形。控制系统30还包括一第四加总器342、一回路稳定器343、一第二放大器344及一第五加总器341;其中,第四加总器342将第二调整信号Q2减去输出信号Y,以产生一第三结果信号T3;回路稳定器343接收第三结果信号T3,据以产生一第四结果信号T4,且回路稳定器343具有一含积分的函数F,经由含积分的函数F的作用,使控制系统30达成零稳态误差;第二放大器344接收第四结果信号T4,并放大一第二倍率m,以产生一第五结果信号T5,经由调整第二倍率m,使控制系统30的传递函数趋近第二调整单元34的传递函数;第五加总器341加总输入信号R与第五结果信号T5,并减去输出信号Y,以产生第三操作信号U3
接着,说明根据图3所实现的第二实施例。控制系统30用以控制一受控体31所产生的一输出信号Y,包括一主控单元32及一第一调整单元33。其中,主控单元32是控制系统30的核心部分,当第一调整单元33没有加入控制系统30的运作且控制系统30在开回路状态时,根据控制系统30的一目标频宽Bw设计主控单元31,使控制系统30的一开回路频宽接近一目标频宽Bw,并产生一第一操作信号U1。上述说明中,第一调整单元33没有加入控制系统30,是利用设定第一调整单元33所经回路中一第一放大器332的一第一倍率h为零来达成。所述的主控单元30通常包括一比例积分控制器,而借由受控体31的物理行为以设计主控单元32,可容易使控制系统30的一开回路频宽接近一目标频宽Bw。此时,控制系统30还可包含一第五加总器341,第五加总器341将输入信号R减去输出信号Y,以产生第三操作信号U3,并提供给主控单元32。
而第一调整单元33接收第一操作信号U1,据以产生一第一调整信号Q1,其中第一调整信号Q1、输出信号Y与第一操作信号U1经运算,产生一第二操作信号U2;第三加总器311加总第二操作信号U2与一干扰信号W,产生一驱动信号V,以驱动受控体31,而产生输出信号Y;经由反馈的作用,使输出信号Y接近第一调整信号Q1,据以抵消受控体31所遭受的干扰信号W。所述的第一调整单元33通常是根据受控体31的响应行为所设计,亦即第一调整单元33的传递函数是模拟受控体31的传递函数所设计。且第一调整单元33适用于抵抗低频干扰。
而运算第一调整信号Q1、输出信号Y与第一操作信号U1,以产生第二操作信号U2的情形,相同于第一实施例所述。
第二实施例的控制系统30还包括一第二调整单元34。第二调整单元34,接收一输入信号R,据以产生一第二调整信号Q2,其中第二调整信号Q2、输出信号Y与输入信号R经运算,产生一第三操作信号U3,以提供给主控单元32;经由控制系统30的作用,使控制系统30的传递函数趋近第二调整单元30的传递函数。
而运算第二调整信号Q2、输出信号Y与输入信号R,以产生第三操作信号U3的情形,相同于第一实施例所述的。
在伺服机构应用中,马达为一常用的受控体31。请参阅图4,其为本发明所提出的控制系统在受控体为马达时的方块示意图。图4控制系统40中的符号与图3控制系统30中的符号具有相同的名称与功能,在图4中,受控体31的物理行为的传递函数为Kt/((Jm+Jd)s+B),其中Jm为一马达惯量,Jd为一负载惯量,B为一阻尼系数,Kt为一比例值。为了根据受控体31的物理行为以设计主控单元32,且为了根据受控体31的响应行为以设计第一调整单元33,在此,引入马达与负载总惯量(Jm+Jd)的一惯量估计值J,且预先假设J=Jm+Jd。因此,将主控单元32的传递函数设计为2πBwJ/Kt,其中Bw为控制系统40的目标频宽Bw,J为(Jm+Jd)的惯量估计值,如此,使控制系统40的开回路频宽接近目标频宽Bw。而根据受控体31的响应行为,将第一调整单元33的传递函数设计为Kt/(Js),经过运算与反馈作用,使受控体31所产生的输出信号Y接近第一调整单元33所产生的第一调整信号Q1。再者,将第二调整单元34的传递函数设计为2πBw/(s+2πBw),经过运算与反馈作用,将使控制系统40的传递函数趋近第二调整单元34的传递函数。
