CN101221633A - Gas pipe risk estimation method based on Mueller model - Google Patents

Gas pipe risk estimation method based on Mueller model Download PDF

Info

Publication number
CN101221633A
CN101221633A CNA2007100286653A CN200710028665A CN101221633A CN 101221633 A CN101221633 A CN 101221633A CN A2007100286653 A CNA2007100286653 A CN A2007100286653A CN 200710028665 A CN200710028665 A CN 200710028665A CN 101221633 A CN101221633 A CN 101221633A
Authority
CN
China
Prior art keywords
pipeline
risk
gas pipeline
parameter
risk assessment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007100286653A
Other languages
Chinese (zh)
Inventor
许俊城
黄崇智
温浩胜
袁金彪
伍波
李秀怀
李军
李英杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUHAN ENERGY TECHNOLOGY ENGINEERING Co Ltd
Gas Co Ltd Of Guangzhou City
Original Assignee
WUHAN ENERGY TECHNOLOGY ENGINEERING Co Ltd
Gas Co Ltd Of Guangzhou City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUHAN ENERGY TECHNOLOGY ENGINEERING Co Ltd, Gas Co Ltd Of Guangzhou City filed Critical WUHAN ENERGY TECHNOLOGY ENGINEERING Co Ltd
Priority to CNA2007100286653A priority Critical patent/CN101221633A/en
Publication of CN101221633A publication Critical patent/CN101221633A/en
Pending legal-status Critical Current

Links

Abstract

The invention provides a fuel gas pipeline risk assessment method based on Mu model. The method comprises the following steps: (1) dividing a fuel gas pipeline into sections; (2) classifying parameters causing pipeline risk and distributing weightings according to the degree of impact of each parameter on the pipeline risk; (3) through the parameters and weightings of the step (2), carrying out risk assessment of each factor for the pipeline and working out an exponential sum; (4) calculating the fuel gas pipeline leakage influence coefficient according to the risk and influence surface of a conveyance medium; (5) working out a relative risk value integrally according to the exponential sum of the step (3) and the leakage influence coefficient of the step (4);(6) analyzing the relative risk value obtained in the step (5) to obtain a risk conclusion. The invention adjusts the factor weightings of the Mu model risk assessment and is provided with the fuel gas leakage influence coefficient to be computed, thereby bringing about more adaptability and more accurate and reliable assessment results.

