CN101290441B - 半穿透半反射液晶显示面板及其制造方法 - Google Patents
半穿透半反射液晶显示面板及其制造方法 Download PDFInfo
- Publication number
- CN101290441B CN101290441B CN 200710097072 CN200710097072A CN101290441B CN 101290441 B CN101290441 B CN 101290441B CN 200710097072 CN200710097072 CN 200710097072 CN 200710097072 A CN200710097072 A CN 200710097072A CN 101290441 B CN101290441 B CN 101290441B
- Authority
- CN
- China
- Prior art keywords
- liquid crystal
- tilt angle
- array base
- base board
- active component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Liquid Crystal (AREA)
Abstract
一种半穿透半反射液晶显示面板,包括对向基板、主动元件阵列基板与液晶层。对向基板具有共用电极层,主动元件阵列基板面向共用电极层而配置于对向基板下方,且其包括多条扫描配线、多条数据配线与多个像素单元。各像素单元包括主动元件、反射像素电极与透明像素电极。主动元件与扫描配线及数据配线电连接,反射像素电极与透明像素电极与主动元件电连接,并分别位于反射区内与穿透区内。液晶层配置于主动元件阵列基板与对向基板间。主动元件开启后,穿透区内的电场强度大于反射区内的电场强度。而且,位于反射区内的液晶分子具有预倾角。
Description
发明领域
本发明涉及一种显示面板及其制造方法,并且特别涉及一种半穿透半反射液晶显示面板及其制造方法。
技术背景
随着液晶显示器的普及化,许多便携式电子产品对于液晶显示器的显示功能的要求也逐渐地提高。举例而言,这些便携式电子产品在室内不仅需要具有良好的画面显示效果,同时在强光的环境下也需维持适当的画面品质。因此,如何能让液晶显示器在强光的环境下保有清晰的显示品质,便成为了液晶显示器的技术发展的重要趋势之一。基于上述原因,公知技术发展出一种半穿透半反射式液晶显示器(transflective LCD),使用此半穿透半反射式液晶显示器在户外明亮环境下与在室内环境下同样具有清晰的显示效果。
更具体而言,公知半穿透半反射式液晶显示面板通常采用双重晶穴间距(cell gap)的设计,以使得穿透区域与反射区域均具有良好的显示品质。然而,具有双重晶穴间距的半穿透半反射式液晶显示面板在制作上通常较为复杂,且各像素单元在穿透区域与反射区域之间的交界地带常会有透光度不佳的问题。因此,仍有需要开发出一种具有单一晶穴间距的半穿透半反射式液晶显示面板。
图1A示出了公知具有单一晶穴间距的半穿透半反射式液晶显示面板的剖面图,而图1B示出了图1A的像素单元的示意图。请同时参考图1A与图1B,公知半穿透半反射式液晶显示面板100包括薄膜晶体管阵列基板1100、彩色滤光基板1300与液晶层1200,其中液晶层1200配置于薄膜晶体管阵列基板1100与彩色滤光基板1300之间。此外,彩色滤光基板1300包括基板1310、彩色滤光膜1320、共用电极层1330与配向膜1340,其中彩色滤光膜1320配置于基板1310上,而共用电极层1330配置于彩色滤光膜1320上,且配向膜1340配置于共用电极层1330上。
薄膜晶体管阵列基板1100包括基板1110、多条扫描配线1120、多条数据配线1130、多个像素单元与配向膜1150,其中这些扫描配线1120、数据配线1130与像素单元配置于基板1110上,且配向膜1150配置于基板1110上,并覆盖这些扫描配线1120、数据配线1130与像素单元。更具体而言,每一像素单元包括薄膜晶体管1142、透明像素电极1144a、反射像素电极1144b与介电层1146,其中薄膜晶体管1142与对应的扫描配线1120与数据配线1130电连接。反射像素电极1144b与透明像素电极1144a配置于介电层1146上。此外,反射像素电极1144b与透明像素电极1144a相连,而透明像素电极1144a与薄膜晶体管1142电连接。另外,配向膜1150覆盖反射像素电极1144b与透明像素电极1144a。
背光光源所发出的光线10a依序经由基板1110、透明像素电极1144a、液晶层1200与共用电极1330,然后由基板1310出射。此外,前置光源或外界环境的光线10b也可以依序经由基板1310、共用电极1330与液晶层1200入射至反射像素电极1144b。然后,由反射像素电极1144b所反射的光线10b再依序经由液晶层1200与共用电极1330而自基板1310出射。
图2示出了公知具有单一晶穴间距的半穿透半反射式液晶显示面板的驱动电压与亮度百分比的关系曲线图。请同时参考图1A与图2,由于像素单元具有透明像素电极1144a与反射像素电极1144b,因此公知半穿透半反射式液晶显示面板100会具有穿透区驱动电压-亮度百分比曲线(transmissive V-T curve)T以及反射区驱动电压-亮度百分比曲线(reflective V-T curve)R,其中亮度百分比为该亮度值与该反射或穿透区最大亮度值的百分比。然而,在相同的驱动电压之下,穿透区驱动电压-亮度百分比曲线T与反射区驱动电压-亮度百分比曲线R所对应的亮度百分比并不相同。再者,穿透区达到最大亮度所需的驱动电压V2与反射区达到最大亮度所需的驱动电压V1并不相同。甚至,由于穿透区液晶层的光程(optical path)是反射区液晶层的光程的一半左右,因此当穿透区所呈现的亮度百分比随着驱动电压的增加而达到最大值时,反射区所呈现的亮度百分比却已超过最大值而随着驱动电压的增加而呈现递减的现象。
