CN101253392B - 光纤温度和压力传感器和包括它们的系统 - Google Patents

光纤温度和压力传感器和包括它们的系统 Download PDF

Info

Publication number
CN101253392B
CN101253392B CN2006800313404A CN200680031340A CN101253392B CN 101253392 B CN101253392 B CN 101253392B CN 2006800313404 A CN2006800313404 A CN 2006800313404A CN 200680031340 A CN200680031340 A CN 200680031340A CN 101253392 B CN101253392 B CN 101253392B
Authority
CN
China
Prior art keywords
sensor
fiber
pressure
side hole
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800313404A
Other languages
English (en)
Other versions
CN101253392A (zh
Inventor
陈跃华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Publication of CN101253392A publication Critical patent/CN101253392A/zh
Application granted granted Critical
Publication of CN101253392B publication Critical patent/CN101253392B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0092Pressure sensor associated with other sensors, e.g. for measuring acceleration or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35303Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using a reference fibre, e.g. interferometric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
    • G01L11/025Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means using a pressure-sensitive optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0033Transmitting or indicating the displacement of bellows by electric, electromechanical, magnetic, or electromagnetic means
    • G01L9/0039Transmitting or indicating the displacement of bellows by electric, electromechanical, magnetic, or electromagnetic means using photoelectric means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02171Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes
    • G02B6/02176Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations
    • G02B6/0218Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations using mounting means, e.g. by using a combination of materials having different thermal expansion coefficients
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02195Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating
    • G02B6/022Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating using mechanical stress, e.g. tuning by compression or elongation, special geometrical shapes such as "dog-bone" or taper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/276Removing selected polarisation component of light, i.e. polarizers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29317Light guides of the optical fibre type

Abstract

一种传感系统,包括具有限定腔室的罩的传感器,从罩外延伸至腔内的光纤段,和该腔室内的一系列光学处理元件。该元件包括光纤Bragg光栅、偏振器、侧孔光纤和反射镜。光源被设置为将光线引入传感器。设置光谱分析仪以检测从传感器反射回的光。光纤Bragg光栅基本上反射第一光谱包络同时将光谱的剩余部分传送至偏振器和侧孔光纤。偏振器、侧孔光纤和反射镜协作以返回第二光谱包络中的光信号。第一光谱包络中的峰值的特征波长对温度非常敏感而对压力较不敏感。第二光谱包络中光信号的周期对压力非常敏感而对温度较不敏感。光谱分析仪测量该光谱分量以同时获得温度和压力的测量值,有效补偿传感器的温度压力交叉敏感性。

