CN101281989A - Coplanar waveguide based on SOI substrate and its fabrication method - Google Patents
Coplanar waveguide based on SOI substrate and its fabrication method Download PDFInfo
- Publication number
- CN101281989A CN101281989A CNA2008100369129A CN200810036912A CN101281989A CN 101281989 A CN101281989 A CN 101281989A CN A2008100369129 A CNA2008100369129 A CN A2008100369129A CN 200810036912 A CN200810036912 A CN 200810036912A CN 101281989 A CN101281989 A CN 101281989A
- Authority
- CN
- China
- Prior art keywords
- soi substrate
- coplanar waveguide
- silicon
- silicon dioxide
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 62
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 31
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 31
- 238000005260 corrosion Methods 0.000 claims abstract description 10
- 230000007797 corrosion Effects 0.000 claims abstract description 10
- 239000010410 layer Substances 0.000 claims description 41
- 229910052710 silicon Inorganic materials 0.000 claims description 30
- 239000010703 silicon Substances 0.000 claims description 30
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 27
- 238000005530 etching Methods 0.000 claims description 24
- 238000005516 engineering process Methods 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 125000006850 spacer group Chemical group 0.000 claims description 9
- 239000002344 surface layer Substances 0.000 claims description 9
- 238000000206 photolithography Methods 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 238000002955 isolation Methods 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 239000012212 insulator Substances 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 abstract description 14
- 239000004020 conductor Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000002500 effect on skin Effects 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Landscapes
- Element Separation (AREA)
Abstract
本发明提供了一种基于SOI衬底的共平面波导及其制作方法。所述共平面波导包括SOI衬底,形成在SOI衬底上的二氧化硅层,以及形成在二氧化硅层上且间隔排列的地线和信号线,其中,相邻地线和信号线之间的间隔带上开设有沿地线和信号线走向的腐蚀孔带,且腐蚀孔带的下方形成条形凹槽。本发明还相应给出了上述基于SOI衬底的共平面波导的制作方法。采用本发明的基于SOI衬底的共平面波导可在不增加共平面波导尺寸和不引起其它损耗增加的前提下,降低介质的有效介电常数,从而减小介质损耗,提高传输特性。
The invention provides a coplanar waveguide based on an SOI substrate and a manufacturing method thereof. The coplanar waveguide includes an SOI substrate, a silicon dioxide layer formed on the SOI substrate, and a ground line and a signal line formed on the silicon dioxide layer and arranged at intervals, wherein the adjacent ground line and the signal line Corrosion hole strips along the direction of the ground wire and the signal line are provided on the interval strips between them, and strip-shaped grooves are formed under the corrosion hole strips. The present invention also correspondingly provides a method for manufacturing the coplanar waveguide based on the SOI substrate. The coplanar waveguide based on the SOI substrate of the present invention can reduce the effective dielectric constant of the medium without increasing the size of the coplanar waveguide and causing no increase in other losses, thereby reducing the dielectric loss and improving the transmission characteristics.
Description
技术领域technical field
本发明属于集成电路器件制造领域,尤其涉及一种基于绝缘衬底硅(SOI)衬底的共平面波导及其制作方法。The invention belongs to the field of integrated circuit device manufacturing, in particular to a coplanar waveguide based on a silicon-on-insulator (SOI) substrate and a manufacturing method thereof.
背景技术Background technique
在互补型金属氧化物半导体(CMOS)射频集成电路(RFIC)中,微波传输线是不可或缺的组成部分,它的主要用途是以最小的损耗传输电磁能量。此外,微波传输线还用于构成谐振电路、滤波器等微波元器件。In complementary metal-oxide-semiconductor (CMOS) radio-frequency integrated circuits (RFICs), microwave transmission lines are an integral component whose main purpose is to transmit electromagnetic energy with minimal loss. In addition, microwave transmission lines are also used to form microwave components such as resonant circuits and filters.