为解决上述问题,目前已发展出一种技术,其是通过改变反射区的液晶串联电容状态来调低原本以驱动电压所产生的反射像素电极与共用电极层之间的电压差,此时反射区达到最大亮度所需的驱动电压将大于图2所示的V1。因此,只要适当地决定反射区的液晶串联电容状态,即可使反射区达到最大亮度所需的驱动电压近似于穿透区达到最大亮度所需的驱动电压,如图3所示。
然而,在提高反射区达到最大亮度所需的驱动电压的同时,另一方面反射区的所需起始驱动电压(threshold voltage)值亦会随之升高,且此起始电压的变化量与达到最大亮度所需的驱动电压的变化量并不相同。也就是说,公知此技术并无法使反射区的起始电压及达到最大亮度所需的驱动电压同时近似于穿透区的起始电压及达到最大亮度所需的驱动电压(如图三所示),导致半穿透半反射液晶显示面板在穿透态与反射态的光学表现无法同时达到驱动控制上的最佳化。
发明内容
本发明的目的是提供一种半穿透半反射液晶显示面板,以解决反射区与穿透区在亮态与暗态驱动特性不一致的问题。
本发明的另一目的是提供一种半穿透半反射液晶显示面板的制造方法,以制作出可在穿透态与反射态同时达到所需光学表现的半穿透半反射液晶显示面板。
为达上述或是其它目的,本发明提出一种半穿透半反射液晶显示面板,其包括:
对向基板,具有共用电极层以及配向膜,其中该配向膜配置于该共用电极层上;
主动元件阵列基板,面向该共用电极层而配置于该对向基板下方,且该主动元件阵列基板包括多条扫描配线、多条数据配线、配置于该基板上的另一配向膜与多个像素单元,其中各该像素单元具有穿透区与反射区,且各该像素单元包括:
主动元件,与对应的这些扫描配线其中之一与这些数据配线其中之一电连接;
反射像素电极,位于该反射区内,并与该主动元件电连接;
透明像素电极,位于该穿透区内,并与该主动元件电连接,部分该透明像素电极位于该反射像素电极的上方;以及
液晶层,配置于该主动元件阵列基板与该对向基板之间,且该液晶层包括多个液晶分子,其中位于该反射区内的液晶分子的排列方向与该配向膜及该另一配向膜的法线夹一第一预倾角,位于该透明像素电极上方的液晶分子具有第二预倾角,且该第二预倾角小于该第一预倾角;
介电层,配置于该穿透区与该反射区内并覆盖该反射像素电极,且该透明像素电极配置于该介电层上,其中该主动元件阵列基板与该对向基板之间维持单一晶穴间距。
本发明提出一种半穿透半反射液晶显示面板,其包括:
对向基板,具有共用电极层以及配向膜,其中该配向膜配置于该共用电极层上;
主动元件阵列基板,面向该共用电极层而配置于该对向基板下方,且该主动元件阵列基板包括多条扫描配线、多条数据配线、配置于该基板上的另一配向膜与多个像素单元,其中各该像素单元具有穿透区与反射区,且各该像素单元包括:
主动元件,与对应的这些扫描配线其中之一与这些数据配线其中之一电连接;
凸块化金属层,位于该反射区内;
第一介电层,共形地配置于该凸块化金属层上;
反射像素电极,共形地配置于该第一介电层上,且该反射像素电极与该主动元件电连接;
第二介电层,位于该反射区与该穿透区内,并覆盖该反射像素电极;
透明像素电极,配置于该穿透区内的该第二介电层上,并与该主动元件电连接,部分该透明像素电极位于该反射像素电极的上方;以及
液晶层,配置于该主动元件阵列基板与该对向基板之间,且该液晶层包括多个液晶分子,其中位于该反射区内的液晶分子的排列方向与该配向膜及该另一配向膜的法线夹一第一预倾角,位于该透明像素电极上方的液晶分子具有第二预倾角,且该第二预倾角小于该第一预倾角,其中该主动元件阵列基板与该对向基板之间维持单一晶穴间距。
在本发明的一个实施例中,上述的反射像素电极例如是通过上述透明像素电极而与主动元件电连接。
在本发明的一个实施例中,上述反射像素电极例如是与透明像素电极有部分重叠。
本发明提出一种半穿透半反射液晶显示面板,其包括:
对向基板,具有共用电极层以及配向膜,其中该配向膜配置于该共用电极层上;
主动元件阵列基板,面向该共用电极层而配置于该对向基板下方,且该主动元件阵列基板包括基底、位于该基底上的多条扫描配线、位于该基底上的多条数据配线、配置于该基板上的另一配向膜与位于该基底上的多个像素单元,其中各该像素单元具有穿透区与反射区,且各该像素单元包括:
主动元件,与对应的这些扫描配线其中之一与这些数据配线其中之一电连接;
金属层,位于该反射区内,并与该主动元件电连接;
介电层,位于该反射区与该穿透区内,并覆盖该金属层;
反射像素电极,配置于该反射区内的该介电层上,而与该金属层耦合成电容;
透明像素电极,配置于该穿透区内的该介电层上,并与该主动元件电连接,该透明像素电极曝露该反射像素电极,该反射像素电极与该透明像素电极与该介电层的同一上表面接触;以及
液晶层,配置于该主动元件阵列基板与该对向基板之间,且该液晶层包括多个液晶分子,其中位于该反射区内的液晶分子的排列方向与该配向膜及该另一配向膜的法线夹一第一预倾角,位于该透明像素电极上方的液晶分子具有第二预倾角,且该第二预倾角小于该第一预倾角,其中该主动元件阵列基板与该对向基板之间维持单一晶穴间距。
在本发明的一个实施例中,上述的金属层例如是通过上述透明像素电极而与主动元件电连接。
在本发明的一个实施例中,上述的半穿透半反射式液晶显示面板还包括多个聚合物分子,其位于液晶层中。
在本发明的一个实施例中,构成上述液晶层的液晶分子例如是向列型(nematic)液晶分子。
在本发明的一个实施例中,上述的反射像素电极例如是具有凸块化表面。
在本发明的一个实施例中,上述主动元件阵列基板与对向基板之间例如是维持为单一晶穴间距(cell gap)。
