CN101274845B - 钆钍氧铁砷高温超导材料及其制备方法 - Google Patents
钆钍氧铁砷高温超导材料及其制备方法 Download PDFInfo
- Publication number
- CN101274845B CN101274845B CN2008100623740A CN200810062374A CN101274845B CN 101274845 B CN101274845 B CN 101274845B CN 2008100623740 A CN2008100623740 A CN 2008100623740A CN 200810062374 A CN200810062374 A CN 200810062374A CN 101274845 B CN101274845 B CN 101274845B
- Authority
- CN
- China
- Prior art keywords
- thorium
- gadolinium
- superconducting material
- temperature superconducting
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims abstract description 32
- XDBBXAFPUWXWIK-UHFFFAOYSA-N [As].[Fe].[O].[Th].[Gd] Chemical compound [As].[Fe].[O].[Th].[Gd] XDBBXAFPUWXWIK-UHFFFAOYSA-N 0.000 title claims description 24
- 238000002360 preparation method Methods 0.000 title claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052776 Thorium Inorganic materials 0.000 claims abstract description 12
- 229910052742 iron Inorganic materials 0.000 claims abstract description 12
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 11
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 10
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 10
- 239000002887 superconductor Substances 0.000 claims abstract description 10
- 239000002994 raw material Substances 0.000 claims abstract description 9
- 238000001354 calcination Methods 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 6
- 238000004080 punching Methods 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 2
- 239000013078 crystal Substances 0.000 abstract description 3
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 abstract 4
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 abstract 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract 4
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 abstract 4
- 239000001301 oxygen Substances 0.000 abstract 4
- 230000005291 magnetic effect Effects 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 4
- 239000005751 Copper oxide Substances 0.000 description 4
- 229910000431 copper oxide Inorganic materials 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000005668 Josephson effect Effects 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000005292 diamagnetic effect Effects 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