Description

Gas pipeline methods of risk assessment based on the Mu Shi model
Technical field
The invention belongs to the risk management technology field of gas pipeline, particularly relate to a kind of gas pipeline methods of risk assessment based on the Mu Shi model.
Technical background
Continuous laying along with oil, natural gas line, the risk management of pipe-line has caused global vast concern, the continuous development of computer software industry, the risk management of pipeline has been become a kind of trend with the form of computer software, abroad starting has early had a lot of powerful assessment software on pipe risk software; Domestic is the software development that this respect is just arranged in recent years, some products have also been arranged so far, but these products, except Mu Shi software, also do not have a kind ofly, have one in the Mu Shi software specially at the module of city gas pipeline at the city gas pipeline risk assessment.But because some singularity of Chinese gas pipeline design, construction and operational management have many factors not consider at Mu Shi software, in the factor of perhaps considering, the assignment of its weight needs to adjust.
Summary of the invention
The deficiency that the objective of the invention is to the existing gas pipeline risk assessment technology of customer service, proposes a kind of can according to implement the self-adjusting safety evaluation method of concrete condition.
In order to realize the foregoing invention purpose, the technical scheme of employing is as follows:
A kind of gas pipeline methods of risk assessment based on the Mu Shi model comprises the steps:
(1) gas pipeline is carried out segmentation;
(2) parameter that causes the pipeline risk is classified, and assign weight according to the degree of influence of each parameter to the gas pipeline risk;
(3) utilize the parameter and the weight thereof of step (2), pipeline is carried out the risk assessment of each factor, and calculate exponential sum;
(4) calculate the fuel gas pipeline leakage influence coefficient according to the danger of pumped (conveying) medium and the size of influence surface;
(5) go out the relative risk value according to the exponential sum of step (3) and the leakage contribution coefficient COMPREHENSIVE CALCULATING of step (4);
(6) the relative risk value that step (5) is obtained is analyzed, and draws the risk conclusion.
In the technique scheme, the principle of described step (1) duct segments is will have the pipeline part of identical external environment condition, material, laying time, structural design, conveying medium as an evaluation object, and the segmentation foundation comprises the Years Of Service of corrosivity, pipeline anticorrosion coating insulation resistivity and the pipeline of the pipeline laying place density of population, tube circumference soil.When pipeline is carried out risk management, because each bar pipeline, even same residing external environment condition of each section of pipeline, the material of pipeline itself, the difference of laying time etc., concrete grammar all will carry out suitable fine setting when carrying out risk management, so, will be before risk assessment with the pipeline segmentation, be divided into and have the identical internal and external environment and the pipeline section of parameter as far as possible, and in four factors of segmentation institute foundation, the tube circumference density of population is a factor that influences duct segments situation maximum, next is soil corrosion, the anticorrosive coat situation is only pipeline tenure of use, at last so when carrying out duct segments, at first pipeline is carried out segmentation at the difference of the density of population, on the basis of this segmentation, carry out segmentation again at the difference of soil corrosivity more then, and the like, after four segmentations, obtain the final segmentation result of pipeline at last.
The described parameter of described step (2) comprises that detected parameters, the parameter of pipe network generalized information system, inquiry agency get parameter; Described detected parameters comprises the corrosivity of soil, insulation resistance, anticorrosive coat defect inspection, stray current and the pipeline cathode protection current potential of pipeline anticorrosion coating; The parameter of described official website generalized information system comprises the design pressure of thickness, pipeline of caliber, the tube wall of gas pipeline and actual motion pressure etc.; Described inquiry agency gets parameter and comprises and obtain the parameter relevant with humanity, geography, the construction conditions in place that pipeline is buried underground by inquiry.
Because the risk assessment of gas pipeline belongs to a kind of more special safety assessment, in the parameter of required consideration, it is relevant with conditions such as the humanity in place that pipeline is buried underground, geography, buildings that a lot of parameters are arranged, so in the process of data aggregation, the investigation that must come to is on the spot obtained.And, there have in these parameters to be more special, the investigation result that obtains at last can not provide out with the form of data, can only as high, medium and low or the like represent that the tabulation and the parameter assignment form of concrete parameter are as shown in the table with the explanation of very abstract descriptive matter in which there:
Figure A20071002866500061
Figure A20071002866500071
The parameter of step of the present invention (2) is categorized as third party's destructive factor, corrosion failure factor, design defect factor, improper operation factors according to the influence to gas pipeline accident possibility occurrence.
In order to adjust the correlation parameter of risk evaluating system according to concrete enforcement environment, make risk assessment more accurate, step of the present invention (2) also comprises carries out the weight adjustment to parameter.
The mode that the macroscopic view adjustment that the mathematics probability statistics are adopted in described weight adjustment combines in conjunction with the microcosmic adjustment of expert opinion.