本发明还提出一种半穿透半反射液晶显示面板的制造方法,其先提供上述的主动元件阵列基板,然后将对相基板配置于主动元件阵列基板的上方。其中,对向基板具有面向此主动元件阵列基板的共用电极层。接着,在主动元件阵列基板与对向基板之间形成液晶层,此液晶层由多个液晶分子所组成,并掺有多个单体(monomer)分子。之后,施加第一电压至反射像素电极,以使位于反射区内的液晶分子具有第一预倾角,再对反射区内的单体分子进行曝光,以使这些单体分子转换为聚合物分子。在形成上述液晶层之后,还可以施加第二电压至透明像素电极,以使位于穿透区内的液晶分子具有第二预倾角。其中,施加至透明像素电极的第二电压小于上述施加至反射像素电极的第一电压,且该第二预倾角小于该第一预倾角。之后,再对穿透区内的单体分子进行曝光,以使其转变为聚合物分子。
在本发明的一个实施例中,上述对单体分子进行曝光的过程中,例如是以紫外光为曝光光线的。
本发明在制作半穿透半反射液晶显示面板的过程中,令反射区内液晶分子的倾倒角度大于穿透区内液晶分子的倾倒角度,以便于在提高反射区最大亮度所对应的驱动电压的同时,降低反射区内液晶分子的起始电压,进而使半穿透半反射液晶显示面板的反射区与穿透区在亮态及暗态均有相同的光学表现。
为让本发明的上述和其它目的、特征和优点能更明显易懂,下文特举出优选实施例,并配合所附图式,作详细说明如下。
附图说明
图1A为公知具有单一晶穴间距的半穿透半反射式液晶显示面板的剖面图;
图1B为图1A的像素单元的示意图;
图2为公知一种具有单一晶穴间距的半穿透半反射式液晶显示面板的驱动电压与亮度百分比的关系曲线图;
图3公知另一种具有单一晶穴间距的半穿透半反射式液晶显示面板的驱动电压与亮度百分比的关系曲线图;
图4A示出依照本发明第一实施例的半穿透半反射式液晶显示面板的剖面图;
图4B示出图4A的像素单元的等效电路图;
图5为本发明的第二实施例中半穿透半反射液晶显示面板的剖面示意图;
图6为本发明第一实施例的半穿透半反射液晶显示面板的驱动电压与亮度百分比关系曲线图;
图7为本发明第三实施例的半穿透半反射式液晶显示面板的剖面图;
图8A为本发明第四优选实施例的半穿透半反射式液晶显示面板的剖面图;
图8B为图8A的像素单元的示意图;
图9A至图9C为本发明的一个实施例中半穿透半反射液晶显示面板的制造流程剖面图;
图10为本发明的一个实施例中,令半穿透半反射液晶显示面板的穿透区内的液晶分子具有预倾角的剖面示意图。
具体实施方式
图4A示出依照本发明第一实施例的半穿透半反射式液晶显示面板的剖面图,而图4B示出图4A的像素单元的等效电路图。请同时参考图4A与图4B,半穿透半反射式液晶显示面板400包括主动元件阵列基板4100、对向基板4300与液晶层4200。在本实施例中,对向基板4300是彩色滤光基板(color filter substrate),而主动元件阵列基板4100可以是薄膜晶体管阵列基板(thin film transistor arraysubstrate)、二极管阵列基板或由其它具有三个端子的主动元件所构成的基板。然而,主动元件阵列基板4100也可以是COA基板,而对向基板4300为玻璃基板,其中COA基板为彩色滤光膜在薄膜晶体管阵列上(Color Filter On Array,COA)的结构。
对向基板4300包括基板4310、彩色滤光膜4320、共用电极层4330与配向膜4340,其中彩色滤光膜4320配置于基板4310上,而共用电极层4330配置于彩色滤光膜4320上,且配向膜4340配置于共用电极层4330上。
主动元件阵列基板4100包括基板4110、多条扫描配线4120、多条数据配线4130、多个像素单元与配向膜4150,其中这些扫描配线4120、数据配线4130与像素单元配置于基板4110上,而配向膜4150配置于基板4110上,并覆盖这些扫描配线4120、数据配线4130与像素单元(未示出)。
此外,各像素单元具有反射区r与穿透区t,且各个像素单元包括主动元件4142、透明像素电极4144a与反射像素电极4144b,其中主动元件4142与对应的扫描配线4120与数据配线4130电连接。此外,反射像素电极4144b的材料可以是铝、银或是其它具有高反射率的金属,且其与透明像素电极4144a分别位于反射区r与穿透区t,并与主动元件4142电连接。
值得一提的是,反射像素电极4144b可以直接与主动元件4142电连接。或者,反射像素电极4144b也可以经由透明像素电极4144a与主动元件4142电连接,例如是与主动元件4142的漏极电连接。同样地,透明像素电极4144a也可以直接与主动元件4142电连接。或者,透明像素电极4144a也可以经由反射像素电极4144b与主动元件4142电连接。总之,当主动元件4142开启时,透明像素电极4144a与反射像素电极4144b将会得到相同的像素驱动电压。
在此值得注意的是,主动元件4142例如是薄膜晶体管(thin filmtransistor,TFT),而透明像素电极4144a与反射像素电极4144b即是与主动元件4142的漏极(Drain)电连接。当然,上述实施例并非用以限定主动元件4142的种类,其也可以是二极管或是其它具有三个端子的主动元件。
之后,当驱动电压经由主动元件4142输入至透明像素电极4144a与反射像素电极4144b时,反射像素电极4144b与对向基板4300的共用电极层4330间的电位差会小于透明像素电极4144a与共用电极层4330间的电位差。这样,即可提高半穿透半反射液晶显示面板400的反射区r达到最大亮度所需的驱动电压,并使其近似于穿透区t达到最大亮度所需的驱动电压。
进一步来说,本实施例例如是在基板4110上配置一层介电层4148,并使其覆盖反射像素电极4144b,而透明像素电极4144a则配置于介电层4148上。这样,反射像素电极4144b与共用电极层4330之间的距离就大于透明像素电极4144a与共用电极层4330之间的距离。因此,在输入驱动电压至透明像素电极4144a与反射像素电极4144b后,反射区r内的电场强度会小于穿透区t内的电场强度。
