CN101240405A - 一种制备定向纳米孪晶的方法 - Google Patents
一种制备定向纳米孪晶的方法 Download PDFInfo
- Publication number
- CN101240405A CN101240405A CNA2007100103417A CN200710010341A CN101240405A CN 101240405 A CN101240405 A CN 101240405A CN A2007100103417 A CNA2007100103417 A CN A2007100103417A CN 200710010341 A CN200710010341 A CN 200710010341A CN 101240405 A CN101240405 A CN 101240405A
- Authority
- CN
- China
- Prior art keywords
- pulsed current
- sup
- nano twin
- twin crystal
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000013078 crystal Substances 0.000 title claims description 26
- 239000007769 metal material Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 8
- 230000009466 transformation Effects 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 5
- 239000007787 solid Substances 0.000 abstract description 2
- 238000007599 discharging Methods 0.000 abstract 1
- 238000003672 processing method Methods 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000004098 selected area electron diffraction Methods 0.000 description 2
- 241000446313 Lamella Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明涉及纳米孪晶技术,具体为一种制备定向纳米孪晶的方法。处理方法为脉冲电流处理,放电周期1μs~500μs,最大峰值电流密度103~105A/mm2,单个脉冲的持续时间1μs~10000μs。本技术的特点在于:脉冲电流处理过程中,材料经过固-固相变点;脉冲电流处理后的材料具有与电流方向平行的定向纳米孪晶结构。
Description
技术领域:
本发明涉及纳米孪晶技术,具体为一种制备定向纳米孪晶的脉冲电流处理方法。
背景技术:
纳米孪晶界是一种低能共格晶界,它能够有效地阻碍位错运动并吸收部分位错,从而起到强化作用。纳米孪晶对电子的散射能力极小,其电阻值可以比普通晶界的电阻低一个数量级。因此纳米孪晶材料由于其优异的力学性能和电学性能而得到人们的广泛关注。目前已有多种纳米孪晶的制备方法,如电化学沉积、轧制、冲击等,但这些方法制备得到的纳米孪晶都是随机取向的,制备定向纳米孪晶的方法目前还未见报道。
发明内容:
本发明的目的在于提供一种制备定向纳米孪晶的脉冲电流处理方法。通过本方法可以制备出孪晶取向一致的纳米孪晶。
本发明提供了一种制备定向纳米孪晶的脉冲电流处理方法,对金属材料进行脉冲电流处理。脉冲电流的放电周期1μs~500μs,最大峰值电流密度103~105A/mm2,单个脉冲的持续时间1μs~10000μs,脉冲电流处理的时间为单个脉冲的持续时间。脉冲电流的较佳参数为:放电周期50μs~200μs,电流密度6×103~4×104A/mm2,单个脉冲的持续时间100μs~2000μs。在该条件下,由脉冲电流引起的温升足以引起材料发生相变,有利于提高高电导相的相变形核率,从而细化晶粒有助于大量纳米孪晶的形成。
本发明具有如下优点:
1、本方法操作简单,周期短,效率高,成本低,便于推广应用。
2、采用本发明进行脉冲电流处理过程中,材料经过固-固相变点;脉冲电流处理后的材料具有与电流方向平行的定向纳米孪晶结构且孪晶片层可贯穿多个晶粒。纳米孪晶平均片层厚度可以控制在3nm~15nm。
附图说明:
图1为脉冲电流处理过程的装置示意图。
图2为脉冲电流处理的放电波形图。
图3为脉冲电流处理前后样品的TEM形貌及HRTEM形貌和相应的选区电子衍射。其中,(a)为原始样品;(b)为脉冲处理后大量定向孪晶形成;(c)为(b)图的相应HRTEM形貌和选区电子衍射。
图4为脉冲电流处理后样品的纳米孪晶片层厚度分布。
具体实施方式:
实施例
下面通过实施例详述本发明。
图1为脉冲电流处理过程的装置示意图,此装置为已知的技术,它包括脉冲电流发生器和示波器,脉冲电流发生器由控制组1、氙发光片2、电容3、电流探测器4组成,脉冲电流由电容器放电产生,电流探测器4外接示波器,脉冲电流的波形和基本参数由TDS3012型示波器测定。将样品7两端夹持在铜电极5之间,再将两个铜电极5分别与脉冲电流发生器输出的正负电极相连,点焊热电偶6、用于测量样品7的温度。
图2显示了处理试样所用脉冲电流的波形图,其中脉冲电流的放电周期tp=113μs,最大峰值电流密度jm=18.6×103A/mm2,单个脉冲的持续时间约0.8ms。
图3显示了脉冲电流处理前后透射电镜观察结果,(a)是处理前;(b)是处理后。可以看出与原始未经脉冲电流处理的试样相比,脉冲电流处理后,原始晶粒细化的同时伴随有大量纳米孪晶生成。大的晶粒被大量孪晶片层贯穿通过,形成大量细化的亚晶粒。而且,几乎所有的孪晶方向都趋于一致,并与电流方向平行。
图4显示了孪晶片层的平均厚度。可以发现脉冲处理后孪晶片层平均厚度可达6nm左右。
从实施例可知,在本发明技术方案的范围内:脉冲电流的放电周期1μs~500μs,最大峰值电流密度103~105A/mm2,单个脉冲的持续时间1μs~10000μs,脉冲电流处理制备定向孪晶是一种简易可行的方法。基本原理可以解释为:脉冲电流处理瞬间试样可以快速升温过相变点温度,由于相变前后两相电导率存在差异会引起体系的能量变化,将有助于新相晶核的形成。电流处理瞬间结束,前期形成的大量新相晶核来不及长大被迅速保留到室温。同时,在降温过程中两相经历马氏体相变,沿惯习面切变形成大量定向纳米孪晶。因此,对于易于发生马氏体相变及易于生成孪晶的钢及多种记忆合金,有望采用本技术制备定向纳米孪晶块体材料。
Claims (2)
1. 一种制备定向纳米孪晶的方法,其特征在于:对金属材料进行脉冲电流处理,脉冲电流的放电周期1μs~500μs,最大峰值电流密度103~105A/mm2,单个脉冲的持续时间1μs~10000μs,脉冲电流处理的时间为单个脉冲的持续时间。