共平面波导是射频集成电路中最常用的传输线之一,影响共平面波导损耗的因子有导体损耗、介质损耗、辐射损耗。其中主要是导体损耗和介质损耗。导体损耗主要由金属导体本身的电阻、高频下的趋肤效应和邻近效应引起。趋肤效应在高频下不可避免,其强弱由材料和频率决定;邻近效应是由于金属线圈相互靠近,电磁干扰引起电流在导体截面不均匀流动导致导线电阻的增加,可以通过增加地线与信号线之间的距离加以改善。但上述距离与共平面波导特征阻抗密切相关,且增加距离不利于提高集成度,目前主要通过减小介质损耗来降低共平面波导的传输损耗。解决方法包括:在低阻硅上覆盖低介电常数材料,如聚酰亚胺膜;采用高阻衬底,如高阻硅或多孔硅衬底;采用地屏蔽技术等。Coplanar waveguide is one of the most commonly used transmission lines in radio frequency integrated circuits. Factors affecting the loss of coplanar waveguide include conductor loss, dielectric loss, and radiation loss. The main ones are conductor loss and dielectric loss. Conductor loss is mainly caused by the resistance of the metal conductor itself, the skin effect at high frequencies, and the proximity effect. The skin effect is inevitable at high frequencies, and its strength is determined by the material and frequency; the proximity effect is due to the proximity of the metal coils to each other, and electromagnetic interference causes the current to flow unevenly in the conductor cross section, resulting in an increase in the resistance of the wire. It can be increased by increasing the ground wire and The distance between signal lines was improved. However, the above distance is closely related to the characteristic impedance of the coplanar waveguide, and increasing the distance is not conducive to improving the integration level. At present, the transmission loss of the coplanar waveguide is mainly reduced by reducing the dielectric loss. Solutions include: covering low-resistance silicon with low dielectric constant materials, such as polyimide film; using high-resistance substrates, such as high-resistance silicon or porous silicon substrates; using ground shielding technology, etc.
CMOS工艺一般都采用掺杂较高的硅衬底,在射频电路工作时能量损失较多,所以,在这样的衬底上难以形成高品质的无源器件。并且高频下通过低阻硅衬底的串扰较严重,难以集成高性能的电路,如射频电路、模拟电路、数字电路等。为了克服硅CMOS射频工艺中固有的缺点,人们正寻找硅CMOS技术的替代技术,如SiGe、SiC、SOI等技术,其中SOI技术以其独特的材料结构克服体硅材料的不足,能减小寄生电容,加快速度,降低功耗,减小串扰,是最有希望的硅CMOS替代技术。因此设计基于SOI衬底的低损耗共平面波导显得非常必要。The CMOS process generally uses a highly doped silicon substrate, and the energy loss is large when the radio frequency circuit is working. Therefore, it is difficult to form high-quality passive devices on such a substrate. Moreover, the crosstalk through the low-resistance silicon substrate is serious at high frequencies, making it difficult to integrate high-performance circuits, such as radio frequency circuits, analog circuits, digital circuits, etc. In order to overcome the inherent shortcomings of silicon CMOS radio frequency technology, people are looking for alternative technologies of silicon CMOS technology, such as SiGe, SiC, SOI and other technologies. Among them, SOI technology overcomes the shortage of bulk silicon materials with its unique material structure and can reduce parasitic Capacitors, for faster speed, lower power consumption, and less crosstalk, are the most promising silicon CMOS replacement technology. Therefore, it is very necessary to design low-loss coplanar waveguides based on SOI substrates.
发明内容Contents of the invention
本发明所解决的技术问题在于提供一种等效介电常数较小的基于SOI衬底的共平面波导及其制作方法,以降低共平面波导的介质衰减常数,改善传输特性。The technical problem solved by the present invention is to provide a coplanar waveguide based on an SOI substrate with a small equivalent dielectric constant and its manufacturing method, so as to reduce the dielectric attenuation constant of the coplanar waveguide and improve transmission characteristics.
为了解决上述技术问题,本发明提供一种基于SOI衬底的共平面波导,所述共平面波导包括SOI衬底,形成在SOI衬底上的二氧化硅层,以及形成在二氧化硅层上且交替排列的地线和信号线,其中,相邻地线和信号线之间的间隔带上开设有沿地线和信号线走向的腐蚀孔带,且腐蚀孔带的下方形成条形凹槽。In order to solve the above technical problems, the present invention provides a coplanar waveguide based on an SOI substrate. The coplanar waveguide includes an SOI substrate, a silicon dioxide layer formed on the SOI substrate, and a silicon dioxide layer formed on the silicon dioxide layer. And alternately arranged ground wires and signal wires, wherein, the space between adjacent ground wires and signal wires is provided with corrosion hole belts along the direction of the ground wires and signal wires, and strip-shaped grooves are formed under the corrosion hole belts .