一种钆钍氧铁砷高温超导材料,属于ZrCuSiAs型结构,具有与超导体LaO1-yFyFeAs相同的晶体结构,本发明的钆钍氧铁砷高温超导材料,通式为:Gd1-xThxOFeAs,式中0.05≤X≤0.30,材料中各元素含量摩尔比Gd、Th、O、Fe、As为0.70~0.95∶0.3~0.05∶1∶1∶1。按各元素含量,原料经混合、研磨、压片、煅烧、快速冷却等步骤制得超导的多晶块体。本发明的超导材料,最高超导临界温度Tc达到56.5K,估算的上临界磁场Bc2超过100特斯拉,优于类似结构的LaO1-yFyFeAs超导体,在实际应用上具有明显的优势。
Description
技术领域
本发明涉及一种高温超导材料,具体涉及通式为Gd1-xThxOFeAs的钆钍氧铁砷高温超导材料及其制备方法。
背景技术
当温度低于其超导临界温度Tc时超导材料具有零电阻特征、理想的抗磁效应(即迈斯纳效应)以及约瑟夫逊效应等超导态特性,因而能够实现无损耗电能传输,制成超导线圈产生强磁场,超导磁悬浮,制造基于约瑟夫逊效应等宏观量子效应的超导微波电子器件、灵敏的磁信号探测仪器-超导量子干涉仪(即SQUID)和实现超导量子计算等。
传统的合金超导材料(如Nb3Sn)虽然具有较高的超导临界电流和机械力学性能,但它们的超导临界温度太低(Tc一般低于23K),上临界磁场不够大(一般小于20T),极大地限制了其应用范围。1986年发现的铜氧化物高温超导材料(如YBa2Cu3O7)虽然超导临界温度Tc很高,上临界磁场Bc2也很大,但是由于磁通钉扎力较弱,在磁场下的超导临界电流很低,其实际应用同样受到较大的限制。2008年2月日本的研究小组公布一种属于ZrCuSiAs型结构的新超导材料LaO1-yFyFeAs,其超导临界温度Tc只有28K(Y.Kamihara,T.Watanabe,M.Hirano,and H.Hosono,J.Am.Chem.Soc.130,3296(2008).)。
发明内容
本发明的目的之一是提供一种与LaO1-yFyFeAs相同晶体结构的钆钍氧铁砷化合物Gd1-xThxOFeAs超导材料,提供的钆钍氧铁砷高温超导材料,具有很高超导临界温度和上临界磁场,超导临界温度Tc提高到56.5K;目的之二是提供钆钍氧铁砷高温超导材料块材的制备方法。
本发明提供的钆钍氧铁砷高温超导材料,属于ZrCuSiAs型结构,具有与超导体LaO1-yFyFeAs相同的晶体结构,通式为:Gd1-xThxOFeAs,式中0.05≤X≤0.30,材料中各元素Gd、Th、O、Fe、As含量摩尔比为0.70~0.95∶0.3~0.05∶1∶1∶1。
本发明所述的钆钍氧铁砷高温超导材料的制备方法,制备步骤如下:
1)将原料GdAs、Gd2O3、ThO2、FeAs和Fe粉或将原料GdAs、ThO2、FeAs、Fe2O3和Fe粉,按照Gd、Th、O、Fe、As元素摩尔比为0.70~0.95∶0.3~0.05∶1∶1∶1的比例充分混合,在Ar气保护气氛中进行研磨,然后在400MPa的压强下进行冲压得到压片;
2)将上述压片密封在真空度大于0.1Pa的石英管中,放入管式炉中煅烧36~48小时,煅烧温度为1423~1473K,然后快速冷却到室温,得到钆钍氧铁砷高温超导材料的多晶块体。
本发明钆钍氧铁砷高温超导材料中的Gd、Th元素含量的摩尔比为0.70~0.95∶0.3~0.05,最佳摩尔比为0.80~0.75∶0.2~0.25。
本发明所述的煅烧温度为1423~1473K,最佳煅烧温度为1453K。
本发明提供的钆钍氧铁砷化合物Gd1-xThxOFeAs,具有与超导体LaO1-yFyFeAs相同的晶体结构,稀土Gd替换La,并且用元素Th在Gd位进行掺杂引入电荷载流子,这些组分的改变影响了该材料晶体微结构和电子结构,产生了对超导性能有利的变化,与现有技术相比,超导临界温度从大约28K提高到56.5K,上临界磁场Bc2从60T以下提高到100T以上。
本发明提供了钆钍氧铁砷高温超导材料的化学配比范围,获得了超导性能更好的铁基ZrCuSiAs型结构超导体。采用Th部分替代Gd的方法引入电子型电荷载流子。相比于F部分替代O,Th对Gd的替代量可以更多,更有利于超导性能的优化。同时还采用更高的煅烧温度,有利于该结构物相的形成;通过快速冷却的方法抑制了缓慢降温过程中样品的分解。
本发明的Gd1-xThxOFeAs超导材料从超导临界温度和上临界磁场等应用指标上来看,明显优于传统的合金超导材料。由于Gd1-xThxOFeAs超导材料的各向异性小于铜氧化物高温超导体,磁通钉扎能力较强,其在磁场下的临界电流有极大的提高潜力,该项性能优于铜氧化物高温超导体。Gd1-xThxOFeAs超导材料的整体机械力学性能也超过铜氧化物高温超导体。
本发明具有的有益效果是:钆钍氧铁砷作为一种新超导材料,在电力输送,超导强磁场,超导磁悬浮,超导电子器件,超导量子干涉仪和超导量子计算等领域具有广阔的应用前景。
附图说明
图1是一些代表性的Gd1-xThxOFeAs(x=0,0.2和0.25)粉末X射线衍射图形,图中还对未掺杂样品的图谱进行了指标化;
图2是Gd1-xThxOFeAs(0.05≤x≤0.30)块体的归一化电阻率(除以室温电阻率)随温度变化的曲线;
图3是Gd0.8Th0.2OFeAs粉末的磁化率随温度变化的曲线;
图4是Gd0.75Th0.25OFeAs样品在不同磁场下电阻率随温度变化曲线。内插图为所得到的上临界磁场Bc2随温度的变化趋势(虚线是理论外推的结果)。
具体实施方式