接着,在图4中,设定目标频宽Bw=50Hz,第一倍率h=1,第二倍率m=1,以产生实际的数据,并比较图4与图1的两个控制系统,图1的控制系统10为现有的比例-积分-微分(P-I-D)控制架构(其中以比例积分(PI)控制器为例,设定目标频宽Bw=50Hz)。所得结果显示于图5,图5为图4的控制系统的第一步阶响应图。图5中包括步阶函数命令输入信号曲线A1、图1的第三操作信号曲线A2、图1的输出信号曲线A3、图4的第二操作信号曲线B1与图4的输出信号曲线B2。此时,第一调整单元33在一阶50Hz频宽的状态下,其所产生的第一调整信号Q1对应于一第一调整信号曲线(未显示于图中)。如图5所示,本发明的控制系统40所产生的输出信号曲线B2没有超越量,可以容易克服阻尼系数B的影响,并相当接近第一调整信号曲线。
继续探讨第二倍率m对控制系统40的影响,在此,假设惯量估计值J=(Jm+Jd)/2,亦即惯量估计值J只有实际惯量(Jm+Jd)的一半。首先,设定目标频宽Bw=50Hz,第一倍率h=1,然后,依序增加第二倍率m。所得结果显示于图6,图6为图4的控制系统的第二步阶响应图。图6中包括步阶函数命令输入信号曲线A1、图1的输出信号曲线PID、图4的第二倍率为1输出信号曲线m=1、图4的第二倍率为2输出信号曲线m=2、图4的第二倍率为3输出信号曲线m=3与图4的第二倍率为4输出信号曲线m=4。如图6所示,现有如图1的比例积分微分(PID)控制系统10所运作出的输出信号曲线A3,具有很大的超越量;相对地,本发明控制系统40中的第二倍率m增大时,其所对应的超越量愈来愈小,且上升时间也愈来愈趋近20ms。
同样,探讨第一倍率h对控制系统40的影响。首先,设定目标频宽Bw=50Hz,第二倍率m=1,然后,依序增加第一倍率h。所得结果显示于图7,图7为图4的控制系统的第三步阶响应图。图7中包括步阶函数命令输入信号曲线A1、第一倍率为1输出信号曲线h=1、第一倍率为2输出信号曲线h=2、第一倍率为4输出信号曲线h=4、第一倍率为6输出信号曲线h=6与第一倍率为8输出信号曲线h=8。如图7所示,当第一倍率h增大时,其所对应的超越量愈来愈小,且上升时间也愈来愈趋近20ms。
当控制系统40要求的规格为,目标频宽Bw为50Hz、步阶响应的上升时间为20ms且不能有超越量时,经由上述的说明可知,满足规格的最佳设定为目标频宽Bw=50Hz、第一倍率h=1且第二倍率m=4。
接着,说明惯量估计值J的改变对控制系统40的影响。当负载惯量Jd与马达惯量Jm的关系为Jd=10Jm时,分别设定惯量估计值J为J=6Jm、J=11Jm与J=16Jm,据以观察受控体31输出信号Y的变化。所得结果显示于图8,图8为图4的控制系统的第四步阶响应图。图8中包括步阶函数命令输入信号曲线A1、惯量估计值J=6Jm所致第三操作信号曲线C1、惯量估计值J=11Jm所致第三操作信号曲线C2、惯量估计值J=16Jm所致第三操作信号曲线C3、惯量估计值J=6Jm所致输出信号曲线D1、惯量估计值J=11Jm所致输出信号曲线D2与惯量估计值J=16Jm所致输出信号曲线D3。图8中的三条第三操作信号曲线C1、C2、C3是主控单元32、第一调整单元33与第二调整单元34,经第一倍率h与第二倍率m以不同权重加成作用所获得。如图8所示,本发明的控制系统40对惯量估计值J的改变具有良好的强健性。