Description

光纤温度和压力传感器和包括它们的系统
技术领域
本发明涉及测量温度和压力的光纤传感器以及基于此的系统。
背景技术
光纤通常包括圆柱芯、围绕芯的同心圆筒覆层和围绕覆层的同心圆筒保护护套。芯由具有特定折射率的透明玻璃或者塑料制成。覆层也由透明玻璃或者塑料制成,但是折射率不同且较小。光纤用作可弯折波导的能力主要取决于芯和覆层的相对折射率。
透明介质的折射率是真空中光速和介质中光速的比率。当光束进入介质时,速度的变化使得光束改变方向。更具体而言,当光束从一种介质进入另一种介质时,光束在两种介质界面上改变方向。除了在两种介质界面上改变方向以外,在界面上反射一部分入射光束从而传播通过第二介质的光束能量减少(折射和反射光束的能量总和必须等于入射光束的能量)。如果已知两种介质的折射率,则可采用斯涅耳定律预测反射角和折射角。
通过改变两种相邻介质的折射率,可改变向两种介质界面传播的光束的折射角和反射角从而使进入第二介质的光强接近于零并且在界面上反射几乎所有的光。相反,对于任何两种透明介质,在其界面上存在临界入射角,在该角或者小于该角时几乎反射所有的入射光。这种被称为全内反射的现象被用于选择光纤中芯和覆层的折射率,使得光可以以最小的功率损失通过光纤芯传播。
许多其它因素影响光在光纤芯中的传播,包括芯和覆层的尺寸、光的波长、光的磁场向量和光的电场向量。此外,许多用于确定光在波导(光纤)中的理想传播的物理定律假定一个“理想”波导,即具有理想对称性而没有缺陷的直波导。例如,芯的直径将决定光纤是“单模”还是“多模”。术语单模和多模是指传播通过光纤的光线的空间方向。单模光纤具有直径较小(2-12微米)的芯并仅仅支持一种传播模式,即轴向。多模光纤具有直径较大(25-100微米)的芯并且允许非轴向光线或者模式传播通过芯。所谓的单模光纤实际上为两模光纤,存在两种不同的可传播通过光纤芯的光偏振状态。在具有完美圆对称性的理想、直线、无缺陷光纤中,光的传播速度与偏振方向无关。
具有椭圆芯的光纤具有两个优选的偏振方向(沿长轴和沿短轴)。以任意其它偏振方向射入光纤的线性偏振光将以传播速度稍微不同的两种不同模式传播。这种光纤被称为具有“模式双折射”。在这种理想光纤中,由于芯-覆层界面的缺陷、折射率波动和其它机制,即使理想的偏振光也将耦合至另一种模式。偏振的静态和动态变化将沿光纤的整个长度出现。在指定距离上,两种模式的相位将经过同相和异相的完整循环。该距离被称为“拍长”。长拍长与小双折射相关,短拍长与大双折射相关。双折射光纤还称为“保存偏振光纤”或者“保持偏振(PM)光纤”。通过提供具有椭圆形横截面的芯或者通过提供具有引发芯上应力的覆层的圆形芯实现双折射。例如,覆层可具有两个平行的应力元件,所述元件具有和芯的轴线处于相同平面上的纵向轴。
光纤传感器利用环境影响可改变传播通过光纤的光的幅度、相位、频率、光谱内容(spectral content)、或者偏振的事实。光纤传感器的主要优点包括其重量轻、非常小、无源、能量有效、粗糙(rugged)和不受电磁干扰的能力。此外,光纤传感器具有非常高的敏感性、大动态范围和宽带宽的潜力。另外,可沿光纤长度分配或者多路复用某类光纤传感器。
一种光纤传感器为侧孔光纤压力传感器,其具有两个沿光纤长度方向并且平行于芯的平行孔。孔和芯的轴线处于相同的平面内。该构造将外部流体静压力转换为芯上的各向异性应力从而引发双折射。Jansen和Dabkiewicz在标题为“High Pressure Fiber Optic Sensor with Side HoleFiber”,发表于SPIE Proceedings,Fiber Optic Sensors II,Vol.798,pp.56-60,1987的文章中描述了这种结构。温度变化也影响芯的双折射。但是,侧孔光纤传感器对压力的敏感度远大于其对温度的敏感性。因此,可在温度变化很小的应用中有效使用侧孔光纤压力传感器。在温度和压力都可变化的应用中,必须采用复杂的措施以补偿温度对传感器双折射的影响以及所产生的压力测量值。而且,侧孔光纤压力传感器对温度的较不敏感使得其不适合于测量温度。因此,通常为此目的采用和侧孔光纤压力传感器处于相同位置的单独和不同的温度传感器。
另一种光纤传感器采用光纤Bragg光栅。通过以例如镓的材料涂覆光纤然后将光纤侧面暴露于干涉图以产生芯折射率的正弦变化而在光纤芯中形成光纤Bragg光栅。两种现在已知的提供干涉图的方法为通过全息成像和通过相位掩膜光栅(phase mask grating)。在美国专利5,380,995中讨论了制造这种光纤Bragg光栅的方法细节。由光纤Bragg光栅所反射的光谱包络的中心波长随着温度和应变线性变化。因此,可如美国专利5,380,995中所述测量这种变化以获得传感器环境中的温度和应变。
