CN101251478A - A UV Differential Flue Gas Probe Based on Dual Optical Paths - Google Patents
A UV Differential Flue Gas Probe Based on Dual Optical Paths Download PDFInfo
- Publication number
- CN101251478A CN101251478A CNA200810052556XA CN200810052556A CN101251478A CN 101251478 A CN101251478 A CN 101251478A CN A200810052556X A CNA200810052556X A CN A200810052556XA CN 200810052556 A CN200810052556 A CN 200810052556A CN 101251478 A CN101251478 A CN 101251478A
- Authority
- CN
- China
- Prior art keywords
- flue gas
- ultraviolet
- optical path
- gas probe
- probe based
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 48
- 239000000523 sample Substances 0.000 title claims abstract description 20
- 239000003546 flue gas Substances 0.000 title claims abstract description 19
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 230000009977 dual effect Effects 0.000 title description 4
- 239000013307 optical fiber Substances 0.000 claims description 11
- 239000004606 Fillers/Extenders Substances 0.000 claims 2
- 238000005259 measurement Methods 0.000 abstract description 18
- 238000012544 monitoring process Methods 0.000 abstract description 5
- 238000013461 design Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 238000004847 absorption spectroscopy Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明涉及一种适用于烟气在线监测的紫外差分烟气探头,包括发射模块和接收模块,其特征在于,所述发射模块与接收模块设置在同一端,两个模块的光轴相互平行,在光路的另一端固定有角隅棱镜。本发明在简化了光路调整操作、降低了调整难度的同时,还提高了测量稳定性,延长了传感器工作寿命。
The invention relates to an ultraviolet differential flue gas probe suitable for on-line monitoring of flue gas, including a transmitting module and a receiving module, characterized in that the transmitting module and the receiving module are arranged at the same end, and the optical axes of the two modules are parallel to each other. A corner cube is fixed at the other end of the light path. The invention not only simplifies the optical path adjustment operation and reduces the adjustment difficulty, but also improves the measurement stability and prolongs the working life of the sensor.
Description
技术领域 technical field
本发明涉及一种适用于烟气在线监测的探头,尤其涉及一种紫外差分烟气探头。The invention relates to a probe suitable for on-line monitoring of flue gas, in particular to an ultraviolet differential flue gas probe.
背景技术 Background technique
二氧化硫(SO2)和氮氧化物(NOx)作为大气环境的主要气体污染,减排和监测越来越受到重视。为了及时、准确、系统地掌握排污状况,要求对二氧化硫等排放情况进行连续监测。目前常用的气体连续监测方法主要为吸收光谱法等。Lambert-Beer光吸收定律,是吸收光谱法测量物质浓度的最基本定律,它表明当入射光强度一定时,被测物质的吸光度与被测物质的浓度和厚度的乘积成正比。Sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) are the main gas pollutants in the atmospheric environment, and more and more attention has been paid to emission reduction and monitoring. In order to timely, accurately and systematically grasp the status of sewage discharge, continuous monitoring of emissions such as sulfur dioxide is required. At present, the commonly used continuous gas monitoring methods are mainly absorption spectroscopy and so on. The Lambert-Beer light absorption law is the most basic law for measuring the concentration of substances by absorption spectroscopy. It shows that when the incident light intensity is constant, the absorbance of the measured substance is proportional to the product of the concentration and thickness of the measured substance.
吸收光谱法测量一般采用紫外光源发出固定波段的光束,经过固定长度的被测气体测量区,最后由光谱仪接收光束,并通过计算机以一定的算法进行后续数据处理的方式来获取不同成分的烟气浓度。Absorption spectroscopy generally uses ultraviolet light sources to emit fixed-band beams, pass through a fixed-length measured gas measurement area, and finally receive the beams by the spectrometer, and use a computer to perform subsequent data processing with a certain algorithm to obtain flue gases of different components concentration.