进一步地,所述共平面波导包括两条地线和一条信号线,开设于该两条地线和一条信号线之间形成两个条形凹槽,所述凹槽开设的深度为暴露出SOI衬底表层硅下方的隐埋氧化层,所述凹槽的槽壁与二氧化硅层的夹角为0°~90°。Further, the coplanar waveguide includes two ground wires and one signal wire, two strip-shaped grooves are formed between the two ground wires and one signal wire, and the depth of the grooves is such that the SOI For the buried oxide layer under the surface silicon of the substrate, the included angle between the groove wall of the groove and the silicon dioxide layer is 0°-90°.
本发明的另一方案是提供一种基于SOI衬底的共平面波导的制作方法,所述方法包括下列步骤:Another solution of the present invention is to provide a method for manufacturing a coplanar waveguide based on an SOI substrate, the method comprising the following steps:
提供一SOI衬底,所述SOI衬底表层硅下方具有隐埋氧化层;An SOI substrate is provided, and a buried oxide layer is provided under the surface silicon of the SOI substrate;
在所述SOI衬底上沉积一层二氧化硅,在二氧化硅层上形成一金属层,通过光刻、刻蚀去除部分金属,形成一条信号线和两条地线,且所述信号线夹在两条地线之间;A layer of silicon dioxide is deposited on the SOI substrate, a metal layer is formed on the silicon dioxide layer, and part of the metal is removed by photolithography and etching to form a signal line and two ground lines, and the signal line Sandwiched between two ground wires;
在所述信号线与地线之间间隔带的二氧化硅层上通过光刻、刻蚀形成两条腐蚀孔带,所述腐蚀孔均匀排列在间隔带上,暴露出SOI衬底表层硅;On the silicon dioxide layer of the spacer between the signal line and the ground line, two etching holes are formed by photolithography and etching, and the etching holes are evenly arranged on the spacer, exposing the silicon on the surface of the SOI substrate;
通过腐蚀孔,将所述的间隔带下方的SOI衬底表层硅腐蚀掉,形成条形凹槽。Through the etching holes, the silicon on the surface layer of the SOI substrate under the spacer strips is etched away to form strip-shaped grooves.
进一步地,所述的SOI衬底采用注氧隔离、硅片键合或智能剥离等技术制备。Further, the SOI substrate is prepared by techniques such as oxygen injection isolation, silicon wafer bonding or intelligent stripping.
进一步地,用腐蚀工艺,通过腐蚀孔将所述的间隔带下方的SOI衬底表层硅腐蚀掉。Further, the silicon on the surface layer of the SOI substrate under the spacer zone is etched away through the etching hole by using an etching process.
进一步地,采用等离子增强化学气相沉积工艺沉积所述二氧化硅层。Further, the silicon dioxide layer is deposited by a plasma enhanced chemical vapor deposition process.
本发明的基于SOI衬底的共平面波导可在不增加共平面波导尺寸和不引起其它损耗增加的前提下,降低介质的有效介电常数,从而减小介质损耗。与现有的基于SOI衬底的共平面波导相比,本发明的共平面波导去除了电磁场集中分布的信号线与地线之间的下方的衬底表层硅,使该空腔介电常数接近1,减小了有效介电常数εeff,降低了介质损耗,从而可有效提高传输特性。The coplanar waveguide based on the SOI substrate of the present invention can reduce the effective dielectric constant of the medium without increasing the size of the coplanar waveguide and causing other losses to increase, thereby reducing the dielectric loss. Compared with the existing coplanar waveguide based on SOI substrate, the coplanar waveguide of the present invention removes the silicon on the surface layer of the substrate between the signal line and the ground line where the electromagnetic field is concentrated, so that the dielectric constant of the cavity is close to 1. The effective dielectric constant ε eff is reduced, and the dielectric loss is reduced, so that the transmission characteristics can be effectively improved.
附图说明Description of drawings
通过以下实施例并结合其附图的描述,可以进一步理解其发明的目的、具体结构特征和优点。其中,附图为:Through the description of the following embodiments combined with the accompanying drawings, the purpose, specific structural features and advantages of the invention can be further understood. Among them, the attached figure is:
图1为本发明的基于SOI衬底的共平面波导的横截面结构示意图。Fig. 1 is a schematic cross-sectional structure diagram of a coplanar waveguide based on an SOI substrate according to the present invention.
图2为本发明的基于SOI衬底的共平面波导的纵剖面结构示意图。Fig. 2 is a schematic diagram of the longitudinal section structure of the coplanar waveguide based on the SOI substrate of the present invention.