The specific implementation method of described weight adjustment is at first to calculate the risk probability that influences all kinds of factors of gas pipeline, and then with these risk probability normalization, and the total score value of weight of all factors was redistributed according to normalized success ratio originally.
Because in influencing all Fundamentals of risk assessment, be not that the generation to all incidents all plays same function.When therefore weight was marked, its corresponding score value should be corresponding with its risk probability, thus, the method that weight is adjusted, at first obtain the risk probability that influences all kinds of factors of top event, then with these risk probability normalization, and total score value of will marking is redistributed according to normalized success ratio.From existing statistical data as can be known, tub curve takes place generally to satisfy in the accident of pipeline, and stage pipeline work and unstable is closed in initial stage place's dry grinding, and the later stage, accident took place also more frequent near designed life.
The risk probability computing method of described gas pipeline are as follows:
If the stationary phase (about 10~20 years) in the middle of the consideration, then its failure rate can be considered constant, and the time of casualty of gas pipeline is obeyed the exponential distribution that parameter is V at interval, and the number of times that accident takes place is obeyed the Poison distribution:
P r ( x ; rt ) ≥ Σ k = 0 x e - rt ( rt ) k k !
Wherein: P rBe probability function; X is the number of times that fault takes place; R is a failure rate, and t is the time, and in conjunction with top formula as can be known, the pipeline number of times that breaks down is that 0 probability is:
P r(x=0;rt)=e -rt
Thereby as can be known, the probability that breaks down of pipeline is P f(t)=1-P r(x=0; Rt)=1-e -rt
China pipeline accident analysis shows: in the gathering of culprit, statistical figure do not have the obvious development direction, therefore, adopt certain period the average data of (more than 10 years) when referring to risk speed (r); When calculation risk speed (r), should get the pipeline of certain-length in addition, make that the variation of pipeline annual casualty data under this length is very little.Under this condition, the aforementioned calculation method is feasible and suitable.
The present invention is in conjunction with design, construction and the operational management its own particularity of Chinese gas pipeline, factor weight to the risk assessment of Mu Shi model is adjusted, increased calculating fuel gas pipeline leakage influence coefficient again, make methods of risk assessment of the present invention have more applicability, and assessment result more accurately and reliably.
Embodiment
Being embodied as example by Gas Co Ltd of Guangzhou City in the Guangzhou with the present invention below is described further.
Implement following steps:
(1) gas pipeline is carried out segmentation;
(2) parameter that causes the pipeline risk is classified, and assign weight according to the degree of influence of each parameter to the gas pipeline risk;
(3) utilize the parameter and the weight thereof of step (2), pipeline is carried out the risk assessment of each factor, and calculate exponential sum;
(4) calculate the fuel gas pipeline leakage influence coefficient according to the danger of pumped (conveying) medium and the size of influence surface;
(5) go out the relative risk value according to the exponential sum of step (3) and the leakage contribution coefficient COMPREHENSIVE CALCULATING of step (4);
(6) the relative risk value that step (5) is obtained is analyzed, and draws the risk conclusion.
Wherein in the middle of four factors of the duct segments of step (1), soil corrosion and pipeline anticorrosion coating situation are by measuring, obtain the tenure of use of pipeline from the operation history data of Guangzhou gas company gas pipeline, and the tube circumference density of population then obtains by inquiry.Segmentation is carried out according to the following steps:
(11) at first, selected starting point is carried out every kilometer segmentation to pipeline, and then, each section is carried out the survey of population at this.By survey, obtain along 1000 meters in pipeline longly, be the center with the pipeline, each 200 meters of both sides are the size of population in the totally 400 wide areal extents.
(12) in the process of investigation, may meet some more special situations, such as, in 1000 meters that are investigated scope, a sub-district is arranged, and the length of sub-district is greater than 200 meters, at this time, need do as a whole taking into account to this sub-district, last COMPREHENSIVE CALCULATING.Be divided into three sections as pipeline, wherein one section is passed through a sub-district, one section is passed through a semiworks, and the length of sub-district and factory all surpasses 400 meters, so will whole sub-district and factory all takes into account rather than only just those 400 meters of the pipeline both sides when considering this situation.Carry out the calculating of the density of population at last, i.e. the density of population=population/total area (comprising the off-limits that part of area in sub-district)
(13) obtain after the density of population of each section, if the variation of the adjacent two sections density of population in 10%, will these two sections be combined into one section, the rest may be inferred.Segmentation situation after merging is the result that density is per capita carried out segmentation.If suitably reduce the hop count of telling by the density of population, the variation range of the adjacent two sections density of population can be expanded to 20% even bigger, this method to soil corrosivity segmentation also use.