如美国专利5,841,131所述,光纤Bragg光栅还形成为侧孔光纤压力传感器的芯的一部分。在该结构中,由光纤Bragg光栅所反射的光谱包络中的峰值波长(及其相互之间的偏移)将基于施加至传感器的流体静压力而变化。因此,可测量这种变化以获得传感器环境中的压力。和侧孔光纤压力传感器相似,温度影响芯的双折射,并且难以将压力和温度对反射光谱包络中总波长的偏移的作用区分开。因此,在温度和压力都可变的某些应用中,必须采用复杂的测量以补偿温度对双折射的影响。由Chmielewska等人在标题为“Measurement of pressure and temperaturesensitivities of a Bragg grating imprinted in a highly birefringent side holefiber”,Applied Optics,Vol.42,No.21,November,2003的文章中描述了该复杂措施。在该文章中,分析反射光谱以识别在两个正交偏振模式(LP01 x,LP01 y)上的波长变化(偏移)。其中一个模式(LP01 x)对温度非常敏感而对压力不敏感。另一个模式(LP01 y)对温度和压力都敏感。可利用这些特征以通过询问两个偏振模式的波长变化而获得同步温度和压力测量值。但是,这样的补偿机制难以应用于不同的应用和装置并且昂贵。另外,该方法中波长对压力的敏感性非常低(大约1皮米/18psi(1皮米/1.27kg每平方厘米)),并且以现有的光学技术难以获得好于0.1皮米(pm)的波长分辨。因此,在其中需要高分辨率压力测量值的许多应用中非常难以采用该方法。机械放大器可用于光纤光栅以提高其压力敏感性,但是这使得更难以制造,并产生稳定性和可重复性问题。
发明内容
因此本发明的目标在于提供一种光纤传感器(以及基于此的传感系统),其允许简单而有效地补偿温度-压力交叉敏感性。
本发明的另一个目标在于提供一种光纤传感器(以及基于此的传感系统),其允许通过光纤传感器同时测量温度和压力。
本发明的另一个目标在于提供一种光纤传感器(以及基于此的传感系统),其在传感器所反射的光谱包络中提供不同的元件,其中一个元件对温度非常敏感(对压力敏感性较差),另一个元件对压力非常敏感(对温度敏感性较差)。
本发明的目标还在于提供一种粗糙(rugged)而廉价的光纤传感器。
根据这些将在下文详细讨论的目标,一种改进的传感系统,包括:至少一个具有限定腔室的罩的传感器,从罩外延伸至腔室内的光纤段,以及可操作地设置在腔室内的一系列光学处理元件。该元件包括光纤Bragg光栅、偏振器、第一侧孔光纤和反射镜。光源被设置为将光线引入传感器。设置光谱分析仪以检测从传感器反射回的光。在一个实施例中,光源发射较宽带的光并且光谱分析仪包括可调节光学滤光器。在选择实施例中,光源为可被控制以动态改变从其发射的光的波长的可调节激光设备。光纤Bragg光栅基本上反射预定的第一光谱包络同时将光谱的剩余部分传送至偏振器和侧孔光纤。偏振器、侧孔光纤和反射镜协作以返回第二预定光谱包络中的光信号。优选通过具有填充在侧孔中的液相金属的另一个侧孔光纤实现偏振器。第一光谱包络中峰值的特征波长对温度非常敏感而对压力较不敏感。第二光谱包络中的光谱为正弦波形,其周期对压力非常敏感而对温度较不敏感。光谱分析仪识别这些光谱分量以同时获得温度和压力的测量值。
将理解传感系统的元件简单而有效地补偿传感器的温度压力交叉敏感性。其还提供粗糙而廉价的传感器。
根据一个实施例,光谱分析仪基于第二光谱包络中相邻波长峰值之间的特征距离产生基线压力,基于基线压力和第一光谱包络中峰值的特征波长获得温度,然后基于温度和第二光谱包络中相邻波长峰值之间的特征距离获得温度补偿压力。
本领域技术人员在参考结合所提供附图的详细描述时将清楚本发明的另外的目标和优点。
附图说明
图1是根据本发明的光纤传感系统的示意图。
图2为图1传感器示例性实施例的示意横截面图。
图3为图2传感器的光纤Bragg光栅的示意图。
图4为图2传感器的侧孔光纤的示意图。
图5为从传感器反射和由图1光谱分析仪所分析的光线的光谱内容的图表。
具体实施方式
这里所使用的术语“上游”通常被定义为设置得靠近系统的光源。相反,“下游”通常指设置得距离系统光源较远。
现在参考图1,根据本发明的示例性光纤传感系统10包括光源12、分光器16、光谱分析仪14和一个或多个光纤传感器18。波导20(例如光纤波导)将光源12所产生的光引导至分光器16。分光器16经光纤波导22将该光引导至光纤传感器18,这里该入射光的光谱分量沿波导22反射回。分光器16将返回光的期望分量优选经光纤波导24引导至光谱分析仪14。光源12提供不同的波长分量,并且可由可调节激光器、一个或多个LED、一个或多个激光二极管、或其它较宽光谱光源实现。光谱分析仪可以为Fabry-Perot标准具设备或者其它类型的设备。波导20、22和24为单模或者偏振保持光纤波导。