介电层4148的材料可以是有机材料或是无机材料,而介电层4148也可以是由主动元件4142中所延伸出来的栅极绝缘层(gateinsulating layer)或其它另加的介电层。然而,介电层4148也可以是覆盖主动元件4142的保护层(passivation layer)或是平坦化层(planarization layer)。再者,透明像素电极4144a的材料可以是铟锡氧化物(indium tin oxide,ITO)、铟锌氧化物(indium zinc oxide,IZO)、锌铝氧化物(aluminum zinc oxide,AZO)或是其它透明导体材料。
此外,部分透明像素电极4144a可以位于反射像素电极4144b的上方,以便于遮蔽位于反射区r与穿透区t交界地带的不规则排列的液晶所造成的漏光。
液晶层4200由多个液晶分子4210所构成,其中这些液晶分子4210例如是向列型液晶分子。而且,液晶层4200配置于主动元件阵列基板4100与对向基板4300之间。此外,本实施例的主动元件阵列基板4100与对向基板4300之间大致维持单一晶穴间距。
更特别的是,位于反射区r内的液晶分子4210已具有预倾角Θ1,且这些液晶分子4210例如是通过掺于液晶层4200中的聚合物分子(未示出)来维持其预倾角度,其制造方法将于后面内容详述。由此可知,本发明令反射区r内的液晶分子4210具有预倾角Θ1,可使液晶分子4210较易于受电场驱动转动,以降低反射区r内的液晶分子4210的起始电压使其近似于穿透区t内液晶分子4210的起始电压。
详细来说,在尚未输入驱动电压至半穿透半反射液晶显示面板400时,配向膜4340与配向膜4150例如是使穿透区t内的液晶分子4210为垂直配向排列。也就是说,穿透区t内的液晶分子4210并无预倾角度,而反射区r内的液晶分子4210的排列方向则是与配向膜4340及配向膜4150的法线夹一角度Θ1。当然,在其它实施例中,配向膜4340与配向膜4150也可以是使穿透区t内的液晶分子4210为水平配向排列,此时反射区r内的液晶分子4210的排列方向与配向膜4340及配向膜4150的表面夹一角度Θ1。
图5为本发明的第二实施例中半穿透半反射液晶显示面板的剖面示意图。请参照图5,在本实施例中,穿透区t内的液晶分子4210也可具有预倾角Θ2,以使穿透区t与反射区r内的液晶分子4210同样能够快速地因应驱动电压而转动。需要注意的是,由于输入驱动电压至透明像素电极4144a与反射像素电极4144b后,反射区r内的电场强度会小于穿透区t内的电场强度,因此预倾角Θ2需小于预倾角Θ1(包括第一实施例中Θ2为0度),才能令反射区r内的液晶分子4210的起始电压近似于穿透区t内的液晶分子4210的起始电压。
图6为本发明第一实施例的半穿透半反射液晶显示面板的驱动电压与亮度百分比关系曲线图。请同时参考图4A与图6,经由前述的电性设计选择适当的介电层4148的材料及厚度,当相同的驱动电压分别输入至透明像素电极4144a与反射像素电极4144b时,穿透区驱动电压-亮度百分比曲线T与反射区驱动电压-亮度百分比曲线R所对应的亮度百分比的差距将可以缩小。换言之,本实施例的半穿透半反射式液晶显示面板400不仅可以采用现有的驱动方式加以驱动,而且在增大驱动电压时,穿透区t的亮度与反射区r的亮度也能同时上升,并且穿透区t达到最大亮度与反射区r达到最大亮度所需的驱动电压基本一致。
更特别的是,由于本发明在提高反射区r达到最大亮度所需的驱动电压的同时,通过前述适当的液晶分子预倾角的配置来降低反射区r内的液晶分子4210的起始电压,因此本发明的半穿透半反射液晶显示面板400的穿透区t与反射区r无论在亮态或暗态均可具有相近的电压控制亮度表现。也就是说,本发明的半穿透半反射液晶显示面板无须采用双重晶穴间距(dual cell gap)便可具有高亮度与良好的显示品质。
第二实施例的半穿透半反射液晶显示面板的驱动电压与亮度百分比曲线关系图与图6相似,此处不再赘述。
另外,请参照图4A及图6,为了提高反射像素电极4144b的反射率,可以将反射像素电极4144b制作成具有凸块化表面(bumpingsurface),因此本发明并不限定反射像素电极4144b的表面型态。就具有凸块化表面的反射像素电极4144b而言,此种型态的反射像素电极4144b的制作方法可以是先在基板4100上形成介电层4146,而使此介电层4146具有凸块化表面。然后,在介电层4146上共形地(conformally)形成反射像素电极4144b,而形成反射像素电极4144b的方式可以是溅镀工艺。然而,具有凸块化表面的反射像素电极4144b也可以是其它型态,其详述如后。
图7为本发明第三实施例的半穿透半反射式液晶显示面板的剖面图。本实施例与第一实施例相似,其不同之处在于形成具有凸块化表面的反射像素电极4144b的方式,下文将针对此差异点加以说明。
请同时参考图4B与图7,在本实施例的半穿透半反射式液晶显示面板700中,主动元件阵列基板7100的每一个像素单元包括主动元件4142、凸块化金属层7110、介电层7120、透明像素电极4144a、反射像素电极4144b与介电层4148。其中,凸块化金属层7110配置于基板4110上,且凸块化金属层7110可以是构成主动元件4142的第一层金属层的一部分。也就是说,凸块化金属层7110可以与主动元件阵列基板7100的共用配线(common line)(未示出)电连接或者凸块化金属层7110本身即为共用配线的一部分,因而凸块化金属层7110与反射像素电极4144b之间将可以形成储存电容(storagecapacitor)。在此,由于共用配线大部分配置于反射像素电极4144b下方,因此不但不会遮蔽到穿透区t的背光光源,更可以提高开口率。