2. 按照权利要求1所述的制备定向纳米孪晶的方法,其特征在于:脉冲电流的放电周期为50μs~200μs,电流密度为6×103~4×104A/mm2,单个脉冲的持续时间100μs~2000μs。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100103417A CN101240405A (zh) | 2007-02-09 | 2007-02-09 | 一种制备定向纳米孪晶的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2007100103417A CN101240405A (zh) | 2007-02-09 | 2007-02-09 | 一种制备定向纳米孪晶的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101240405A true CN101240405A (zh) | 2008-08-13 |
Family
ID=39932228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2007100103417A Pending CN101240405A (zh) | 2007-02-09 | 2007-02-09 | 一种制备定向纳米孪晶的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101240405A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111610209A (zh) * | 2019-02-25 | 2020-09-01 | 浙江大学 | 一种制备具有确定孪晶取向的纳米孪晶金属试样的方法 |
-
2007
- 2007-02-09 CN CNA2007100103417A patent/CN101240405A/zh active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111610209A (zh) * | 2019-02-25 | 2020-09-01 | 浙江大学 | 一种制备具有确定孪晶取向的纳米孪晶金属试样的方法 |
CN111610209B (zh) * | 2019-02-25 | 2021-03-19 | 浙江大学 | 一种制备具有确定孪晶取向的纳米孪晶金属试样的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Weissmüller et al. | Dealloyed nanoporous materials with interface-controlled behavior | |
Zhu et al. | In situ observation of dendrite behavior of electrode in half and full cells | |
Liu et al. | Effects of cathodic voltages on the structure and properties of ceramic coatings formed on NiTi alloy by micro-arc oxidation | |
Bai et al. | Statistical kinetics of phase-transforming nanoparticles in LiFePO4 porous electrodes | |
Tang et al. | Cobalt nanomountain array supported silicon film anode for high-performance lithium ion batteries | |
CN105714353A (zh) | 一种在高熵合金表面生成复合氧化物纳米管阵列的方法 | |
Lamberti et al. | Vertically aligned TiO2 nanotube array for high rate Li-based micro-battery anodes with improved durability | |
WO2005006469A1 (ja) | 集電構造体及び電極構造体 | |
KR101415156B1 (ko) | 쌍극형 과전압 배터리 펄서 및 방법 | |
CN105493196A (zh) | 反应体、发热装置及发热方法 | |
Hao et al. | Ionic liquid electrodeposition of germanium/carbon nanotube composite anode material for lithium ion batteries | |
JP5534226B2 (ja) | 発電要素およびそれを用いた非水電解質電池 | |
Dolgashev et al. | Status of high power tests of normal conducting single-cell structures | |
Kozlovskiy et al. | Study of the applicability of directional modification of nanostructures to improve the efficiency of their performance as the anode material of lithium-ion batteries | |
Chadha et al. | Model based analysis of one-dimensional oriented lithium-ion battery electrodes | |
CN103811768A (zh) | 凹坑锂离子电池集流体及其制作方法和设备 | |
CN101240405A (zh) | 一种制备定向纳米孪晶的方法 | |
WO2014105569A1 (en) | Metal backed nanowire arrays | |
CN106207147A (zh) | 一种二维纳米薄膜锂离子电池负极材料及其制备方法 | |
CN107546378B (zh) | 一种全碳化硅锂二次电池 | |
CN101240370A (zh) | 一种金属材料表面纳米化的方法 | |
CN103172058B (zh) | 一种三维网状石墨烯的制备方法 | |
Qi et al. | Single-crystalline nanoflakes assembled CuS microspheres with improved sodium ion storage | |
CN106811706A (zh) | 一种调控镁合金腐蚀速率的有效方法 | |
Wang et al. | Preparation of carbon-coating layer by ethyne thermal decomposition and its effects on the improvement of lithium storage properties for Co3O4 hexagonal micro-platelets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Open date: 20080813 |