图3为本发明的基于SOI衬底的共平面波导的结构俯视图。Fig. 3 is a top view of the structure of the coplanar waveguide based on the SOI substrate of the present invention.
图4为本发明的基于SOI衬底的共平面波导的制作方法流程图。Fig. 4 is a flow chart of the manufacturing method of the coplanar waveguide based on the SOI substrate of the present invention.
图5为完成图4中步骤S10后的共平面波导结构剖视图。FIG. 5 is a cross-sectional view of the coplanar waveguide structure after step S10 in FIG. 4 is completed.
图6为完成图4中步骤S20后的共平面波导结构剖视图。FIG. 6 is a cross-sectional view of the coplanar waveguide structure after step S20 in FIG. 4 is completed.
图7为完成图4中步骤S30后的共平面波导结构剖视图。FIG. 7 is a cross-sectional view of the coplanar waveguide structure after step S30 in FIG. 4 is completed.
具体实施方式Detailed ways
以下将对本发明的基于SOI衬底的共平面波导及其制作方法作进一步的详细描述。The SOI substrate-based coplanar waveguide of the present invention and its manufacturing method will be further described in detail below.
本发明的基于SOI衬底的共平面波导是基于SOI技术设计的,图1、图2是该共平面波导的横截面及纵剖面结构示意图,分别对应垂直于波导以及平行于波导的方向。参见图1、图2,并结合参照图3所示的结构俯视图,本发明的基于SOI衬底的共平面波导包括SOI衬底10,形成在SOI衬底10上的二氧化硅层20,以及形成在二氧化硅层20上的地线31(G)和信号线32(S),其中,图2未画出地线/信号线。The coplanar waveguide based on the SOI substrate of the present invention is designed based on SOI technology. Fig. 1 and Fig. 2 are schematic diagrams of the cross-section and longitudinal section structure of the coplanar waveguide, corresponding to directions perpendicular to the waveguide and parallel to the waveguide respectively. Referring to Fig. 1, Fig. 2, and in conjunction with referring to the top view of the structure shown in Fig. 3, the coplanar waveguide based on the SOI substrate of the present invention comprises an
具体地,该SOI衬底10可采用注氧隔离技术、硅片键合或智能剥离等技术制备。Specifically, the
与现有的共平面波导不同的是,本发明的共平面波导在相邻地线31和信号线32之间的间隔带上开设数个腐蚀孔40,这些腐蚀孔40构成沿地线31和信号线32走向的腐蚀孔带,并且在腐蚀孔带的下方形成条形凹槽50。Different from the existing coplanar waveguide, the coplanar waveguide of the present invention provides
在本发明的优选实施例中,该共平面波导包括两条地线31和一条信号线32,均采用金属(例如铝)制成。在两条地线31和一条信号线32之间形成两个条形凹槽50,所述凹槽50开设的深度为暴露出SOI衬底表层硅12下方的隐埋氧化层11,所述凹槽50的槽壁51与二氧化硅钝化层20的夹角范围为0°~90°。In a preferred embodiment of the present invention, the coplanar waveguide includes two
参见图4,配合参照图5至图7,本发明的基于SOI衬底的共平面波导采用如下方法制成:Referring to Fig. 4, with reference to Fig. 5 to Fig. 7, the coplanar waveguide based on SOI substrate of the present invention is made by the following method:
首先,执行步骤S10,提供一SOI衬底10,采用等离子增强化学气相沉积工艺在衬底10上沉积二氧化硅层20,并在二氧化硅层20上形成一金属层30。完成步骤S10后的共平面波导结构如图5所示。Firstly, step S10 is performed, providing an
接着,执行步骤S20,通过光刻、刻蚀去除部分金属30,形成信号线32和地线31。完成步骤S20后的共平面波导结构如图6所示。Next, step S20 is performed to remove part of the metal 30 by photolithography and etching to form the
然后,执行步骤S30,在信号线32与地线31之间间隔带的二氧化硅层20上通过光刻、刻蚀形成数个腐蚀孔40,形成沿地线31和信号线32走向的腐蚀孔带,暴露出SOI衬底表层硅12。完成步骤S30后的共平面波导结构如图7所示。Then, step S30 is performed to form
最后,执行步骤S40,用腐蚀工艺通过腐蚀孔40,将间隔带下方的SOI衬底表层硅12腐蚀掉,形成条形凹槽50。所述条形凹槽50的腐蚀深度为暴露出隐埋氧化层11。条形凹槽50的槽壁51与二氧化硅层20的夹角由于腐蚀工艺和衬底情况的不同分为以下几种情况:Finally, step S40 is performed to etch away the