Carry out on the basis of segmentation in density per capita, the corrosivity of pipeline soil along the line is detected.And in the above on the basis of segmentation result, by 1 km segmentation, per 1 km detects once.Detected soil corrosivity is analyzed, if the difference of adjacent two sections soil corrosivities of seeing in 30%, just is combined into one section to these two sections.The segmentation situation of soil corrosivity that obtained a new consideration at last.
The same with top method, on the basis of former segmentation result, also will be at pipeline anticorrosion coating, pipeline carries out segmentation tenure of use.
If the result after the segmentation is dissatisfied, think that perhaps hop count is too many, worry that the compiling costs of assessment data is too high, need carry out aftertreatment to the result of segmentation.
Such as, 60 kilometers pipelines in city have been carried out segmentation.The step of segmentation is by top method, has divided 15 sections by the density of population, has increased by 8 sections according to soil corrosion, has increased by 14 sections again according to the pipeline anticorrosion coating situation, has increased by 6 sections again tenure of use by pipeline at last, and total hop count of so last segmentation is 43 sections.If feel with these 60 kilometers pipelines be divided into 43 sections too many, want to reduce this hop count.That just deletes by the different importance of these four factors, subtracts unessentially earlier, and loss of weight is wanted again.So, at first should consider to reduce those 6 sections by pipeline generation tenure of use, secondly be 14 sections that pipeline anticorrosion coating produces, the rest may be inferred.If think that also such segmentation hop count is too many, can increase by 1 km spacing of density of population segmentation on demand, till last segmentation result makes you satisfied.
The mathematics probabilistic method is mainly used in the adjustment of described parameter weight, and again in conjunction with expert opinion, the basic step of adjusting weight is as follows:
(21) weight of four big classes of adjustment
Because in original Mu Shi assessment models, four shared weights of big class third party's destruction, corrosion factor, design factor and improper operation factors all are 100 minutes, but after the pipeline accident reason being carried out actual analysis, the reason of finding these four aspects is not wait to the contribution of pipeline accident, and difference is bigger, therefore, must at first adjust the weight of these four big classes.
By analysis and statistics, obtain the frequency distribution table of gas pipeline culprit, shown in table 2-2 to Guangzhou past 15 years gas pipeline interruption of service history.
Figure A20071002866500121
Table 2-2 accident frequency distribution table
Calculate the risk probability of four big classes, and after probability carried out normalized, 400 minutes total points is distributed, obtain the shared weight of each big class, shown in table 2-3.
Figure A20071002866500122
Table 2-3 accident frequency distribution table
(22) adjust the weight of each group
Obtained after the weight of each big class, because each big class all comprises a lot of groups.So on the basis of resulting weight, group is carried out the weight secondary distribution, the weight of every big class is redistributed in each group goes.Owing to the original record to the pipeline accident reason is confined to four big classes, do not refine in each group and go, so, according to each group originally in big class proportion distribute the weight of group.Distribute the result who obtains at last shown in table 2-4,2-5,2-6,2-7.
Figure A20071002866500131
Table 2-4: third party's factor weight distributes
Table 2-5: corrosion factor weight allocation
Table 2-6: design factor weight allocation
Figure A20071002866500141
Table 2-7: design factor weight allocation
(23) fine setting of expert opinion
The pipework venture analysis is at the early-stage in China, does not also set up the database of relevant reliability data, adds some subjective and objective factors of aspect existence such as management, is difficult to collect more complete, accurate data.And that the mathematics probabilistic method depends on the complete sum of historical casualty data to a great extent is accurate, and need some experienced experts and managerial personnel that the weight based on data statistics is adjusted, in the hope of expressing more accurately, embody the truth of China's pipeline better.
This weight adjustment based on the mathematics probability statistics, Ying Xianyou expert and experienced managerial personnel carry out observation analysis to the ratio of various culprit after systematization of calculating with said method, consensus of opinion then, judge that can this ratio (being weight) reflect the situation of institute's assessment pipeline more objectively:, then need not adjust if can reflect; Otherwise then need adjust.
The present invention uses for reference advanced foreign technology, in conjunction with this city truth, sets up complete underground gas pipe network safety evaluating system, to realize the target of " follow the tracks of and detect---safety assessment---planned reparation ".
The present invention is a systems engineering, stride multidisciplinary, research contents belongs to the current research trend in international gas pipeline integrity techniques field, integrate the engineering science principle, pipe network hidden danger position System in Small Sample Situation sampling theory that proposes based on quantitative risk and application, pipe network failure probability dynamic evaluation technology etc. are at home along belonging to initiative.Towards the research of gas ductwork dynamic risk evaluation integrated system, be in the forward position of this area research both at home and abroad.
Implement by the pilot that takes the lead in the Guangzhou, will produce positive social benefit, also can bring direct economic benefit for the Guangzhou.After the risk evaluating system maturation, can promote achievement and software, can make the safety assessment system of underground pipe network for various places amount body degree in conjunction with the market condition in fraternal city to other gas companies or pipeline company.