同样,说明负载惯量Jd的改变对控制系统40的影响。当惯量估计值J与马达惯量Jm的关系为J=11Jm时,分别设定负载惯量Jd为Jd=5Jm、Jd=10Jm与Jd=15Jm,据以观察受控体31输出信号Y的变化。所得结果显示于图9,图9为图4的控制系统的第五步阶响应图。图9中包括步阶函数命令输入信号曲线A1、负载惯量Jd=5Jm所致第三操作信号曲线G1、负载惯量Jd=10Jm所致第三操作信号曲线G2、负载惯量Jd=15Jm所致第三操作信号曲线G3、负载惯量Jd=5Jm所致输出信号曲线H1、负载惯量Jd=10Jm所致输出信号曲线H2与负载惯量Jd=15Jm所致输出信号曲线H3。如图9所示,本发明的控制系统40对负载惯量Jd的改变具有良好的强健性。
接着,说明本发明所提出的控制系统30的调整方法,用以调整一受控体31所产生的一输出信号Y,包括下列步骤:
(a)制定控制系统30的一目标频宽Bw
(b)根据目标频宽Bw,设计一控制函数,使控制系统30的一开回路频宽接近目标频宽Bw,并产生一第一操作信号U1,其中控制函数为主控单元32的传递函数;
(c)借由第一操作信号U1,产生一第一调整信号Q1;及
(d)运算第一调整信号Q1、输出信号Y与第一操作信号U1,产生一第二操作信号U2,使输出信号Y接近第一调整信号Q1
上述方法的步骤(c)包括下列步骤:
(c1)根据受控体31的响应行为,设计一第一调整函数,其中第一调整函数为第一调整单元33的传递函数;及
(c2)提供第一操作信号U1给第一调整函数,产生第一调整信号Q1
上述方法的步骤(d)包括下列步骤:
(d1)从第一调整信号Q1减去输出信号Y,产生一第一结果信号T1
(d2)放大第一结果信号T1一第一倍率h,产生一第二结果信号T2
(d3)相加第二结果信号T2与第一操作信号U1,产生第二操作信号U2;及
(d4)调整第一倍率h的大小,使输出信号Y接近第一调整信号Q1
上述方法在步骤(d)之后还包括下列步骤:
(e)提供一输入信号R给一第二调整函数,产生一第二调整信号Q2,其中第二调整函数为第二调整单元34的传递函数;及
(f)运算第二调整信号Q2、输出信号Y与输入信号R,产生一第三操作信号U3,使控制系统30的传递函数趋近第二调整函数。
上述方法的步骤(f)包括下列步骤:
(f1)从第二调整信号Q2减去输出信号Y,产生一第三结果信号T3
(f2)接收第三结果信号T3,执行一积分运算,产生一第四结果信号T4,其中积分运算是由回路稳定器343中的积分函数F所处理;
(f3)放大第四结果信号T4一第二倍率m,产生一第五结果信号T5
(f4)相加第五结果信号T5与输入信号R,并减去输出信号Y,产生第三操作信号U3;及
(f5)调整第二倍率m的大小,使控制系统30的传递函数趋近第二调整函数。
本发明的特点为:一种控制系统用以控制一受控体所产生的一输出信号,包括一主控单元、一第一调整单元及一第二调整单元,通过第一倍率与第二倍率的两个权重参数的调整,达成控制系统的强健性、快速响应,且使受控体输出信号的超越量消失或趋近零。控制系统具备目标频宽、抵抗低频干扰与传递函数追随的技术特征,借由主控单元、第一调整单元与第二调整单元的设计,及第一倍率与第二倍率的两个权重参数的调整,以实时调控的方式达成上述的技术特征。
综上所述,本发明的控制系统及其调整方法确实能达到发明构想所设定的功效。然而以上所述仅为本发明的较佳实施例,但凡本发明所属领域的技术人员,在依据本发明精神所作的等效修饰或变化,皆应涵盖于本发明的权利要求书内。