现广泛使用的单边插入式探头的光路如图1所示,组成结构比较简单,由紫外光源1发出光束,经过准直透镜2后进入被测气体测量区7,再通过聚焦透镜3进入光纤5。在实际应用中,这种光路将发射端6和接收端8安装于同一个探头的两端,探头上设有测量区,只要将探头插入烟道即可开始测量。一般情况下,烟道内的环境比较恶劣,随着使用时间的延长,光路的结构部分会因为高温高湿等因素而出现形变,则光纤5所接收的光强会减小,这将严重影响测量效果。此时需要同时调整出射、接收光学器件的位置和姿态,但不方便在现场调整光路,且光纤转接头4等精密光学器件长期处于高温烟气环境,使用寿命大大降低,需要对光路设计进行改造。The optical path of the widely used single-side insertion probe is shown in Figure 1. The composition structure is relatively simple. The light beam is emitted by the ultraviolet light source 1, passes through the collimating lens 2, enters the measured
发明内容 Contents of the invention
本发明的目的是改进现有烟气测量探头的光路设计,克服现有技术的上述不足,提供一种在完成现有光路功能的前提下,能够方便现场光路调节、提高测量稳定性的烟气在线测量探头。为此,本发明采用如下的技术方案:The purpose of the present invention is to improve the optical path design of the existing flue gas measuring probe, overcome the above-mentioned shortcomings of the prior art, and provide a flue gas that can facilitate on-site optical path adjustment and improve measurement stability under the premise of completing the existing optical path functions. Online measuring probe. For this reason, the present invention adopts following technical scheme:
一种基于双光路的紫外差分烟气探头,包括发射模块和接收模块,其特征在于,发射模块与接收模块设置在同一端,两个模块的光轴相互平行,在光路的另一端固定有角隅棱镜。An ultraviolet differential flue gas probe based on dual optical paths, including a transmitting module and a receiving module, characterized in that the transmitting module and the receiving module are arranged at the same end, the optical axes of the two modules are parallel to each other, and an angle is fixed at the other end of the optical path corner prism.
作为优选实施方式,本发明的基于双光路的紫外差分烟气探头,发射模块包括紫外光源、抛物面反射镜、准直扩束透镜,紫外光源置于所述抛物面反射镜的焦点上,抛物面反射镜反射的紫外光经过准直扩束透镜射出;接收模块包括聚焦透镜、接收光纤头,经由所述角隅棱镜反射的光束经由聚焦透镜后由接收光纤头接收。As a preferred embodiment, the emission module of the ultraviolet differential flue gas probe based on dual optical paths of the present invention includes an ultraviolet light source, a parabolic reflector, and a collimating beam expander lens. The ultraviolet light source is placed on the focus of the parabolic reflector, and the parabolic reflector The reflected ultraviolet light is emitted through the collimating beam expander lens; the receiving module includes a focusing lens and a receiving fiber head, and the light beam reflected by the corner cube is received by the receiving fiber head after passing through the focusing lens.
本发明的紫外差分烟气探头双光路设计,将测量光束的发射和接收器件由原来的相向放置改为同向放置,并通过角隅棱镜将光路折叠,从而使得光路调整方式由双端调整改变为单端调整,可实现光路的在线调节和修正。本发明在简化了光路调整操作、降低了调整难度的同时,还提高了测量稳定性,延长了传感器工作寿命。The dual optical path design of the ultraviolet differential flue gas probe of the present invention changes the emitting and receiving devices of the measurement beam from the original opposite placement to the same placement, and folds the optical path through the corner cube, so that the optical path adjustment method is changed from double-ended adjustment. It is a single-ended adjustment, which can realize online adjustment and correction of the optical path. The invention not only simplifies the optical path adjustment operation and reduces the adjustment difficulty, but also improves the measurement stability and prolongs the working life of the sensor.
附图说明 Description of drawings
图1现有技术中的单边插入式探头的光路示意图。FIG. 1 is a schematic diagram of an optical path of a single-side insertion probe in the prior art.
图2本发明的紫外差分烟气探头的光路示意图。Fig. 2 is a schematic diagram of the optical path of the ultraviolet differential flue gas probe of the present invention.
图3本发明的紫外差分烟气探头的安装示意图。Fig. 3 is a schematic diagram of the installation of the ultraviolet differential flue gas probe of the present invention.