如图2所示,光纤传感器18包括作为一部分(或耦合至)光纤波导22的光纤波导部分51。光纤波导部分51经过光学馈入装置53进入由金属外壳55(优选为钛)所限定的腔室54。施加至金属外壳55的流体静压力被传递至设置在腔室54内的玻璃管57。优选地,采用设置在正对馈入装置53的金属外壳55的端部的波纹管结构56辅助该压力传递。波纹管结构56响应于施加至传感器18的流体静压力提供外壳55的纵向变形。该纵向变形改变腔室54的容积,从而将环境压力变化传递至玻璃管57。玻璃管57的内部59被填充预期操作环境中为液态形式的金属(例如镓或镓合金)。玻璃管57的内部59还通过通气毛细管61与金属管55的腔室54通气从而提供金属外壳55的腔室54和玻璃管57的内部59之间的压力传递。在该结构中,玻璃管57的内部59形成可操作地耦合至金属外壳55的腔室54的压力腔,并且金属外壳55保护其中的元件不受外壳55外部环境的影响。因此其适合于恶劣环境例如石油和天然气钻探和生产应用中的井下监视。光纤波导部分51伸进玻璃管57的内部59,在这里其耦合至一系列设置在玻璃管57内部的光学处理元件63、65、67、69。
如图3所示,第一光学处理元件为包括记录在一条光纤75的芯73上的光栅71的光纤Bragg光栅63,该光纤与光纤波导部分51配合(优选通过接合(splicing)或者熔合(fusing))。因为这样的材料可适合于维持高温下的稳定性(例如当在400℃下退火时维持直到300℃下的稳定性)并显示出较小波长偏移(例如每年小于10pm),所以优选从聚酰亚胺纤维实现光纤Bragg光栅63。光纤Bragg光栅63基本上反射预定光谱包络同时将光谱剩余部分发送至偏振器65和侧孔传感器67,其被设置在光纤Bragg光栅63的下游。以λg表示的光纤Bragg光栅的反射光谱包络的中心波长对传感器18所经历的温度变化非常敏感(而对传感器所经历的流体静压力变化较不敏感)。在优选实施例中,光纤Bragg光栅63变址(apodise)并被设计为具有大约1510nm和1610nm之间的窄反射光谱包络且具有如图5所示中心波长λg。该反射的光谱包络通过光纤波导部分51、光纤波导22、分光器16和光纤波导24返回光谱分析仪14以进行如下处理。光纤Bragg光栅63将通常具有10pm/℃的温度敏感性和-0.03pm/psi(-0.43pm/kg每平方厘米)的压力敏感性。
第二光学处理元件为偏振器65,其线性偏振经过光纤Bragg光栅63的光以供应至一段侧孔光纤67。偏振器65的偏振轴相对于侧孔光纤67的双折射轴形成45°角。
第三光学处理元件为侧孔光纤67,其由一段具有椭圆或者圆形芯79和两个平行孔81A、81B的光纤77实现,该孔如图4所示沿光纤长度延伸并与芯79平行。孔81A、81B和芯79的轴线处于相同的平面内。
偏振器65优选由具有椭圆或者圆形芯和两个平行孔的短侧孔光纤(例如3mm的数量级)实现,所述孔以和图4侧孔光纤相似的方式在光纤长度上延伸并与芯平行。而且,偏振器65的侧孔沿限定偏振轴的径向线定中心,该偏振轴相对侧孔光纤67的双折射轴以45°角偏斜,从而等量的光进入x和y偏振轴。此外,偏振器的一个或两个侧孔被填充在预望操作环境中为液态形式的金属(例如镓或镓合金)。偏振器65的侧孔造成两种偏振模式之间微分损耗(differential loss),因此用于线性偏振通过光纤Bragg光栅63的光。在采用的流体静压力下,侧孔光纤67成为双折射的。双折射光纤对所施加压力非常敏感而对传感器18的环境温度较不敏感。侧孔光纤67的长度和横截面形状决定压力敏感性。
侧孔光纤67的下游端终止于第四光纤处理元件即反射镜69,其将光向回反射通过侧孔光纤67和偏振器65,其中两个偏振模式干涉。作用于侧孔光纤67的压力产生通过x偏振光所看到的长度和通过y偏振光所看到长度之间的光程长度差。该光程差ds与所施加压力成正比,并且可通过对x和y偏振光束干涉形成的光谱采用快速傅立叶变换获得。主要由光谱周期决定光程差ds。其对施加至传感器18的流体静压力非常敏感而对传感器18的环境温度较不敏感。这样的干涉光(和其中的光谱分量)向回通过光纤Bragg光栅63、光纤波导部分51、光纤波导22、分光器16和光纤波导24到达光谱分析仪14以进行如下处理。侧孔光纤67可被容易地改变为对光程差变化而言其压力敏感性为大约25nm/psi(356nm/kg每平方厘米),其温度敏感性为小于2nm/℃。
侧孔光纤67下游端上的反射镜69优选为100%反射性的同轴(in-line)光纤反射镜。优选侧孔通过熔接(fusion splicing)密封然后在制造反射镜69之前被剥开(cleave)。从偏振器65返回的光信号被高度偏振化,因此需要馈入装置53、光纤波导部分51、光纤波导22、分光器16、光纤波导24和光谱分析仪14以具有低偏振相关损失。