Claims (8)

1. the gas pipeline methods of risk assessment based on the Mu Shi model is characterized in that comprising the steps:
(1) gas pipeline is carried out segmentation;
(2) parameter that causes the pipeline risk is classified, and assign weight according to the degree of influence of each parameter to the gas pipeline risk;
(3) utilize the parameter and the weight thereof of step (2), pipeline is carried out the risk assessment of each factor, and calculate exponential sum;
(4) calculate the fuel gas pipeline leakage influence coefficient according to the danger of pumped (conveying) medium and the size of influence surface;
(5) go out the relative risk value according to the exponential sum of step (3) and the leakage contribution coefficient COMPREHENSIVE CALCULATING of step (4);
(6) the relative risk value that step (5) is obtained is analyzed, and draws the risk conclusion.
2. the gas pipeline methods of risk assessment based on the Mu Shi model according to claim 1, the principle that it is characterized in that step (1) duct segments is will have the pipeline part of identical external environment condition, material, laying time, structural design, conveying medium as an evaluation object, and the segmentation foundation comprises the Years Of Service of corrosivity, pipeline anticorrosion coating insulation resistivity and the pipeline of the pipeline laying place density of population, tube circumference soil.
3. the gas pipeline methods of risk assessment based on the Mu Shi model according to claim 1 is characterized in that the described parameter of step (2) comprises that detected parameters, the parameter of pipe network generalized information system, inquiry agency get parameter;
Described detected parameters comprises the corrosivity of soil, insulation resistance, anticorrosive coat defect inspection, stray current and the pipeline cathode protection current potential of pipeline anticorrosion coating;
The parameter of described official website generalized information system comprises the design pressure of thickness, pipeline of caliber, the tube wall of gas pipeline and actual motion pressure etc.;
Described inquiry agency gets parameter and comprises and obtain the parameter relevant with humanity, geography, the construction conditions in place that pipeline is buried underground by inquiry.
4. the gas pipeline methods of risk assessment based on the Mu Shi model according to claim 1 is characterized in that the described parameter of step (2) is categorized as third party's destructive factor, corrosion failure factor, design defect factor, improper operation factors according to the influence to gas pipeline accident possibility occurrence.
5. according to claim 3 or 4 described gas pipeline methods of risk assessments based on the Mu Shi model, it is characterized in that described step (2) also comprises carries out the weight adjustment to parameter.
6. the gas pipeline methods of risk assessment based on the Mu Shi model according to claim 5 is characterized in that the mode that macroscopic view adjustment that described weight adjustment adopts the mathematics probability statistics combines in conjunction with the microcosmic adjustment of expert opinion.
7. the gas pipeline methods of risk assessment based on the Mu Shi model according to claim 6, the specific implementation method that it is characterized in that described weight adjustment is at first calculating the risk probability that influences all kinds of factors of gas pipeline, redistributed according to normalized success ratio then with these risk probability normalization, and with the total score value of weight of original all factors.
8. the gas pipeline methods of risk assessment based on the Mu Shi model according to claim 7 is characterized in that the risk probability computing method of described gas pipeline are as follows:
The time of casualty of gas pipeline is obeyed the exponential distribution that parameter is V at interval, and the number of times that accident takes place is obeyed the Poison distribution: P r ( x ; rt ) ≥ Σ k = 0 x e - rt ( rt ) k k !
Wherein: P rBe probability function; X is the number of times that fault takes place; R is a failure rate, and t is the time, and in conjunction with top formula as can be known, the pipeline number of times that breaks down is that 0 probability is:
P r(x=0;rt)=e -rt
Thereby as can be known, the probability that breaks down of pipeline is P f(t)=1-P r(x=0; Rt)=1-e -rt
CNA2007100286653A 2007-06-19 2007-06-19 Gas pipe risk estimation method based on Mueller model Pending CN101221633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2007100286653A CN101221633A (en) 2007-06-19 2007-06-19 Gas pipe risk estimation method based on Mueller model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2007100286653A CN101221633A (en) 2007-06-19 2007-06-19 Gas pipe risk estimation method based on Mueller model