附图标记说明:Explanation of reference signs:
1紫外光源 2准直透镜 3聚焦透镜 4光纤接收头1 UV light source 2 Collimating lens 3 Focusing
5光纤 6发射端 7测量区 8接收端5 Optical fiber 6
9抛物面反射镜 10准直扩束透镜 11角隅棱镜 12发射接收端9
13反射端 14透过窗13 reflective end 14 through the window
具体实施方式 Detailed ways
本发明的烟气测量光路采用一次反射式设计,引入角隅棱镜11作为反射器件,将发射和接受器件置于同一端,通过单端调节来实现光路的长期稳定工作,具体设计方案如下:The flue gas measurement optical path of the present invention adopts a one-time reflection design, introduces a
(1)光路组成和排布(1) Optical path composition and arrangement
本发明的光路依次由紫外光源1、抛物面反射镜9、准直扩束透镜10、角隅棱镜11、聚焦透镜3和光纤接收头4等器件组成,光路如图2所示。The optical path of the present invention is composed of ultraviolet light source 1, parabolic reflector 9, collimating
将紫外光源1置于抛物面反射镜9的焦点上,其所发出的光线照射在抛物面反射镜9上形成水平光束射出,经过准直和扩束后进入测量区7,由被测气体对其进行选择性吸收。吸收后的光束通过角隅棱镜11反射回来,最后进入聚焦透镜3。由聚焦透镜3将光束会聚到接收头4,通过光纤5进入光谱分析仪器。Place the ultraviolet light source 1 at the focal point of the parabolic reflector 9, and the light emitted by it irradiates on the parabolic reflector 9 to form a horizontal beam, which enters the
(2)光路特征(2) Optical path characteristics
(一)测量区7的设置:整个光路可安装于外形如图3的传感器结构中,下侧开口区域即为测量区7,光束的发射和接收装置都位于传感器的一侧,光轴相互平行,另一侧只固定有角隅棱镜11。将传感器置于烟道内,光源出射光束经过准直扩束后,进入测量区7,随后经过角隅棱镜11反射回传感器内部封闭的光路通道,最后被聚焦透镜3接收并会聚至光纤5。(1) Setting of measurement area 7: The entire optical path can be installed in the sensor structure as shown in Figure 3. The lower opening area is the
(二)反射端13设计:由于本发明采用角隅棱镜11做为反射装置,而角隅棱镜11本身具有保持入射和出射光线相互平行的特性,不改变光路方向,即便传感器发生形变,角隅棱镜11仍按照入射光线的方向将光线反射回来。因此,理论上,只要保持发射和接收装置的光轴相互平行且间距不变,则光路就不会受到干扰。(2) Reflecting
(三)器件材料:光路中所采用的光学器件选用统一的特殊材料,对紫外部分具有高透过率,最大限度的减小光束在传播过程中的衰减。此外,也避免了由于光学器件所用材料不同而引起的非线性对测量的影响。(3) Device material: The optical device used in the optical path is made of uniform special material, which has high transmittance to the ultraviolet part, and minimizes the attenuation of the beam during propagation. In addition, the influence of non-linearity on the measurement caused by the different materials used in optical devices is also avoided.
(四)调整方法:现场使用期间,传感器内部的支撑结构可能会因为烟道内的高温高湿而发生形变,从而使得光路中各器件的相互位置发生移动,导致部分平行光束受到移位后的其他器件的阻挡,则进入接收装置的光强会严重降低,影响测量精度和准确性。本发明利用角隅棱镜11的特性,只需调节左侧的发射接收装置之间的平行度和距离,即可将光路恢复初始状态。对于已安装到现场烟道的光路器件,无需将传感器从烟道中取出,调整也是采用同样的方式,只需调整位于烟道外的发射接收端12内发射和接收装置的姿态即可恢复光路状态。(4) Adjustment method: During on-site use, the internal support structure of the sensor may be deformed due to high temperature and high humidity in the flue, which will cause the mutual position of each device in the optical path to move, causing some parallel beams to be displaced. If the device is blocked, the light intensity entering the receiving device will be seriously reduced, which will affect the measurement accuracy and accuracy. The present invention utilizes the characteristics of the
本发明的紫外差分烟气探头具体结构设计如下:The specific structural design of the ultraviolet differential flue gas probe of the present invention is as follows:
(1)传感器结构设计(1) Sensor structure design
将光束的发射和接收装置分别作成模块化结构,其中发射模块主要包括光源、抛物面反射镜9、准直扩束透镜10;接收模块主要包括聚焦透镜3和光纤接收头4。固定各模块装置内部的光学器件位置关系,使得各器件与模块外壳形成刚性、稳定的联结关系。The beam emitting and receiving devices are respectively made into modular structures, wherein the emitting module mainly includes a light source, a parabolic reflector 9, and a collimating
传感器发射接收端12分别对发射和接收模块设有可锁紧的多自由度调节机构,可以对两个模块的相互姿态和距离进行调节。The transmitting and receiving
(2)调整方法(2) Adjustment method
传感器在烟道中工作期间,若因为高温等环境因素而发生传感器结构形变,接收到的光束偏离聚焦透镜3,接受光强减小,影响测量。则调节发射接收端12的多自由度调节机构,根据光谱接收仪器所采集到的光强来判断调整效果,直到恢复发射和接收装置的原有位置关系,即可使得测量正常进行。When the sensor is working in the flue, if the sensor structure is deformed due to environmental factors such as high temperature, the received light beam deviates from the focusing lens 3, and the received light intensity decreases, which affects the measurement. Then adjust the multi-degree-of-freedom adjustment mechanism of the transmitting and receiving