本发明涉及的是单相Gd1-xThxOFeAs(0.05≤x≤0.30)的原料配比和合成方法,具体过程如下:
实施例1
1)将GdAs,Gd2O3,ThO2,FeAs,和Fe粉等原料按照Gd、Th、O、Fe、As等元素摩尔比为0.8∶0.2∶1∶1∶1的比例充分混合,在氩气氛中均匀混合、研磨,然后在400MPa的压强下进行冲压制得压片;
2)将上述压片密封在抽成真空的石英管中,真空度好于0.1Pa,然后放入管式炉中煅烧36小时,煅烧温度为1453K,然后快速冷却到室温即可获得Gd0.8Th0.2OFeAs块体。
从图1中可以得知,用以上制备方法得到的样品主相为具有四方结构(ZrCuSiAs型)的Gd1-xThxOFeAs化合物。除少量残余的ThO2外,所有的X射线衍射峰都能够进行很好的指标,样品的晶胞参数为a=3.917,c=8.440;从图2和图3中可以得知,所合成的钆钍氧铁砷具有较好的超导性质:超导临界温度Tc(定义为电阻转变的起始温度)为56.5K。这在铁基ZrCuSiAs型结构的超导体中是截止目前报道中最高的,说明钆钍氧铁砷作为一种新的高温超导材料具有巨大的应用优势。
实施例2
1)将GdAs,Gd2O3,ThO2,FeAs,和Fe粉等原料按照Gd、Th、O、Fe、As等元素摩尔比为0.75∶0.25∶1∶1∶1的比例充分混合,在氩气氛中均匀混合、研磨,然后在400MPa的压强下进行冲压制得压片;
2)将上述压片密封在抽成真空的石英管中,真空度好于0.1Pa,然后放入管式炉中煅烧48小时,煅烧温度为1473K,然后快速冷却到室温即可获得Gd0.75Th0.25OFeAs块体。
从图1中可以得知,用以上方法得到的样品主相为钆钍氧铁砷超导体,主要杂相为ThO2,样品的晶胞参数见表1;从图2可以得知,所合成的钆钍氧铁砷块体在55.5K温度以下,电阻率迅速下降到零。此外,由图4可知,其上临界场Bc2(T)在Tc附近的斜率为-2.73,根据WHH公式[2]估算得到其零温度上临界磁场Bc2(0)约为100T,这说明钆钍氧铁砷作为一种新的高温超导材料具有很大的应用潜力。
实施例3-6
表1是Gd1-xThxOFeAs(0.05≤x≤0.30)单相样品的原料配比、烧结温度、超导临界温度和晶胞参数。表1
Claims (4)
1. 一种钆钍氧铁砷高温超导材料,属于ZrCuSiAs型结构,具有与超导体LaO1-yFyFeAs相同的晶体结构,其特征是:钆钍氧铁砷高温超导材料通式为:Gd1-xThxOFeAs,式中0.05≤X≤0.30,材料中各元素Gd、Th、O、Fe、As含量摩尔比为0.70~0.95∶0.3~0.05∶1∶1∶1。
2. 权利要求1所述的钆钍氧铁砷高温超导材料的制备方法,制备步骤如下:
1)将原料GdAs、Gd2O3、ThO2、FeAs和Fe粉或将原料GdAs、ThO2、FeAs、Fe2O3和Fe粉,按照Gd、Th、O、Fe、As元素摩尔比为0.70~0.95∶0.3~0.05∶1∶1∶1的比例充分混合,在Ar气保护气氛中进行研磨,然后在400MPa的压强下进行冲压得到压片;
2)将上述压片密封在真空度大于0.1Pa的石英管中,放入管式炉中煅烧36~48小时,煅烧温度为1423~1473K,然后快速冷却到室温,得到钆钍氧铁砷高温超导材料的多晶块体。
3. 根据权利要求2所述的钆钍氧铁砷高温超导材料的制备方法,其特征是:元素Gd、Th、含量摩尔比0.80~0.75∶0.2~0.25。
4. 根据权利要求2所述的钆钍氧铁砷高温超导材料的制备方法,其特征是:煅烧温度为1453K。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100623740A CN101274845B (zh) | 2008-05-13 | 2008-05-13 | 钆钍氧铁砷高温超导材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100623740A CN101274845B (zh) | 2008-05-13 | 2008-05-13 | 钆钍氧铁砷高温超导材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101274845A CN101274845A (zh) | 2008-10-01 |
CN101274845B true CN101274845B (zh) | 2010-12-01 |
Family
ID=39994756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100623740A Expired - Fee Related CN101274845B (zh) | 2008-05-13 | 2008-05-13 | 钆钍氧铁砷高温超导材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101274845B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104099664B (zh) * | 2013-04-08 | 2016-08-03 | 中国科学院物理研究所 | 一种半导体材料BaFxZnAs及其制备方法 |
-
2008