光纤馈入装置将光纤波导部分51和光纤Bragg光栅63耦合在一起。将所有的光学元件例如馈入装置53、光纤Bragg光栅63、偏振器65和侧孔光纤67熔接在一起。
优选由可调节滤光器、光学接收器和信号处理电路(或者可能地用于平行光信号处理通道的多份复制)实现的光谱分析仪14以两种模式操作。在第一模式中,可调节滤光器适合于通过对应传感器18的光纤Bragg光栅63的反射光谱包络的窄光谱包络到达光学接收器。该窄光谱包络扫过光纤Bragg光栅63反射光谱包络中的波长以识别其中的最大峰值。在λg处的该峰值由以Δλg表示的光纤Bragg光栅63的中心波长的变化表示,其对传感器18的环境温度非常敏感,对施加至传感器18的压力较不敏感。在第二模式中,可调节滤光器适合于通过对应从传感器18的偏振器65返回的光谱分量的窄光谱包络到达光学接收器。该窄光谱包络扫过从偏振器65返回的光谱分量的波长以识别干涉光谱。x和y偏振模式之间的该光程差由以Δds表示的侧孔光纤67的x和y偏振光束之间不的光程差的变化表示,其对施加至传感器18的压力非常敏感,而对传感器18的环境温度较不敏感。在图5中描述了从传感器18返回的示例性光谱响应。为描述简单起见,在第一模式中识别的峰值的特征波长表示为λg。该两个操作模式可以为两次单独的扫描,或者单个扫描然后通过采用专门信号处理算法被分为两种光谱。
假定Bragg光栅的初始中心波长为λg,初始光程差为ds,则从传感器18获得的压力和温度测量值的两个联立方程可如下表示:
公式Δλg=(αT×ΔT)+(αP×ΔP)    (1)
公式Δds=μ(ΔT)+(βP×ΔP)        (2)
其中,
Δλg为光纤Bragg光栅63中心波长的变化;
Δds为侧孔光纤67的x和y偏振光束之间的光程差(differential opticallength)的变化;
αT和αP为光纤Bragg光栅63的温度和压力系数,在以液态金属(例如镓或者镓合金)填充的光栅的状态下对其进行校准;
μ(ΔT)为光纤色散所引起的温度的非线性函数
βP为压力系数
μ(ΔT)和βP以填充液态金属的传感器校准。
从试验结果,侧孔光纤67具有非常小的温度敏感性(例如远小于1psi/℃(.0703kg每平方厘米/℃)或者光程差25nm/℃)。因此,可忽略方程(2)中的温度变化(例如μ(ΔT)部分)的影响以获得以ΔPbaseline表示的基线压力变化。以该方式,信号处理回路采用光程差变化Δds(在第二模式中计算)以如下获得基线压力变化ΔPbaseline
公式 Δ P baseline = Δd s β p - - - ( 3 )
其然后采用中心波长变化Δλg(在第一模式中计算)和方程(3)连同方程(1)的ΔPbaseline如下获得以ΔTcomp表示的压力补偿温度变化:
公式 ΔT comp = ( Δλ g α T ) - ( α p α T × ΔP baseline ) - - - ( 4 )
然后在方程(2)中采用以方程(4)计算的温度变化ΔTcomp以如下获得以ΔPcomp表示的温度补偿压力变化:
公式 ΔP come = 1 β P × ( Δd s - μ ( ΔT comp ) )
(5)
信号处理回路然后分析基线压力变化ΔPbaseline和温度补偿压力变化ΔPcomp之间的差以确定该差是否处于预定的阈值偏差值内。如果如此,则信号处理回路如下记录传感器的压力P和温度T:
公式P=Pcal+Pcomp      (6)
公式T=Tcal+ΔTcomp    (7)
这里Pcal和Tcal为校准的初始压力和温度。
但是如果ΔPcomp-ΔPbseline大于需要的压力精度,则采用ΔPcomp替换方程(4)中的ΔPbaseline,并且继续该迭代过程直到实现收敛。
有利的是,这里所描述的传感系统的元件简单而有效地补偿传感器的温度压力交叉敏感性。这里所描述的传感器廉价而粗糙,因此适合于恶劣环境例如石油和天然气钻探和生产应用中的井下监视。
在这里描述和说明了光纤传感系统和其中使用的光纤传感器的实施例,其可同时测量温度和压力。虽然描述了本发明的特别实施例,但是不意味着本发明限制于此,因为本发明范围应当与现有技术所允许的范围一样宽,以及应当同样地阅读说明书。例如,所公开的传感系统仅仅是其中可采用光纤传感器的系统的示例。本领域技术人员将理解本发明的光纤传感器可有利地用于其它类型的传感系统。此外,将理解可将多个传感器耦合至单个光波导以经光学转换测量不同位置的压力和温度。本领域技术人员还应理解本发明的小光纤传感器可接合至通信级光纤并可位于距离光谱分析仪较远的检测位置。另外,虽然关于该系统的光学处理元件公开了特定构造,但是将理解其它构造同样可以使用。例如可由被控制以动态改变从其发射的光的波长的可调节激光器设备实现光源。在该构造中,光谱分析仪不必包括可调节滤光器。因此本领域技术人员将理解可对所提供的发明进行其它变型而不偏离其所请求保护的范围。