(3)光路辅助功能设计(3) Optical path auxiliary function design
考虑到工作现场的实际环境,为了防止烟道内的粉尘对光路和光学器件的污染,传感器与烟道气体环境连通部位应增加反吹洁净气。同时,发射和接收装置内部有多个光学器件,应该对模块采用气密结构设计,确保内部空气的洁净度。Considering the actual environment of the work site, in order to prevent the dust in the flue from polluting the optical path and optical devices, clean air should be blown back to the connection between the sensor and the flue gas environment. At the same time, there are multiple optical devices inside the transmitting and receiving device, and the module should be designed with an airtight structure to ensure the cleanliness of the internal air.
对于反射端13,其长期工作在高粉尘、高温高湿的环境中,极容易受到污染。为此,除了设有反吹气和气密设计之外,还应该增加其他自除尘装置,定期自动去除角隅棱镜11上的灰尘,保证光强在反射端13衰减最小。As for the
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA200810052556XA CN101251478A (en) | 2008-03-28 | 2008-03-28 | A UV Differential Flue Gas Probe Based on Dual Optical Paths |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA200810052556XA CN101251478A (en) | 2008-03-28 | 2008-03-28 | A UV Differential Flue Gas Probe Based on Dual Optical Paths |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101251478A true CN101251478A (en) | 2008-08-27 |
Family
ID=39954979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA200810052556XA Pending CN101251478A (en) | 2008-03-28 | 2008-03-28 | A UV Differential Flue Gas Probe Based on Dual Optical Paths |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101251478A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102297841A (en) * | 2011-05-23 | 2011-12-28 | 天津同阳科技发展有限公司 | Flue gas automatic monitor based on optical fiber transmission and signal receiving |
CN102346134A (en) * | 2011-09-16 | 2012-02-08 | 武汉市天虹仪表有限责任公司 | Reflective long optical path air monitoring instrument |
CN102778440A (en) * | 2012-08-06 | 2012-11-14 | 南京国电环保科技有限公司 | Total-reflection type optical system of flue gas concentration analyzer |
CN103090972A (en) * | 2013-01-14 | 2013-05-08 | 天津大学 | Compact type full spectrum optical measuring head device used for reflection difference spectral measurement |
CN104458588A (en) * | 2014-12-24 | 2015-03-25 | 四川威特龙消防设备有限公司 | Bidirectional self-cleaning type optical fiber gas sensor probe |
CN105044113A (en) * | 2015-07-21 | 2015-11-11 | 青岛市光电工程技术研究院 | Sulfur dioxide gas imager |
CN105891074A (en) * | 2016-04-12 | 2016-08-24 | 东南大学 | Dust concentration image collecting device and collecting method |
CN108318437A (en) * | 2018-01-19 | 2018-07-24 | 中国科学院合肥物质科学研究院 | A kind of portable flue gas in-situ measurement system based on the adjustable how anti-pool technology of ultraviolet opening |
CN112098354A (en) * | 2020-09-21 | 2020-12-18 | 国网重庆市电力公司电力科学研究院 | A kind of SF6 decomposition component detection equipment and method based on ultraviolet absorption spectrometry |
-
2008
- 2008-03-28 CN CNA200810052556XA patent/CN101251478A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102297841A (en) * | 2011-05-23 | 2011-12-28 | 天津同阳科技发展有限公司 | Flue gas automatic monitor based on optical fiber transmission and signal receiving |
CN102346134A (en) * | 2011-09-16 | 2012-02-08 | 武汉市天虹仪表有限责任公司 | Reflective long optical path air monitoring instrument |
CN102778440A (en) * | 2012-08-06 | 2012-11-14 | 南京国电环保科技有限公司 | Total-reflection type optical system of flue gas concentration analyzer |
CN103090972A (en) * | 2013-01-14 | 2013-05-08 | 天津大学 | Compact type full spectrum optical measuring head device used for reflection difference spectral measurement |