- 2008-05-13 CN CN2008100623740A patent/CN101274845B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101274845A (zh) | 2008-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ren et al. | Superconductivity at 52 K in iron based F doped layered quaternary compound Pr [O1–xFx] FeAs | |
Cheng et al. | Superconductivity at 36 K in gadolinium-arsenide oxides GdO1− x F x FeAs | |
Sasmal et al. | Superconducting Fe-Based Compounds (A 1-x Sr x) Fe 2 As 2 with A= K and Cs<? format?> with Transition Temperatures up to 37 K | |
Kito et al. | Superconductivity at 54 K in F-Free NdFeAsO1-y | |
Nozaki et al. | Layered perovskite compounds Sr n+ 1 V n O 3 n+ 1 (n= 1, 2, 3, and∞) | |
WO2009124447A1 (zh) | 一种高温超导材料及其制备方法 | |
Zhang et al. | Ferromagnetism and insulating behavior with a logarithmic temperature dependence of resistivity in Pb10− x Cu x (PO4) 6O | |
JP7298869B2 (ja) | 超電導体 | |
CN101168442B (zh) | 一种高性能MgB2超导材料及其制备方法 | |
CN101993247A (zh) | 一种基于钙钛矿结构的单相铁基超导材料及其制备方法 | |
CN101274845B (zh) | 钆钍氧铁砷高温超导材料及其制备方法 | |
Chen et al. | Cobalt-doping effects in single crystalline and polycrystalline EuFe 2− x Co x As 2 compounds | |
Luo et al. | Microstructure and superconducting properties of MgB2 bulks prepared from Mg+ B+ Mg (BH4) 2 composites | |
Boudjadja et al. | Microstructural and magneto-transport properties of Bi1. 6Pb0. 4Sr2Ca1− xGdxCu2O8+ δ superconducting ceramics | |
JP6210587B2 (ja) | BiS2系超伝導体 | |
Winkler et al. | Evolution of polaron size in La 2− x Sr x NiO 4 | |
CN116356189B (zh) | 一种中熵合金超导体材料其制备方法和应用 | |
CN101591172B (zh) | 金属Sn掺杂MgB2超导体及高温快速制备方法 | |
Cao et al. | Superconductivity induced by cobalt doping in iron-based oxyarsenides | |
CN111778425B (zh) | 一种单相铑基合金磁制冷材料及其制备方法和应用 | |
Yu et al. | Co-doping induced coexistence of superconductivity and ferromagnetism in Bi3. 9Co0. 1O4S3 | |
Hajilou et al. | The effect of partial Nb doping on magnetic and electrical behavior of Y-123 superconductors with Nano CuO | |
Zhao et al. | Physical properties of the 5M BaIrO3: A new weak ferromagnetic iridate synthesized under high pressure | |
Ida et al. | Correlation Between Magnetic Properties and Crystal Growth in Perovskite Type La0. 6Ca0. 4MnO3 Ferromagnet | |
Gao et al. | 124 K Superconductivity in Cu-Ba-Ca-Cu-O |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20101201 Termination date: 20150513 |
|
EXPY | Termination of patent right or utility model |