Claims (30)

1.一种传感器装置,包括:
限定腔室的罩;
从所述罩外延伸至所述腔室内的光纤段;和
可操作地设置在所述腔室内并可操作地耦合至所述光纤段的一系列光学处理元件,包括:
i)光纤Bragg光栅,
ii)可操作地设置在所述光纤Bragg光栅下游的偏振器和第一侧孔光纤,和
iii)可操作地设置在所述偏振器和所述第一侧孔光纤下游的反射镜;以及
其中,所述光纤Bragg光栅适合于基本上反射预定的第一光谱包络,同时将光谱的剩余部分传送至所述偏振器和所述第一侧孔光纤,其中所述预定第一光谱包络中的峰值的特征波长对所述传感装置环境中的温度非常敏感而对压力较不敏感。
2.如权利要求1所述的传感器装置,其中所述偏振器包括第二侧孔光纤。
3.如权利要求2所述的传感器装置,其中:
所述第一侧孔光纤具有芯和距芯以第一尺寸径向设置的侧孔;以及
所述第二侧孔光纤具有芯和距芯以第二尺寸径向设置的侧孔。
4.如权利要求2所述的传感器装置,其中以液态金属填充所述第二侧孔光纤的一个或多个侧孔。
5.如权利要求4所述的传感器装置,其中所述液态金属包括镓或者镓合金。
6.如权利要求1所述的传感器装置,其中所述罩包括玻璃管。
7.如权利要求6所述的传感器装置,其中以液态金属填充所述玻璃管。
8.如权利要求1所述的传感器装置,其中所述罩可操作地设置在外壳的内部。
9.如权利要求8所述的传感器装置,还包括在所述外壳的内部和所述腔室之间提供压力传递的毛细管。
10.如权利要求8所述的传感器装置,其中所述外壳包括馈入装置,经该馈入装置传送所述光纤段以供应至所述罩的所述腔室内。
11.如权利要求8所述的传感器装置,其中所述外壳包括波纹管结构,其响应施加至所述传感器装置的流体静压力而发生变形。
12.如权利要求1所述的传感器装置,其中变址所述光纤Bragg光栅。
13.如权利要求1所述的传感器装置,其中所述反射镜包括具有100%反射率的同轴光纤反射镜。
14.如权利要求12所述的传感器装置,其中通过熔接对与所述第一侧孔光纤的端部相邻的侧孔进行密封。
15.如权利要求1所述的传感器装置,其中所述偏振器具有从所述第一侧孔光纤的双折射轴偏移45°角的偏振轴。
16.如权利要求1所述的传感器装置,其中:
所述偏振器、所述第一侧孔光纤和所述反射镜适合于返回预定第二光谱包络中的光信号;以及
所述光信号的光谱为正弦波形,其周期对所述传感装置环境中的压力非常敏感而对温度较不敏感。
17.一种传感系统,包括:
a)光源;
b)光谱分析仪;以及
c)至少一个传感器,包括:
i)限定腔室的罩,
ii)从所述罩外延伸至所述腔室内的光纤段,以及
iii)可操作地设置在所述腔室内并可操作地耦合至所述光纤段的一系列光学处理元件,包括光纤Bragg光栅、可操作地设置在所述光纤Bragg光栅下游的偏振器和第一侧孔光纤;以及可操作地设置在所述偏振器和所述第一侧孔光纤下游的反射镜;
其中所述光源被设置为将光线引导至所述至少一个传感器,所述光谱分析仪被设置为检测从所述至少一个传感器反射回的光线;
其中,所述光纤Bragg光栅适合于基本上反射预定的第一光谱包络,同时将光谱的剩余部分传送至所述偏振器和所述第一侧孔光纤,其中所述预定第一光谱包络中的峰值的特征波长对所述传感装置环境中的温度非常敏感而对压力较不敏感。
18.如权利要求17所述的传感系统,其中所述光源包括带宽较宽的光源,所述光谱分析仪包括可调节光学滤光器。
19.如权利要求17所述的传感系统,其中所述光源包括可调节激光设备。
20.如权利要求17所述的传感系统,还包括分光器和光纤波导,其协作用于将所述光源产生的光线引导至所述传感器的所述光纤段和将从所述传感器的所述光纤段反射的光线引导至所述光谱分析仪。
21.如权利要求18所述的传感系统,其中:
所述光谱分析仪以第一模式运行以识别所述预定第一光谱包络中的峰值的特征波长。
22.如权利要求17所述的传感系统,其中:
所述偏振器、所述第一侧孔光纤和所述反射镜协作以返回预定第二光谱包络中的光信号;
所述光信号的光谱为正弦波形;以及
所述光谱分析仪以第二模式操作以识别所述光信号的周期。
23.如权利要求22所述的传感系统,其中所述光谱分析仪包括基于以所述第二模式识别的周期产生基线压力变化ΔPbaseline的装置。
24.如权利要求23所述的传感系统,其中:
所述基线压力变化ΔPbaseline计算为
Figure FSB00000015029300031
这里
Δds为第一侧孔光纤的x和y偏振光束之间的光程差的变化,以及
βP为压力系数。
25.如权利要求24所述的传感系统,其中所述光谱分析仪包括基于所述基线压力变化获得温度变化ΔTcomp的装置。
26.如权利要求25所述的传感系统,其中
所述温度变化ΔTcomp计算为
Figure FSB00000015029300041
这里
Δλg为光纤Bragg光栅中心波长的变化,和
αT和αP为光纤Bragg光栅的温度和压力系数。
27.如权利要求25所述的传感系统,其中所述光谱分析仪包括基于所述温度变化获得压力变化ΔPcomp的装置。
28.如权利要求27所述的传感系统,其中:
所述压力变化ΔPcomp计算为
1 β P × ( Δd s - μ ( ΔT comp ) ) , 这里
μ(ΔTcomp)为光纤色散所引起的温度变化的非线性函数。
29.如权利要求27所述的传感系统,还包括分析基线压力变化ΔPbaseline和压力变化ΔPcomp之间的差以确定该差是否处于预定偏差值内的信号处理电路。
30.如权利要求29所述的传感系统,还包括
当基线压力变化ΔPbaseline和压力变化ΔPcomp之间的差处于预定偏差值时,将传感器的压力P和温度T记录为下式的信号处理电路:
P=Pcal+ΔPcomp
T=Tcal+ΔTcomp
这里Pcal和Tcal为校准的初始压力和温度。
CN2006800313404A 2005-07-02 2006-06-20 光纤温度和压力传感器和包括它们的系统 Expired - Fee Related CN101253392B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0513615.5 2005-07-02
GB0513615A GB2427910B (en) 2005-07-02 2005-07-02 Fiber optic temperature and pressure sensor and system incorporating same
PCT/GB2006/002241 WO2007003876A1 (en) 2005-07-02 2006-06-20 Fiber optic temperature and pressure sensor and system incorporating same