CN104458588A (en) * | 2014-12-24 | 2015-03-25 | 四川威特龙消防设备有限公司 | Bidirectional self-cleaning type optical fiber gas sensor probe |
CN104458588B (en) * | 2014-12-24 | 2017-02-22 | 威特龙消防安全集团股份公司 | Bidirectional self-cleaning type optical fiber gas sensor probe |
CN105044113A (en) * | 2015-07-21 | 2015-11-11 | 青岛市光电工程技术研究院 | Sulfur dioxide gas imager |
CN105044113B (en) * | 2015-07-21 | 2018-10-09 | 青岛市光电工程技术研究院 | A kind of sulfur dioxide gas imager |
CN105891074A (en) * | 2016-04-12 | 2016-08-24 | 东南大学 | Dust concentration image collecting device and collecting method |
CN105891074B (en) * | 2016-04-12 | 2018-11-23 | 东南大学 | A kind of dust concentration image collecting device and acquisition method |
CN108318437A (en) * | 2018-01-19 | 2018-07-24 | 中国科学院合肥物质科学研究院 | A kind of portable flue gas in-situ measurement system based on the adjustable how anti-pool technology of ultraviolet opening |
CN112098354A (en) * | 2020-09-21 | 2020-12-18 | 国网重庆市电力公司电力科学研究院 | A kind of SF6 decomposition component detection equipment and method based on ultraviolet absorption spectrometry |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101251478A (en) | A UV Differential Flue Gas Probe Based on Dual Optical Paths | |
CN101226143B (en) | Long optical path air monitoring instrument | |
CN202083627U (en) | Air Differential Absorption Spectroscopy Measurement System Based on Fiber-optic Cassegrain Telescope Structure | |
CN101694460A (en) | Self-adaptive differential absorption spectrum measuring method of concentration of flue gas pollutants and device | |
CN101694461A (en) | Infrared multi-constituent monitoring method and monitoring system for monitoring emission flux of gas in pollution source | |
CN101067602A (en) | Portable differential absorption spectroscopy method and device | |
CN203745364U (en) | Optical system with high energy utilization rate for flue gas concentration analyzer | |
CN102575982B (en) | Device for radiation absorption measurements and method for calibration thereof | |
CN104483284A (en) | Optical system and detection device for flue gas monitor | |
CN102012357B (en) | Bypass concentration calibration system with variable light path | |
CN205786294U (en) | The many gas-detecting devices of multiband | |
CN108318437A (en) | A kind of portable flue gas in-situ measurement system based on the adjustable how anti-pool technology of ultraviolet opening | |
CN101634626B (en) | Active-passive integrated atmospheric pollution measuring system and measuring method thereof | |
JP5960030B2 (en) | Gas component concentration multi-point measuring device in gas | |
CN101158637A (en) | Sample cells for online calibration of monitoring instruments | |
CN111238417A (en) | Online measuring device for sectional area of pipe diameter high-temperature flue | |
CN204439539U (en) | A kind of optical system of flue gas monitoring instrument and pick-up unit | |
CN106053310A (en) | Dust detection apparatus with foldable calibration mechanism | |
CN101936885A (en) | Optical Fiber Transceiver Integrated Air Differential Absorption Spectroscopy Measurement System | |
JP6025504B2 (en) | Gas component concentration measuring device in exhaust gas | |
CN105180649B (en) | Radiation spectrum detecting system for kiln tail of cement converter | |
CN102778440A (en) | Total-reflection type optical system of flue gas concentration analyzer | |
CN101706418B (en) | On-line ozone analysis method and ozone analyzer | |
CN116124720A (en) | Water quality on-line monitoring method and water quality on-line monitoring device | |
CN115963079A (en) | Open Multi-reflection White Cell Infrared Spectral Analysis System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20080827 |