此外,介电层7120共形地配置于凸块化金属层7110上,而介电层7120可以是栅极绝缘层。反射像素电极4144b共形地配置于介电层4120上,因而具有凸块化表面,以提高反射率。另外,反射像素电极4144b可以构成主动元件4142的第二层金属层的一部分。
同样地,经由电性设计选择适当的介电层4148的厚度与材料,当主动元件4142开启时,穿透区t达到最大亮度与反射区r达到最大亮度所需的驱动电压基本一致。另一方面,由于反射区r内的液晶分子4210的预倾角Θ1大于穿透区t内的液晶分子4210的预倾角(在本实施例中其值可为零),因此穿透区t与反射区r的起始电压也基本一致。因此,本实施例的半穿透半反射式液晶显示面板700在穿透区t与反射区r中,可以具有较近似的电压控制亮度表现,而无须采用双重晶穴间距(dual cell gap)。此外,由于反射像素电极4144b具有凸块化表面,因此反射像素电极4144b将具有较高的反射率。
图8A为本发明第四优选实施例的半穿透半反射式液晶显示面板的剖面图,而图8B示出图8A的像素单元的示意图。本实施例与第一实施例相似,其不同之处在于使反射像素电极4144b与对向基板4300的共用电极层4330间的电位差小于透明像素电极4144a与共用电极层4330间的电位差的方式,下文将针对此差异点加以说明。
请同时参考图8A与图8B,在本实施例的半穿透半反射式液晶显示面板800中,主动元件阵列基板8100的每一像素单元包括主动元件4142、金属层8110、介电层8120、透明像素电极4144a与反射像素电极8130。其中,金属层8110与主动元件4142电连接,且金属层8110可以是构成主动元件4142的第一层金属层的一部分或是构成主动元件4142的第二层金属层的一部分。此外,金属层8110可以直接与主动元件4142电连接。或者,金属层8110也可经由透明像素电极4144a电连接至主动元件4142。另外,介电层8120配置于基板2110上,并覆盖金属层8110。其中,介电层8120的材料可以是有机材料或是无机材料。
反射像素电极8130配置于介电层8120上,且反射像素电极8130与金属层8110耦合成电容C3。换言之,反射像素电极8130为浮动电极(floating electrode),也就是不连接至其它电位的独立导体层。在另一实施例中,反射像素电极8130可以具有凸块化表面,以增加反射率。
值得一提的是,反射像素电极8130与金属层8110的重叠面积及两者之间的距离将决定施加于反射像素电极8130上方的液晶层4200的有效电压。由于透明像素电极4144a直接与主动元件4142电连接,而反射像素电极8130与金属层8110电性耦合。因此,当特定驱动电压经由数据配线4120输入像素单元时,透明像素电极4144a与反射像素电极8130所具有的电压互异,因此施加于透明像素电极4144a与反射像素电极8130上的液晶层4200的有效电压也就互异。通过选择反射像素电极8130与金属层8110的重叠面积或距离将可以决定反射像素电极8130所具有的电压,因此穿透区t达到最大亮度与反射区r达到最大亮度所需的驱动电压将可基本一致。
另一方面,由于反射区r内的液晶分子4210的预倾角Θ1大于穿透区t内的液晶分子4210的预倾角(在本实施例中其值为零),因此穿透区t与反射区r的起始电压亦基本一致。
本发明主要是在半穿透半反射液晶显示面板的工艺中使反射区内的液晶分子的预倾角大于穿透区内的液晶分子的预倾角,下文将举例说明本发明的半穿透半反射式液晶显示面板的制造方法。
图9A至图9C为本发明的一个实施例中半穿透半反射液晶显示面板的制造流程剖面图。请参照图9A,首先提供主动元件阵列基板9100。值得注意的是,虽然图9A所示的主动元件阵列基板9100与图4A的主动元件阵列基板4100相似,但主动元件阵列基板9100也可以是上述任一个实施例的主动元件阵列基板。接着,将对向基板4300配置在主动元件阵列基板9100上方,并且在对向基板4300与主动元件阵列基板9100之间形成液晶层4200。其中,液晶层4200例如掺有多个单体分子4211。
请参照图9B,由外部电路(未示出)施加第一电压VH至反射像素电极4144b,以使位于液晶层4200的液晶分子4210具有预倾角Θ1。接着,请参照图9C,利用光罩微影工艺对反射区r内的单体分子4211进行曝光,使其转换为聚合物分子,此照光转换技术原理已于美国专利案号6,781,665中详述,在此不再赘述,至此即大致完成半穿透半反射液晶显示面板900。本实施例例如以紫外光901进行曝光,且紫外光901由对向基板4300的上方射入,且利用光罩500遮盖住穿透区t,使穿透区t内的单体分子4211不会受到紫外光901的照射而转变为聚合物分子(未示出)。此外,半穿透半反射液晶显示面板900的后续工艺与一般半穿透半反射液晶显示面板相似或相同,本领域普通技术人员应该了解其细节,此处不再赘述。
值得一提的是,在另一个实施例中,本发明亦可以在令穿透区t内的单体分子4211转变为聚合物分子前,先施加第二电压VL至透明像素电极4144a上,以使穿透区t内的液晶分子4211具有预倾角Θ2,如图10所示。其中,第二电压小于前述施加于反射像素电极4144b上的第一电压。也就是说,预倾角Θ2小于预倾角Θ1。
之后,再对穿透区t内的单体分子4211进行曝光,而将穿透区t内的液晶分子4210的排列方向固定为具有Θ2的预倾角度。此实施例例如是以紫外光903对穿透区t内的单体分子4211进行曝光,且紫外光903例如可以由主动元件阵列基板9100的下方(也就是半穿透半反射液晶显示面板的背面)射入。此时由于反射像素电极4144b有遮光的功效,因此反射区r内的单体分子4211并不会受到紫外光903的照射。