Publications (2)

Publication Number Publication Date
CN101253392A CN101253392A (zh) 2008-08-27
CN101253392B true CN101253392B (zh) 2010-08-25

Family

ID=34856577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800313404A Expired - Fee Related CN101253392B (zh) 2005-07-02 2006-06-20 光纤温度和压力传感器和包括它们的系统

Country Status (7)

Country Link
US (2) US7684656B2 (zh)
CN (1) CN101253392B (zh)
BR (1) BRPI0613125A2 (zh)
CA (1) CA2612385C (zh)
GB (1) GB2427910B (zh)
NO (1) NO20080050L (zh)
WO (1) WO2007003876A1 (zh)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101334298B (zh) * 2007-10-31 2010-07-28 中国地震局地壳应力研究所 半缺口套管式高精度多功能光纤光栅传感器设计
DE102008055952A1 (de) 2008-09-04 2010-03-25 Pulsion Medical Systems Ag Optischer Mess-Katheter zur Thermodilutions-Messung und Pulskonturanalyse
US8076909B2 (en) * 2008-09-12 2011-12-13 Siemens Energy, Inc. Method and system for monitoring the condition of generator end windings
US8335405B2 (en) * 2008-11-07 2012-12-18 The United States Of America, As Represented By The Secretary Of The Navy Method and apparatus for measuring fiber twist by polarization tracking
US20100207019A1 (en) * 2009-02-17 2010-08-19 Schlumberger Technology Corporation Optical monitoring of fluid flow
CN101625273B (zh) * 2009-08-05 2011-09-14 山东大学 一种光纤光栅渗压计
US8195013B2 (en) * 2009-08-19 2012-06-05 The United States Of America, As Represented By The Secretary Of The Navy Miniature fiber optic temperature sensors
BR112012007836A2 (pt) 2009-10-05 2016-03-15 Nkt Flexibles Is tubo flexível não ligado.
US20110133067A1 (en) * 2009-12-08 2011-06-09 Schlumberger Technology Corporation Optical sensor having a capillary tube and an optical fiber in the capillary tube
US8326095B2 (en) * 2010-02-08 2012-12-04 Schlumberger Technology Corporation Tilt meter including optical fiber sections
CN101776493B (zh) * 2010-03-10 2011-09-07 华南理工大学 光纤温/湿度传感器感应层及其制备方法与应用
EP2591326A1 (en) * 2010-07-07 2013-05-15 ABB Research Ltd. Fiber optic birefringent thermometer and method for manufacturing the same
US8330961B1 (en) 2010-07-15 2012-12-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optical multi-species gas monitoring sensor and system
US8924158B2 (en) 2010-08-09 2014-12-30 Schlumberger Technology Corporation Seismic acquisition system including a distributed sensor having an optical fiber
US20120224801A1 (en) * 2011-03-04 2012-09-06 Baker Hughes Incorporated Fiber optic sealing apparatus
FR2979990B1 (fr) * 2011-09-09 2013-12-27 Andra Dispositif d'etalonnage en temperature et procedes d'etalonnage en temperature et positionnement d'un capteur de temperature a fibre optique
US9417103B2 (en) 2011-09-20 2016-08-16 Schlumberger Technology Corporation Multiple spectrum channel, multiple sensor fiber optic monitoring system
CN102393272B (zh) * 2011-10-15 2013-05-01 浙江师范大学 基于锥形光纤的光纤布拉格光栅液压传感方法
US8590385B2 (en) * 2011-12-12 2013-11-26 General Electric Company High pressure fiber optic sensor system
WO2013134575A1 (en) * 2012-03-07 2013-09-12 Ofs Fitel, Llc Grating-based sensor
DE102012104874B4 (de) * 2012-06-05 2016-05-19 Technische Universität München Optisches Messsystem mit Polarisationskompensation, sowie entsprechendes Verfahren
CN102728591B (zh) * 2012-06-11 2014-08-13 东南大学 光学系统中运动部件及线缆真空污染控制方法
WO2014043598A1 (en) * 2012-09-14 2014-03-20 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Reconfigurable liquid metal fiber-optic mirror
TWI465722B (zh) * 2012-10-03 2014-12-21 Univ Nat Yunlin Sci & Tech 光學流體速度感測裝置及方法
TWI457568B (zh) * 2012-10-09 2014-10-21 Univ Nat Yunlin Sci & Tech 光纖流體速度感測裝置與應用於其上之方法
DE102012109640A1 (de) * 2012-10-10 2014-04-10 Maschinenfabrik Reinhausen Gmbh Hochspannungstransformator mit Sensorsystem, Verfahren zur Überwachung von physikalischen Kenngrößen eines Hochspannungstransformators und Sensorsystem zur Überwachung physikalischer Kenngrößen
CN103033308A (zh) * 2012-12-17 2013-04-10 中国船舶重工集团公司第七一五研究所 一种温度实时精确补偿的光纤光栅压力传感器
NL1040505C2 (en) * 2013-11-19 2015-05-26 Beethoven Marine Systems B V Sensor for detecting pressure waves in a fluid, provided with static pressure compensation.
US9952067B2 (en) 2015-05-06 2018-04-24 Kulite Semiconductor Products, Inc. Systems and methods for optical measurements using multiple beam interferometric sensors
US9810594B2 (en) 2015-01-08 2017-11-07 Kulite Semiconductor Products, Inc. Thermally stable high temperature pressure and acceleration optical interferometric sensors
KR101653908B1 (ko) * 2015-02-25 2016-09-02 부경대학교 산학협력단 광섬유 압력 센서 및 이를 이용한 압력 측정방법
US9448312B1 (en) 2015-03-11 2016-09-20 Baker Hughes Incorporated Downhole fiber optic sensors with downhole optical interrogator
US10545166B2 (en) * 2015-05-08 2020-01-28 Fugro Technology B.V. Optical sensor device, sensor apparatus and cable comprising such device
US20180172536A1 (en) * 2015-06-18 2018-06-21 Multicore Photonics, Inc. FIBER OPTIC PRESSURE APPARATUS, METHODS, and APPLICATIONS
DE102015121859A1 (de) * 2015-12-15 2017-06-22 Endress+Hauser Gmbh+Co. Kg Drucksensor und Verfahren zum Bedienen eines Drucksensors
CN105671394B (zh) * 2016-01-22 2018-02-23 上海洛丁森工业自动化设备有限公司 镓液态金属材料及其在远传压力、差压变送器上的应用
CN106153124B (zh) * 2016-09-13 2018-05-08 中山水木光华电子信息科技有限公司 一种光纤温压一体传感器
JP2018059802A (ja) * 2016-10-05 2018-04-12 株式会社Ihi検査計測 Fbgセンサ
US11923898B2 (en) 2019-04-15 2024-03-05 Luna Innovations Incorporated Calculation of distributed birefringence and polarization mode dispersion from waveguide scatter with full polarization state optical frequency domain reflectometry
US11867855B2 (en) * 2019-12-10 2024-01-09 Baker Hughes Oilfield Operations Llc Downhole fiber optic hydrophone
CN113804351B (zh) * 2020-06-16 2024-03-22 潍坊嘉腾液压技术有限公司 螺旋管路内压力响应及压力分布的检测系统
US11592349B2 (en) * 2021-02-02 2023-02-28 Honeywell International Inc. Combined temperature and pressure sensing device with improved electronic protection
CN113340350A (zh) * 2021-06-07 2021-09-03 中国电力科学研究院有限公司 光栅矢量传感器、架空线路覆冰弧垂状态监测装置及方法
RU207695U1 (ru) * 2021-09-09 2021-11-11 Акционерное общество "Москабельмет" (АО "МКМ") Оптический сенсорный кабель
CN113805125B (zh) * 2021-09-30 2022-09-13 重庆大学 基于光学游标效应的高灵敏度光纤磁场传感器
CN113983945B (zh) * 2021-12-28 2022-03-22 南京牧镭激光科技有限公司 控制光纤光栅中心波长的传感器制作装置
CN117233104B (zh) * 2023-11-16 2024-04-05 宁德时代新能源科技股份有限公司 基于光纤传感器的电池析锂检测方法及其设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659923A (en) * 1981-03-09 1987-04-21 Polaroid Corporation Fiber optic interferometer transducer
US5515459A (en) * 1992-02-19 1996-05-07 Sensor Dynamics Inc. Optical fibre pressure sensor
US5841131A (en) * 1997-07-07 1998-11-24 Schlumberger Technology Corporation Fiber optic pressure transducers and pressure sensing system incorporating same
US6630658B1 (en) * 1998-02-25 2003-10-07 Abb Research Ltd Fiber laser pressure sensor
GB2399877A (en) * 2003-02-21 2004-09-29 Weatherford Lamb Side-hole cane waveguide sensor