Publications (1)

Publication Number Publication Date
CN101221633A true CN101221633A (en) 2008-07-16

Family

ID=39631455

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007100286653A Pending CN101221633A (en) 2007-06-19 2007-06-19 Gas pipe risk estimation method based on Mueller model

Country Status (1)

Country Link
CN (1) CN101221633A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894209A (en) * 2010-06-21 2010-11-24 合肥通用机械研究院 Method for determining equipment damage factor in environment with multiple failure mechanisms coexisting and application thereof
CN102292625A (en) * 2009-05-18 2011-12-21 富兰克林加油系统公司 Method and apparatus for detecting a leak in a fuel delivery system
CN102495935A (en) * 2011-12-15 2012-06-13 中国石油天然气集团公司 Determination method for risk of storage medium leakage of underground natural gas storage reservoir
CN102609778A (en) * 2012-02-17 2012-07-25 广东省电力调度中心 Method and device for assessing risk of electric power communication network
CN102841952A (en) * 2011-06-23 2012-12-26 中国石油天然气集团公司 Petrochemical enterprise plane layout security design method
CN104281921A (en) * 2014-10-10 2015-01-14 讯腾数码科技(北京)有限公司 Method for obtaining dynamic risk evaluation data of city underground pipe network
CN104318117A (en) * 2014-10-31 2015-01-28 中国石油天然气股份有限公司 Method for quantitative evaluation of baseplate corrosion leaking risk of oil tank
CN104376437A (en) * 2014-12-05 2015-02-25 深圳市中燃科技有限公司 Production and operation information management system based on GIS (geographic information system)
CN104657550A (en) * 2015-02-10 2015-05-27 吉林建筑大学 Method for assessing reconstruction sequence of old city water supply pipelines
CN106932334A (en) * 2015-12-30 2017-07-07 中国石油天然气股份有限公司 The Forecasting Methodology of Oil and gas station process pipe extent of corrosion
CN107194599A (en) * 2017-05-31 2017-09-22 北京市燃气集团有限责任公司 A kind of sort method of the doubtful leakage point leakage probability of gas ductwork
CN108346111A (en) * 2017-01-24 2018-07-31 中国石油化工股份有限公司 Collection transmission pipe network risk of leakage appraisal procedure and device
CN108345705A (en) * 2017-01-24 2018-07-31 中国石油化工股份有限公司 A kind of method and device of assessment pipe leakage consequence influence area
CN109751986A (en) * 2019-01-25 2019-05-14 重庆予胜远升网络科技有限公司 A kind of processing system and method generating AR image according to pipe network attribute data
CN110163454A (en) * 2018-02-07 2019-08-23 中石油昆仑燃气有限公司 A kind of city gas pipeline network leak risk evaluating method and device
CN110390452A (en) * 2018-04-18 2019-10-29 中国石油天然气股份有限公司 The risk evaluating method of gas ductwork
CN110516933A (en) * 2019-08-13 2019-11-29 常州大学 A kind of gas pipeline external disturbance calculation of Accident Probability of Major Flammable method based on the tree that develops
CN111582737A (en) * 2020-05-12 2020-08-25 华能国际电力股份有限公司玉环电厂 High-temperature high-pressure steam pipeline risk assessment method based on metal inspection data
CN111612336A (en) * 2020-05-20 2020-09-01 中国安全生产科学研究院 Oil and gas pipeline failure factor correction method based on big data
CN112529265A (en) * 2020-11-27 2021-03-19 安徽泽众安全科技有限公司 Comprehensive risk assessment and prediction method and system for gas pipeline
CN116698285A (en) * 2023-07-31 2023-09-05 合肥航谱时代科技有限公司 Dangerous chemical gas pipeline leakage monitoring system based on infrared imager