实施例一、用KOH等腐蚀液对表层硅晶向指数为{100}的SOI进行湿法腐蚀,由于溶液对{100}硅的腐蚀速率比{111}硅的腐蚀快得多,在腐蚀时间足够长的情况下,条形凹槽50的槽壁51晶向指数为{111},条形凹槽50的槽壁51与二氧化硅层20的夹角为54.7°;Example 1. Wet etch the SOI with crystal orientation index of {100} silicon on the surface layer with KOH etc., because the corrosion rate of {100} silicon by the solution is much faster than that of {111} silicon. If it is long enough, the crystal orientation index of the
实施例二、用KOH等腐蚀液对表层硅晶向指数为{100}的SOI进行湿法腐蚀,若表层硅厚度很小或腐蚀时间不够长,条形凹槽50的槽壁51没有到达{111}晶面,条形凹槽50的槽壁51与二氧化硅层20的夹角小于54.7°;Embodiment 2: Use KOH etchant etchant to carry out wet etching to the SOI whose surface layer silicon orientation index is {100}, if the thickness of the surface layer silicon is small or the etching time is not long enough, the
实施例三、用KOH等腐蚀液对表层硅为任意晶向指数的SOI进行湿法腐蚀,条形凹槽50的槽壁51与二氧化硅层20的夹角为不确定角度的锐角;Embodiment 3, using KOH and other corrosive liquids to wet-etch SOI with any crystal orientation index on the surface layer silicon, the angle between the
实施例四、通过Cl2等气体进行反应离子刻蚀,可以得到接近垂直的刻蚀轮廓,条形凹槽50的槽壁51与二氧化硅层20的夹角接近90°。Embodiment 4: Reactive ion etching is carried out by Cl 2 and other gases to obtain a nearly vertical etching profile, and the angle between the
因此,条形凹槽50的槽壁51与二氧化硅层20的夹角在0°至90°之间。完成上述各步骤后,即得到图1所示的本发明的共平面波导。Therefore, the included angle between the
下面结合共平面波导的传输原理来说明本发明的技术效果。The technical effect of the present invention will be described below in conjunction with the transmission principle of the coplanar waveguide.
集成电路中的传输线是有损耗的。Rt、Lt、Ct和Gt分别为传输线单位长度的分布电阻、分布电感、分布电容和分布电导。在高频时,这些参数会呈现出对能量或信号传输的影响。沿线入射波电压和电流的振幅和相位将按指数规律e-γz衰减。其中γ为传播常数:Transmission lines in integrated circuits are lossy. R t , L t , C t and G t are the distributed resistance, distributed inductance, distributed capacitance and distributed conductance per unit length of the transmission line, respectively. At high frequencies, these parameters can appear to have an impact on energy or signal transmission. The amplitude and phase of the incident wave voltage and current along the line will decay exponentially e -γz . where γ is the propagation constant:
用于描述导行波沿着导行系统传播过程中的衰减和相位变化。其中实部α称为衰减常数,表示单位长度行波振幅的变化;虚部β称为相移常数,表示单位长度行波相位的变化。It is used to describe the attenuation and phase change of the guided wave as it propagates along the guided system. Among them, the real part α is called the attenuation constant, which represents the change of the amplitude of the traveling wave per unit length; the imaginary part β is called the phase shift constant, which represents the change of the phase of the traveling wave per unit length.
对于微波传输线(Rt<<ωLt,Gt<<ωCt):For microwave transmission lines (R t <<ωL t , G t <<ωC t ):
Zc为传输线的特性阻抗:Z c is the characteristic impedance of the transmission line:
可见传输线的衰减常数取决于导线本身的电阻损耗和导线间的介质损耗。It can be seen that the attenuation constant of the transmission line depends on the resistance loss of the wire itself and the dielectric loss between the wires.
共面波导的损耗主要来源于介质损耗和导体损耗,其衰减常数α可以表示为α=αdie+αcon,其中αdie为介质的衰减常数,αcon为导体的衰减常数。The loss of coplanar waveguide mainly comes from dielectric loss and conductor loss, and its attenuation constant α can be expressed as α=α die +α con , where α die is the attenuation constant of the medium, and α con is the attenuation constant of the conductor.