Claims (12)

1.一种控制系统,用以控制一受控体所产生的一输出信号,包括:
一主控单元,是根据该受控体的物理行为所设计,使该控制系统的一开回路频宽接近一目标频宽,并产生一第一操作信号;及
一第一调整单元,是根据该受控体的响应行为所设计,接收该第一操作信号,据以产生一第一调整信号,其中该第一调整信号、该输出信号与该第一操作信号经运算产生一第二操作信号,使该输出信号接近该第一调整信号,据以抵消该受控体所遭受的一干扰信号;及
一第二调整单元,接收一输入信号,据以产生一第二调整信号,其中该第二调整信号、该输出信号与该输入信号经运算产生一第三操作信号,以提供给该主控单元,使该控制系统的传递函数趋近该第二调整单元的传递函数。
2.如权利要求1所述的控制系统,其特征在于:
该主控单元包括一比例积分控制器;及/或
该受控体为一马达。
3.如权利要求1所述的控制系统,其特征在于还包括:
一第四加总器,将该第二调整信号减去该输出信号,以产生一第三结果信号;
一回路稳定器,接收该第三结果信号,据以产生一第四结果信号,且具有一积分函数,经由该积分函数的作用,使该控制系统达成零稳态误差;
一第二放大器,接收该第四结果信号,并放大一第二倍率,以产生一第五结果信号,经由调整该第二倍率,使该控制系统的传递函数趋近该第二调整单元的传递函数;及
一第五加总器,加总该输入信号与该第五结果信号,并减去该输出信号,以产生该第三操作信号。
4.如权利要求1所述的控制系统,其特征在于,当该受控体为一马达时:
该受控体的物理行为的传递函数为Kt/((Jm+Jd)s+B),其中Jm为一马达惯量,Jd为一负载惯量,B为一阻尼系数,Kt为一比例值;
该主控单元的传递函数为2πBwJ/Kt,其中Bw为该目标频宽,J为(Jm+Jd)的一惯量估计值;
该第一调整单元的传递函数为Kt/(Js);且
该第二调整单元的传递函数为2πBw/(s+2πBw)。
5.一种控制系统,用以控制一受控体所产生的一输出信号,包括:
一主控单元,使该控制系统的一开回路频宽接近一目标频宽,并产生一第一操作信号;及
一第一调整单元,接收该第一操作信号,据以产生一第一调整信号,其中该第一调整信号、该输出信号与该第一操作信号经运算产生一第二操作信号,使该输出信号接近该第一调整信号,据以抵消该受控体所遭受的一干扰信号。
6.如权利要求5所述的控制系统,其特征在于:
该主控单元是根据该受控体的物理行为所设计;及/或
该第一调整单元,是根据该受控体的响应行为所设计。
7.如权利要求5所述的控制系统,其特征在于还包括:
一第一加总器,将该第一调整信号减去该输出信号,产生一第一结果信号;
一第一放大器,接收该第一结果信号,并放大一第一倍率,以产生一第二结果信号,经由调整该第一倍率,使该输出信号接近该第一调整信号;及
一第二加总器,加总该第一操作信号与该第二结果信号,以产生该第二操作信号。
8.如权利要求5所述的控制系统,其特征在于还包括:
一第三加总器,用以加总该第二操作信号与该干扰信号,以提供给该受控体;及/或
一第二调整单元,接收一输入信号,据以产生一第二调整信号,其中该第二调整信号、该输出信号与该输入信号经运算产生一第三操作信号,提供给该主控单元,使该控制系统的传递函数趋近该第二调整单元的传递函数。
9.一种控制系统的调整方法,用以调整一受控体所产生的一输出信号,包括下列步骤:
(a)制定该控制系统的一目标频宽;
(b)根据该目标频宽,设计一控制函数,使该控制系统的一开回路频宽接近该目标频宽,并产生一第一操作信号;
(c)借由该第一操作信号,产生一第一调整信号;及
(d)运算该第一调整信号、该输出信号与该第一操作信号,产生一第二操作信号,使该输出信号接近该第一调整信号。
10.如权利要求9所述的控制系统的调整方法,其特征在于,步骤(c)包括下列步骤:
(c1)根据该受控体的响应行为,设计一第一调整函数;及
(c2)提供该第一操作信号给该第一调整函数,产生该第一调整信号。
11.如权利要求9所述的控制系统的调整方法,其特征在于,步骤(d)包括下列步骤:
(d1)从该第一调整信号减去该输出信号,产生一第一结果信号;
(d2)放大该第一结果信号一第一倍率,产生一第二结果信号;
(d3)相加该第二结果信号与该第一操作信号,产生该第二操作信号;及
(d4)调整该第一倍率的大小,使该输出信号接近该第一调整信号。
12.如权利要求9所述的控制系统的调整方法,其特征在于,在步骤(d)之后还包括下列步骤:
(e)提供一输入信号给一第二调整函数,产生一第二调整信号;及
(f)运算该第二调整信号、该输出信号与该输入信号,产生一第三操作信号,使该控制系统的传递函数趋近该第二调整函数,而其中步骤(f)包括下列步骤:
(f1)从该第二调整信号减去该输出信号,产生一第三结果信号;
(f2)接收该第三结果信号,执行一积分运算,产生一第四结果信号;
(f3)放大该第四结果信号一第二倍率,产生一第五结果信号;
(f4)相加该第五结果信号与该输入信号,并减去该输出信号,产生该第三操作信号;及
(f5)调整该第二倍率的大小,使该控制系统的传递函数趋近该第二调整函数。
CNA2007101013827A 2007-04-20 2007-04-20 控制系统及其调整方法 Pending CN101290506A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2007101013827A CN101290506A (zh) 2007-04-20 2007-04-20 控制系统及其调整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2007101013827A CN101290506A (zh) 2007-04-20 2007-04-20 控制系统及其调整方法