由上述可知,如欲使穿透区t与反射区r内的液晶分子4210均具有预倾角,则可先施加较小的电压至透明像素电极4144a,然后再由主动元件阵列基板9100下方入射曝光光线,以对穿透区t内的单体分子4211进行曝光,使其转变为聚合物。接着,施加较大的电压至反射像素电极4144b,再由对向基板4300上方入射曝光光线,以对反射区r内的单体分子4211进行曝光,使其转变为聚合物。
综上所述,本发明相较于公知技术,不但可以使半穿透半反射液晶显示面板的反射区达到最大亮度与穿透区达到最大亮度所需的驱动电压基本一致,还可以同时使反射区的起始电压近似穿透区的起始电压。换言之,在本发明中,半穿透半反射液晶显示面板的反射区驱动电压与亮度百分比的关系曲线,穿透区驱动电压与亮度百分比的关系曲线重合度高。因此,本发明的半穿透半反射液晶显示面板除了在亮态时,穿透区与反射区具有相近的电压控制亮度表现,而无须采用双重晶穴间距便可达到高亮度与良好的显示品质以外,在暗态时亦可具有最佳化的光学表现。
虽然本发明已以优选实施例揭露如上,然其并非用以限定本发明,本领域普通技术人员,在不脱离本发明的精神和范围内,可以对本发明进行各种各样的修改,因此本发明的保护范围当以所附的权利要求书所界定的范围为准。
Claims (13)
1.一种半穿透半反射式液晶显示面板,包括:
对向基板,具有共用电极层以及配向膜,其中该配向膜配置于该共用电极层上;
主动元件阵列基板,面向该共用电极层而配置于该对向基板下方,且该主动元件阵列基板包括多条扫描配线、多条数据配线、配置于该基板上的另一配向膜与多个像素单元,其中各该像素单元具有穿透区与反射区,且各该像素单元包括:
主动元件,与对应的这些扫描配线其中之一与这些数据配线其中之一电连接;
反射像素电极,位于该反射区内,并与该主动元件电连接;
透明像素电极,位于该穿透区内,并与该主动元件电连接,部分该透明像素电极位于该反射像素电极的上方;以及
液晶层,配置于该主动元件阵列基板与该对向基板之间,且该液晶层包括多个液晶分子,其中位于该反射区内的液晶分子的排列方向与该配向膜及该另一配向膜的法线夹一第一预倾角,位于该透明像素电极上方的液晶分子具有第二预倾角,且该第二预倾角小于该第一预倾角;
介电层,配置于该穿透区与该反射区内并覆盖该反射像素电极,且该透明像素电极配置于该介电层上,其中该主动元件阵列基板与该对向基板之间维持单一晶穴间距。
2.如权利要求1所述的半穿透半反射式液晶显示面板,还包括多个聚合物分子,位于该液晶层中。
3.如权利要求1所述的半穿透半反射式液晶显示面板,其中该反射像素电极与该透明像素电极有部分重叠。
4.如权利要求1所述的半穿透半反射式液晶显示面板,其中该 反射像素电极通过该透明像素电极而与该主动元件电连接。
5.一种半穿透半反射式液晶显示面板,包括:
对向基板,具有共用电极层以及配向膜,其中该配向膜配置于该共用电极层上;
主动元件阵列基板,面向该共用电极层而配置于该对向基板下方,且该主动元件阵列基板包括基底、位于该基底上的多条扫描配线、位于该基底上的多条数据配线、配置于该基板上的另一配向膜与位于该基底上的多个像素单元,其中各该像素单元具有穿透区与反射区,且各该像素单元包括:
主动元件,与对应的这些扫描配线其中之一与这些数据配线其中之一电连接;
金属层,位于该反射区内,并与该主动元件电连接;
介电层,位于该反射区与该穿透区内,并覆盖该金属层;
反射像素电极,配置于该反射区内的该介电层上,而与该金属层耦合成电容;
透明像素电极,配置于该穿透区内的该介电层上,并与该主动元件电连接,该透明像素电极曝露该反射像素电极,该反射像素电极与该透明像素电极与该介电层的同一上表面接触;以及
液晶层,配置于该主动元件阵列基板与该对向基板之间,且该液晶层包括多个液晶分子,其中位于该反射区内的液晶分子的排列方向与该配向膜及该另一配向膜的法线夹一第一预倾角,位于该透明像素电极上方的液晶分子具有第二预倾角,且该第二预倾角小于该第一预倾角,其中该主动元件阵列基板与该对向基板之间维持单一晶穴间距。
6.如权利要求5所述的半穿透半反射式液晶显示面板,还包括多个聚合物分子,位于该液晶层中。
7.如权利要求5所述的半穿透半反射式液晶显示面板,其中该 金属层通过该透明像素电极而与该主动元件电连接。
8.一种半穿透半反射液晶显示面板,包括:
对向基板,具有共用电极层以及配向膜,其中该配向膜配置于该共用电极层上;
主动元件阵列基板,面向该共用电极层而配置于该对向基板下方,且该主动元件阵列基板包括多条扫描配线、多条数据配线、配置于该基板上的另一配向膜与多个像素单元,其中各该像素单元具有穿透区与反射区,且各该像素单元包括:
主动元件,与对应的这些扫描配线其中之一与这些数据配线其中之一电连接;
凸块化金属层,位于该反射区内;
第一介电层,共形地配置于该凸块化金属层上;
反射像素电极,共形地配置于该第一介电层上,且该反射像素电极与该主动元件电连接;
第二介电层,位于该反射区与该穿透区内,并覆盖该反射像素电极;
透明像素电极,配置于该穿透区内的该第二介电层上,并与该主动元件电连接,部分该透明像素电极位于该反射像素电极的上方;以及
液晶层,配置于该主动元件阵列基板与该对向基板之间,且该液晶层包括多个液晶分子,其中位于该反射区内的液晶分子的排列方向与该配向膜及该另一配向膜的法线夹一第一预倾角,位于该透明像素电极上方的液晶分子具有第二预倾角,且该第二预倾角小于该第一预倾角,其中该主动元件阵列基板与该对向基板之间维持单一晶穴间距。
9.如权利要求8所述的半穿透半反射液晶显示面板,还包括多个聚合物分子,位于该液晶层中。
10.如权利要求8所述的半穿透半反射液晶显示面板,其中该反射像素电极与该透明像素电极有部分重叠。
11.一种半穿透半反射液晶显示面板的制造方法,包括:
提供权利要求1所述的主动元件阵列基板;