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885874A (en) * 1974-01-11 1975-05-27 Us Energy Laser plasma diagnostic using ring resonators
US4918751A (en) * 1987-10-05 1990-04-17 The University Of Rochester Method for optical pulse transmission through optical fibers which increases the pulse power handling capacity of the fibers
US5367399A (en) * 1992-02-13 1994-11-22 Holotek Ltd. Rotationally symmetric dual reflection optical beam scanner and system using same
US5380995A (en) * 1992-10-20 1995-01-10 Mcdonnell Douglas Corporation Fiber optic grating sensor systems for sensing environmental effects
US6215809B1 (en) * 1996-03-25 2001-04-10 Sdl, Inc. Stabilization of laser sources with closely-coupled optical reflectors using an internal dither circuit
US5757487A (en) * 1997-01-30 1998-05-26 The United States Of America As Represented By The Secretary Of The Navy Methods and apparatus for distributed optical fiber sensing of strain or multiple parameters
US5898804A (en) * 1997-06-09 1999-04-27 Trw Inc. Precision wavelength control for automated fiber optic Bragg grating writing
US6538739B1 (en) * 1997-09-30 2003-03-25 The Regents Of The University Of California Bubble diagnostics
DE19860410A1 (de) * 1998-12-28 2000-06-29 Abb Research Ltd Faserlaser-Sensor zur Messung von differentiellen Drücken und von Strömungsgeschwindigkeiten
US6212306B1 (en) * 1999-10-07 2001-04-03 David J. F. Cooper Method and device for time domain demultiplexing of serial fiber Bragg grating sensor arrays
US6816266B2 (en) * 2000-02-08 2004-11-09 Deepak Varshneya Fiber optic interferometric vital sign monitor for use in magnetic resonance imaging, confined care facilities and in-hospital
GB0021975D0 (en) * 2000-09-07 2000-10-25 Optomed As Filter optic probes
GB0021976D0 (en) * 2000-09-07 2000-10-25 Optomed As Multi-parameter fiber optic probes
EP1197738A1 (de) * 2000-10-18 2002-04-17 Abb Research Ltd. Anisotroper Faserlaser-Sensor mit verteilter Rückkopplung
US6560020B1 (en) * 2001-01-16 2003-05-06 Holotek, Llc Surface-relief diffraction grating
US6765724B1 (en) * 2001-01-16 2004-07-20 Holotek, Llc Diffraction grating-based wavelength selection unit having improved polarization dependent performance
US6954575B2 (en) * 2001-03-16 2005-10-11 Imra America, Inc. Single-polarization high power fiber lasers and amplifiers
NO316775B1 (no) * 2001-06-11 2004-05-03 Optoplan As Fremgangsmate for belegging av en fiber med fiberoptisk Bragg-Gitter (FBG)
US7403673B2 (en) * 2006-05-19 2008-07-22 Institut National D'optional Optical fiber polarimetric chemical sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659923A (en) * 1981-03-09 1987-04-21 Polaroid Corporation Fiber optic interferometer transducer
US5515459A (en) * 1992-02-19 1996-05-07 Sensor Dynamics Inc. Optical fibre pressure sensor
US5841131A (en) * 1997-07-07 1998-11-24 Schlumberger Technology Corporation Fiber optic pressure transducers and pressure sensing system incorporating same
US6630658B1 (en) * 1998-02-25 2003-10-07 Abb Research Ltd Fiber laser pressure sensor
GB2399877A (en) * 2003-02-21 2004-09-29 Weatherford Lamb Side-hole cane waveguide sensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ewa Chmielewska, etc..Measurement of pressure and temperature sensivities ofBragggrating imprinted in a highly birefringent side-hole fiber.APPLIED OPTICS42 31.2003,42(31),6284-6291.
Ewa Chmielewska, etc..Measurement of pressure and temperature sensivities ofBragggrating imprinted in a highly birefringent side-hole fiber.APPLIED OPTICS42 31.2003,42(31),6284-6291. *

Also Published As

Publication number Publication date
CA2612385A1 (en) 2007-01-11
US8218916B2 (en) 2012-07-10
US20080212917A1 (en) 2008-09-04
GB2427910A (en) 2007-01-10
GB0513615D0 (en) 2005-08-10
US7684656B2 (en) 2010-03-23
US20100135608A1 (en) 2010-06-03
NO20080050L (no) 2008-02-01
WO2007003876A1 (en) 2007-01-11
BRPI0613125A2 (pt) 2010-12-21
CN101253392A (zh) 2008-08-27
CA2612385C (en) 2016-03-15
GB2427910B (en) 2008-03-12

Similar Documents

Publication Publication Date Title
CN101253392B (zh) 光纤温度和压力传感器和包括它们的系统
US11002594B2 (en) Method and apparatus for distributed sensing
US6304686B1 (en) Methods and apparatus for measuring differential pressure with fiber optic sensor systems
EP2259037B1 (en) Fiber bragg grating devices utilizing slow light
US6218661B1 (en) Methods and apparatus for mechanically enhancing the sensitivity of transversely loaded fiber optic sensors
US5319435A (en) Method and apparatus for measuring the wavelength of spectrally narrow optical signals
CN101278177B (zh) 传感器及使用该传感器的干扰测定方法
US11346770B2 (en) Optical fiber sensor for salinity and temperature measurement
Wang et al. Fabry–Pérot fiber sensor for simultaneous measurement of refractive index and temperature based on an in-fiber ellipsoidal cavity
US20040047535A1 (en) Enhanced fiber-optic sensor
CN102323239B (zh) 一种基于非对称双芯光纤的折射率传感器
WO1998012525A1 (en) Fiber optic sensor having a multicore optical fiber and an associated sensing method
US7085452B1 (en) Optical devices having WGM cavity coupled to side-polished port
CN109709070B (zh) 利用复合光纤光栅传感器的折射率和温度双参量测量方法
Dong et al. Temperature-independent fiber bending sensor based on a superimposed grating
Cheng et al. High-resolution polymer optical fibre humidity sensor utilizing single-passband microwave photonic filter
Albert Tilted fiber Bragg gratings as multi-sensors
CN105806511B (zh) 基于球锥串联结构的微光纤超小型温度传感器
CN113959471A (zh) 一种少模光纤光栅多参量传感装置
Yan et al. Dual parameter measurement system for temperature and stress based on Sagnac interferomter
Chyad et al. Acoustic fiber sensors by Fabry-Perot interferometer technology
Kadhim et al. Temperature sensor based on fiber bragg grating (FBG), implementation, evaluation and spectral characterization study
GB2419401A (en) Polarimetric differential optical fibre sensor
Gautam A Design of High Temperature High Bandwidth Fibre Optic Pressure Sensors
Zhou Optical Fiber Sensors for Temperature and Strain Measurement

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100825

Termination date: 20120620