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102292625A (en) * 2009-05-18 2011-12-21 富兰克林加油系统公司 Method and apparatus for detecting a leak in a fuel delivery system
US8677805B2 (en) 2009-05-18 2014-03-25 Franklin Fueling Systems, Inc. Method and apparatus for detecting a leak in a fuel delivery system
CN102292625B (en) * 2009-05-18 2015-03-25 富兰克林加油系统公司 Method and apparatus for detecting a leak in a fuel delivery system
CN104951659B (en) * 2010-06-21 2017-04-05 合肥通用机械研究院 Method for determining equipment damage factor in naphthenic acid and sulfur coexistence environment
CN101894209B (en) * 2010-06-21 2015-07-01 合肥通用机械研究院 Method for determining equipment damage factor in environment with multiple failure mechanisms coexisting and application thereof
CN104951659A (en) * 2010-06-21 2015-09-30 合肥通用机械研究院 Method for determining equipment damage factor in naphthenic acid and sulfur coexistence environment
CN101894209A (en) * 2010-06-21 2010-11-24 合肥通用机械研究院 Method for determining equipment damage factor in environment with multiple failure mechanisms coexisting and application thereof
CN102841952A (en) * 2011-06-23 2012-12-26 中国石油天然气集团公司 Petrochemical enterprise plane layout security design method
CN102495935A (en) * 2011-12-15 2012-06-13 中国石油天然气集团公司 Determination method for risk of storage medium leakage of underground natural gas storage reservoir
CN102495935B (en) * 2011-12-15 2014-04-02 中国石油天然气集团公司 Determination method for risk of storage medium leakage of underground natural gas storage reservoir
CN102609778A (en) * 2012-02-17 2012-07-25 广东省电力调度中心 Method and device for assessing risk of electric power communication network
CN102609778B (en) * 2012-02-17 2015-02-11 广东省电力调度中心 Method and device for assessing risk of electric power communication network
CN104281921A (en) * 2014-10-10 2015-01-14 讯腾数码科技(北京)有限公司 Method for obtaining dynamic risk evaluation data of city underground pipe network
CN104318117B (en) * 2014-10-31 2017-04-05 中国石油天然气股份有限公司 A kind of oil tank bottom plate corrosion leakage quantifying risk evaluation methodology
CN104318117A (en) * 2014-10-31 2015-01-28 中国石油天然气股份有限公司 Method for quantitative evaluation of baseplate corrosion leaking risk of oil tank
CN104376437A (en) * 2014-12-05 2015-02-25 深圳市中燃科技有限公司 Production and operation information management system based on GIS (geographic information system)
CN104657550A (en) * 2015-02-10 2015-05-27 吉林建筑大学 Method for assessing reconstruction sequence of old city water supply pipelines
CN106932334A (en) * 2015-12-30 2017-07-07 中国石油天然气股份有限公司 The Forecasting Methodology of Oil and gas station process pipe extent of corrosion
CN108346111B (en) * 2017-01-24 2022-02-08 中国石油化工股份有限公司 Method and device for evaluating leakage risk of gathering and transportation pipe network
CN108345705A (en) * 2017-01-24 2018-07-31 中国石油化工股份有限公司 A kind of method and device of assessment pipe leakage consequence influence area
CN108346111A (en) * 2017-01-24 2018-07-31 中国石油化工股份有限公司 Collection transmission pipe network risk of leakage appraisal procedure and device
CN107194599A (en) * 2017-05-31 2017-09-22 北京市燃气集团有限责任公司 A kind of sort method of the doubtful leakage point leakage probability of gas ductwork
CN110163454A (en) * 2018-02-07 2019-08-23 中石油昆仑燃气有限公司 A kind of city gas pipeline network leak risk evaluating method and device
CN110390452A (en) * 2018-04-18 2019-10-29 中国石油天然气股份有限公司 The risk evaluating method of gas ductwork
CN109751986A (en) * 2019-01-25 2019-05-14 重庆予胜远升网络科技有限公司 A kind of processing system and method generating AR image according to pipe network attribute data
CN110516933A (en) * 2019-08-13 2019-11-29 常州大学 A kind of gas pipeline external disturbance calculation of Accident Probability of Major Flammable method based on the tree that develops
CN110516933B (en) * 2019-08-13 2023-03-24 常州大学 Gas pipeline external interference accident probability calculation method based on evolution tree
CN111582737A (en) * 2020-05-12 2020-08-25 华能国际电力股份有限公司玉环电厂 High-temperature high-pressure steam pipeline risk assessment method based on metal inspection data
CN111612336B (en) * 2020-05-20 2022-04-08 中国安全生产科学研究院 Oil and gas pipeline failure factor correction method based on big data
CN111612336A (en) * 2020-05-20 2020-09-01 中国安全生产科学研究院 Oil and gas pipeline failure factor correction method based on big data
CN112529265B (en) * 2020-11-27 2021-10-26 安徽泽众安全科技有限公司 Comprehensive risk assessment and prediction method and system for gas pipeline
CN112529265A (en) * 2020-11-27 2021-03-19 安徽泽众安全科技有限公司 Comprehensive risk assessment and prediction method and system for gas pipeline
CN116698285A (en) * 2023-07-31 2023-09-05 合肥航谱时代科技有限公司 Dangerous chemical gas pipeline leakage monitoring system based on infrared imager
CN116698285B (en) * 2023-07-31 2023-10-24 合肥航谱时代科技有限公司 Dangerous chemical gas pipeline leakage monitoring system based on infrared imager