介质损耗是电场通过介质时,由于介质分子交替极化和晶格来回碰撞而产生的热损耗。它主要体现在分布电容上。如果共平面波导全部处于相对介电常数为εr的介质中,其分布电容Ct比以空气为介质时增加εr倍。但通常共平面波导上传输的信号一部分在介电常数为εr的介质中,另一部分在空气中。相当于处于一种混合介质中,需引入等效介电常数εeff和介质填充因子q来修正:Dielectric loss is the heat loss caused by the alternating polarization of the medium molecules and the back and forth collision of the crystal lattice when the electric field passes through the medium. It is mainly reflected in the distributed capacitance. If the coplanar waveguide is entirely in a medium with a relative permittivity of ε r , its distributed capacitance C t will increase by ε r times compared with that of air as a medium. But usually part of the signal transmitted on the coplanar waveguide is in the medium with a dielectric constant ε r , and the other part is in the air. Equivalent to being in a mixed medium, it is necessary to introduce the equivalent dielectric constant ε eff and the medium filling factor q to correct:
则共平面波导介质衰减常数αdie为:Then the attenuation constant α die of the coplanar waveguide medium is:
式中,λ0为自由空间波长,εr为介质介电常数,tgδ为损耗角正切,εeff为等效介电常数。In the formula, λ 0 is the free space wavelength, ε r is the dielectric constant of the medium, tgδ is the loss tangent, and ε eff is the equivalent dielectric constant.
由于电磁场主要分布在地线和信号线下方的介质层中,因此在计算等效介电常数时主要考虑该区域介质的相对介电常数。忽略二氧化硅钝化层,由式4可知,本发明的基于SOI的共平面波导的εeff≈1,而现有的共平面波导的εeff≈7。由此可见,本发明的基于SOI的共平面波导的等效介电常数远小于现有的共平面波导的等效介电常数,可以使共平面波导介质衰减常数αdie得以降低,从而使传输特性得到改善。Since the electromagnetic field is mainly distributed in the dielectric layer below the ground wire and the signal wire, the relative dielectric constant of the medium in this area is mainly considered when calculating the equivalent dielectric constant. Neglecting the silicon dioxide passivation layer, it can be known from Equation 4 that ε eff ≈1 for the SOI-based coplanar waveguide of the present invention, and ε eff ≈7 for the existing coplanar waveguide. It can be seen that the equivalent dielectric constant of the SOI-based coplanar waveguide of the present invention is much smaller than that of the existing coplanar waveguide, which can reduce the attenuation constant α die of the coplanar waveguide medium, thereby enabling transmission Features are improved.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100369129A CN101281989A (en) | 2008-04-30 | 2008-04-30 | Coplanar waveguide based on SOI substrate and its fabrication method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100369129A CN101281989A (en) | 2008-04-30 | 2008-04-30 | Coplanar waveguide based on SOI substrate and its fabrication method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101281989A true CN101281989A (en) | 2008-10-08 |
Family
ID=40014338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008100369129A Pending CN101281989A (en) | 2008-04-30 | 2008-04-30 | Coplanar waveguide based on SOI substrate and its fabrication method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101281989A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101511148B (en) * | 2009-03-13 | 2011-03-09 | 深圳市深南电路有限公司 | Method for preparing resonant cavity integrated on PCB |
CN101847773B (en) * | 2009-03-25 | 2013-04-24 | 中国科学院微电子研究所 | Method for manufacturing integrated rectangular waveguide resonant cavity in integrated circuit chip |
CN104377415A (en) * | 2014-10-08 | 2015-02-25 | 石以瑄 | Coplanar waveguide for microwave transmission and manufacturing method thereof |
CN105914445A (en) * | 2016-05-09 | 2016-08-31 | 中国科学院上海微系统与信息技术研究所 | Radio frequency coplanar waveguide element based on silicon base on insulator and preparation method thereof |
CN107066764A (en) * | 2017-05-19 | 2017-08-18 | 郑州云海信息技术有限公司 | A kind of copper foil roughness design method suitable for high-speed line model extraction |
CN109932788A (en) * | 2017-12-19 | 2019-06-25 | 苏州旭创科技有限公司 | High speed transmission of signals component and optical module with it |