将对向基板配置于该主动元件阵列基板上方,其中该对向基板具有面向该主动元件阵列基板的共用电极层;
在该主动元件阵列基板与该对向基板之间形成液晶层,其中该液晶层具有多个液晶分子,并掺有多个单体分子;
施加第一电压至该反射像素电极,以使位于该反射区内的这些液晶分子具有第一预倾角;
对该反射区内的这些单体分子进行曝光,以使这些单体分子转换成聚合物分子;
施加第二电压至该透明像素电极,以使位于该穿透区内的这些液晶分子具有第二预倾角,其中该第二电压小于该第一电压,且该第二预倾角小于该第一预倾角;以及
对该穿透区内的这些单体分子进行曝光,以使这些单体分子转换成聚合物分子。
12.一种半穿透半反射液晶显示面板的制造方法,包括:
提供权利要求5所述的主动元件阵列基板;
将对向基板配置于该主动元件阵列基板上方,其中该对向基板具有面向该主动元件阵列基板的共用电极层;
在该主动元件阵列基板与该对向基板之间形成液晶层,其中该液晶层具有多个液晶分子,并掺有多个单体分子;
施加第一电压至该反射像素电极,以使位于该反射区内的这些液晶分子具有第一预倾角;
对该反射区内的这些单体分子进行曝光,以使这些单体分子转换成聚合物分子;
施加第二电压至该透明像素电极,以使位于该穿透区内的这些液 晶分子具有第二预倾角,其中该第二电压小于该第一电压,且该第二预倾角小于该第一预倾角;以及
对该穿透区内的这些单体分子进行曝光,以使这些单体分子转换成聚合物分子。
13.一种半穿透半反射液晶显示面板的制造方法,包括:
提供权利要求8所述的主动元件阵列基板;
将对向基板配置于该主动元件阵列基板上方,其中该对向基板具有面向该主动元件阵列基板的共用电极层;
在该主动元件阵列基板与该对向基板之间形成液晶层,其中该液晶层具有多个液晶分子,并掺有多个单体分子;
施加第一电压至该反射像素电极,以使位于该反射区内的这些液晶分子具有第一预倾角;
对该反射区内的这些单体分子进行曝光,以使这些单体分子转换成聚合物分子;
施加第二电压至该透明像素电极,以使位于该穿透区内的这些液晶分子具有第二预倾角,其中该第二电压小于该第一电压,且该第二预倾角小于该第一预倾角;以及
对该穿透区内的这些单体分子进行曝光,以使这些单体分子转换成聚合物分子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200710097072 CN101290441B (zh) | 2007-04-17 | 2007-04-17 | 半穿透半反射液晶显示面板及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200710097072 CN101290441B (zh) | 2007-04-17 | 2007-04-17 | 半穿透半反射液晶显示面板及其制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101290441A CN101290441A (zh) | 2008-10-22 |
CN101290441B true CN101290441B (zh) | 2012-12-05 |
Family
ID=40034763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200710097072 Expired - Fee Related CN101290441B (zh) | 2007-04-17 | 2007-04-17 | 半穿透半反射液晶显示面板及其制造方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101290441B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104696887B (zh) | 2015-03-26 | 2018-06-15 | 合肥鑫晟光电科技有限公司 | 一种导光板、背光模组、显示装置及显示控制系统 |
CN110989252B (zh) * | 2019-12-30 | 2022-08-26 | 上海天马微电子有限公司 | 一种显示面板、制作方法及电子设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6204903B1 (en) * | 1995-07-28 | 2001-03-20 | Sumitomo Chemical Company, Limited | Reflector, reflective polarizing plate and reflective liquid crystal display |
CN1415998A (zh) * | 2002-11-18 | 2003-05-07 | 统宝光电股份有限公司 | 半透明半反射式液晶显示器构造 |
US6788363B2 (en) * | 2001-12-31 | 2004-09-07 | Prime View International Corp. Ltd. | Reflector structure of a multi-domain liquid crystal display and its fabrication method |
US6862058B2 (en) * | 2001-08-22 | 2005-03-01 | Nec Lcd Technologies, Ltd. | Transflective liquid crystal device with different alignment modes of liquid crystal molecules |
CN1707337A (zh) * | 2004-06-10 | 2005-12-14 | 阿尔卑斯电气株式会社 | 场序ocb模式半透射反射型液晶显示装置 |