Similar Documents

Publication Publication Date Title
CN101221633A (en) Gas pipe risk estimation method based on Mueller model
Clark et al. Water distribution systems: A spatial and cost evaluation
US10082478B2 (en) Methods for evaluation and estimation of external corrosion damage on buried pipelines
CN102235575B (en) Data processing method and system for checking pipeline leakage
US9182081B2 (en) Rapid data-based data adequacy procedure for pipeline integrity assessment
Schauberger et al. Odour emissions from a waste treatment plant using an inverse dispersion technique
CN101071098A (en) Underground steel gas pipe network pipeline corrosion prediction system
JP5423983B2 (en) Computer system and risk diagnosis method
Wang et al. Understanding the nature of risks associated with onshore natural gas gathering pipelines
Yu et al. Subset simulation-based reliability analysis of the corroding natural gas pipeline
Candelieri et al. Improving leakage management in urban water distribution networks through data analytics and hydraulic simulation
Farley Non-revenue water–international best practice for assessment, monitoring and control
CN105302946A (en) Method and apparatus for determining reliability of corrosive pipeline
Clark et al. Developing a data base on infrastructure needs
CN106932334A (en) The Forecasting Methodology of Oil and gas station process pipe extent of corrosion
CN104504274A (en) Method and device for determining pipeline indexes
Zhang et al. A new pre-assessment model for failure-probability-based-planning by neural network
CN201237085Y (en) Apparatus used for gas pipe risk management
CN103984845B (en) Method and system for calculating gas pipeline completeness evaluation period
Fuchs-Hanusch et al. PIREM–Pipe rehabilitation management developing a decision support system for rehabilitation planning of water mains
CN109027700A (en) A kind of leak source visits the appraisal procedure of leakage effect
CN107784148A (en) A kind of gathering line crash rate appraisal procedure and device
Karaa A decision support model for the investment planning of the reconstruction and rehabilitation of mature water distribution systems
Moghissi et al. Internal Corrosion Direct Assessment of Gas Transmission Pipelines-Applications
Sufian et al. Current practice in rehabilitating old pipes for water distribution network in Malaysia

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080716