CN110137655A (en) * | 2019-06-06 | 2019-08-16 | 中国电子科技集团公司第二十九研究所 | The method of manufacturing technology of special-shaped double ridge sealing coaxial waveguide conversions |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1612408A (en) * | 2003-09-05 | 2005-05-04 | 株式会社Ntt都科摩 | Coplanar waveguide resonator |
-
2008
- 2008-04-30 CN CNA2008100369129A patent/CN101281989A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1612408A (en) * | 2003-09-05 | 2005-05-04 | 株式会社Ntt都科摩 | Coplanar waveguide resonator |
Non-Patent Citations (2)
Title |
---|
YU JINZHONG: "SOI Optical Switch Matrix Integrated with Spot Size Converter(SSC) and Total Internal Reflection(TIR) Mirrors", 《2006 3RD IEEE INTERNATIONAL CONFERENCE》 * |
石艳玲: "硅基微波共平面波导传输特性及其在微波移相器中的应用研究", 《中国优秀博硕士学位论文全文数据库(博士) 信息科技辑》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101511148B (en) * | 2009-03-13 | 2011-03-09 | 深圳市深南电路有限公司 | Method for preparing resonant cavity integrated on PCB |
CN101847773B (en) * | 2009-03-25 | 2013-04-24 | 中国科学院微电子研究所 | Method for manufacturing integrated rectangular waveguide resonant cavity in integrated circuit chip |
CN104377415A (en) * | 2014-10-08 | 2015-02-25 | 石以瑄 | Coplanar waveguide for microwave transmission and manufacturing method thereof |
CN105914445A (en) * | 2016-05-09 | 2016-08-31 | 中国科学院上海微系统与信息技术研究所 | Radio frequency coplanar waveguide element based on silicon base on insulator and preparation method thereof |
CN105914445B (en) * | 2016-05-09 | 2019-04-19 | 中国科学院上海微系统与信息技术研究所 | RF coplanar waveguide element based on silicon-on-insulator substrate and method for fabricating the same |
CN107066764A (en) * | 2017-05-19 | 2017-08-18 | 郑州云海信息技术有限公司 | A kind of copper foil roughness design method suitable for high-speed line model extraction |
CN109932788A (en) * | 2017-12-19 | 2019-06-25 | 苏州旭创科技有限公司 | High speed transmission of signals component and optical module with it |
CN110137655A (en) * | 2019-06-06 | 2019-08-16 | 中国电子科技集团公司第二十九研究所 | The method of manufacturing technology of special-shaped double ridge sealing coaxial waveguide conversions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101281989A (en) | Coplanar waveguide based on SOI substrate and its fabrication method | |
US7868517B2 (en) | Lamb wave resonator | |
Chang et al. | Microwave ring circuits and related structures | |
US9219298B2 (en) | Removal of spurious microwave modes via flip-chip crossover | |
US8054146B2 (en) | Structures with negative index of refraction | |
US6601276B2 (en) | Method for self alignment of patterned layers in thin film acoustic devices | |
US20140211298A1 (en) | Tunable optical metamaterial | |
US10749237B2 (en) | Substrate integrated waveguide and method for manufacturing the same | |
CN103326093A (en) | Novel cross coupling substrate integrated waveguide band-pass filter | |
US11733240B2 (en) | Sensor apparatus | |
CN117277988B (en) | Transverse coupling acoustic filter | |
US5075655A (en) | Ultra-low-loss strip-type transmission lines, formed of bonded substrate layers | |
US20090246929A1 (en) | Membrane suspended mems structures | |
CN101847772A (en) | Dual-frequency microwave resonator | |
EP3225984B1 (en) | Sensor apparatus | |
US20170155180A1 (en) | Dielectric waveguide-path device | |
Wang et al. | Compact 60 GHz low‐temperature cofired ceramic filter with quasi‐elliptic bandpass response | |
CN104007141B (en) | The sensor of the super material planar waveguide coupling of a kind of zero refractive index echo wall die | |
CN113900284A (en) | Lithium niobate thin film electro-optical modulator and preparation method thereof | |
US20160351489A1 (en) | Sub-terahertz/terahertz interconnect | |
US7539358B2 (en) | SOI-based opto-electronic device including corrugated active region | |
JP2009296491A (en) | Waveguide connection structure and semiconductor device | |
CN101499552A (en) | Wideband substrate integrated ridge waveguide and analyzing method thereof | |
CN101931114A (en) | Asymmetrical DGS structure cascaded filter | |
CN116609288A (en) | A terahertz metamaterial sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20081008 |