CN1831619A (zh) * | 2006-04-24 | 2006-09-13 | 广辉电子股份有限公司 | 像素结构与液晶显示面板 |
CN1912699A (zh) * | 2006-08-28 | 2007-02-14 | 友达光电股份有限公司 | 制作液晶面板的方法 |
-
2007
- 2007-04-17 CN CN 200710097072 patent/CN101290441B/zh not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6204903B1 (en) * | 1995-07-28 | 2001-03-20 | Sumitomo Chemical Company, Limited | Reflector, reflective polarizing plate and reflective liquid crystal display |
US6862058B2 (en) * | 2001-08-22 | 2005-03-01 | Nec Lcd Technologies, Ltd. | Transflective liquid crystal device with different alignment modes of liquid crystal molecules |
US6788363B2 (en) * | 2001-12-31 | 2004-09-07 | Prime View International Corp. Ltd. | Reflector structure of a multi-domain liquid crystal display and its fabrication method |
CN1415998A (zh) * | 2002-11-18 | 2003-05-07 | 统宝光电股份有限公司 | 半透明半反射式液晶显示器构造 |
CN1707337A (zh) * | 2004-06-10 | 2005-12-14 | 阿尔卑斯电气株式会社 | 场序ocb模式半透射反射型液晶显示装置 |
CN1831619A (zh) * | 2006-04-24 | 2006-09-13 | 广辉电子股份有限公司 | 像素结构与液晶显示面板 |
CN1912699A (zh) * | 2006-08-28 | 2007-02-14 | 友达光电股份有限公司 | 制作液晶面板的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101290441A (zh) | 2008-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7671943B2 (en) | Transflective liquid crystal display panel and fabricating method thereof | |
CN100451794C (zh) | 透射反射型液晶显示器件及其制造方法 | |
CN100432768C (zh) | 单间隙透反式液晶显示面板以及改善其光学特性的方法 | |
KR101197051B1 (ko) | 박막 트랜지스터 표시판 | |
US7298430B2 (en) | Liquid crystal display device | |
KR20030017372A (ko) | 액정 디스플레이 | |
JP2003207795A (ja) | 液晶表示装置 | |
CN101750819A (zh) | 用于透反型液晶显示设备的阵列基板及其制造方法 | |
TWI228200B (en) | Electrooptical device and electronic appliance | |
CN101059612B (zh) | 半穿透半反射式液晶面板与主动元件阵列基板的制造方法 | |
CN1307473C (zh) | 液晶显示器 | |
US20080273130A1 (en) | Display device | |
CN100478766C (zh) | 像素结构 | |
CN101290441B (zh) | 半穿透半反射液晶显示面板及其制造方法 | |
CN100403107C (zh) | 液晶显示器 | |
TWI252445B (en) | Mirror-surface display | |
US8629958B2 (en) | Liquid crystal display device | |
US7656481B2 (en) | Electrode structure and transflective liquid crystal display device using the same | |
US7873250B2 (en) | LCD with reduced flicker and a method for manufacturing thereof | |
CN1296764C (zh) | 半穿透半反射液晶显示器 | |
CN100414408C (zh) | 液晶显示装置 | |
CN100552515C (zh) | 半穿透半反射式液晶显示器及其基板 | |
CN101592817B (zh) | 半穿透半反射式液晶显示装置 | |
KR100538296B1 (ko) | 반사형과 투과형을 동시에 적용한 액정 표시 장치 | |
CN115047673B (zh) | 液晶显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121205 Termination date: 20190417 |