Publications (1)

Publication Number Publication Date
CN101290506A true CN101290506A (zh) 2008-10-22

Family

ID=40034800

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101013827A Pending CN101290506A (zh) 2007-04-20 2007-04-20 控制系统及其调整方法

Country Status (1)

Country Link
CN (1) CN101290506A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI514099B (zh) * 2013-03-14 2015-12-21 Mitsubishi Electric Corp 伺服控制裝置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI514099B (zh) * 2013-03-14 2015-12-21 Mitsubishi Electric Corp 伺服控制裝置

Similar Documents

Publication Publication Date Title
Sun et al. Direct energy balance based active disturbance rejection control for coal-fired power plant
CN106485064B (zh) 一种抽水蓄能机组水轮机工况智能开机方法
CN102739151B (zh) 一种异步电机pi参数在线调整方法
CN104063584B (zh) 一种汽轮机调速系统控制参数整定方法
CN103888044A (zh) 一种模糊pid控制器的参数自整定方法
CN103701368A (zh) 双电机节能消隙控制方法
JP2008240894A (ja) 無段変速機のサーボポンプの流量制御方法および流量制御装置
Dehkordi et al. A comparative study of various intelligent based controllers for speed control of IPMSM drives in the field-weakening region
Ahmed Optimal speed control for direct current motors using linear quadratic regulator
CN106707753A (zh) 一种泵用直线电机自适应控制方法
CN103296940A (zh) 一种自适应pi控制方法与系统
CN102352812A (zh) 一种基于滑模的水轮机调速系统死区非线性补偿方法
CN201467068U (zh) 交流直线感应电机的智能控制装置
Liu et al. Iterative learning based neural network sliding mode control for repetitive tasks: With application to a PMLSM with uncertainties and external disturbances
DeBoon et al. Multi-objective gain optimizer for a multi-input active disturbance rejection controller: Application to series elastic actuators
CN101290506A (zh) 控制系统及其调整方法
CN102323750A (zh) 嵌入式非线性脉冲协同控制器
Ming et al. Simulation study on fuzzy PID controller for DC motor based on DSP
CN203006584U (zh) 一种板带处理线张紧辊控制装置
Liu et al. A review of decoupling control based on multiple models
Lu et al. Adaptive PI control of ultrasonic motor using iterative learning methods
Velagic et al. Design of fuzzy logic control of permanent magnet DC motor under real constraints and disturbances
CN201278499Y (zh) 双变频电机控制装置
CN113147396B (zh) 一种车速控制方法和装置
CN113184732B (zh) 基于流量控制的浮式钻井节能绞车型升沉补偿系统及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20081022