CN101221447A - A kind of mechanical automatic steering control method - Google Patents

A kind of mechanical automatic steering control method Download PDF

Info

Publication number
CN101221447A
CN101221447A CNA2008100564780A CN200810056478A CN101221447A CN 101221447 A CN101221447 A CN 101221447A CN A2008100564780 A CNA2008100564780 A CN A2008100564780A CN 200810056478 A CN200810056478 A CN 200810056478A CN 101221447 A CN101221447 A CN 101221447A
Authority
CN
China
Prior art keywords
front wheel
constant
control
current
wheel angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008100564780A
Other languages
Chinese (zh)
Inventor
刘刚
孟祥健
杨玉糯
司永胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CNA2008100564780A priority Critical patent/CN101221447A/en
Publication of CN101221447A publication Critical patent/CN101221447A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

本发明涉及一种机械自动转向控制方法,该方法包括步骤:确定其位置偏差和航向偏差;根据农业机械实际前轮转角的变化,通过参数自整定PID控制算法在线整定PID参数,推算出下一时刻期望前轮转角,从而实现对农业机械的自动转向控制。本发明在常规PID导航控制方法的基础上,充分利用模糊控制方法,以农业机械实际前轮转角的变化为依据,满足其在不同误差、误差变化率下对PID控制参数的不同要求,在线整定PID参数。既具有模糊控制灵活性和适应性优点,又具有PID控制精度较高的特点,能够提高农业机械自动转向控制的稳定性和精确度以及控制系统的鲁棒性。

Figure 200810056478

The invention relates to a mechanical automatic steering control method. The method comprises the steps of: determining its position deviation and heading deviation; according to the change of the actual front wheel rotation angle of the agricultural machinery, the PID parameters are adjusted online through the parameter self-tuning PID control algorithm, and the next step is calculated. Always expect the front wheel angle, so as to realize the automatic steering control of agricultural machinery. On the basis of the conventional PID navigation control method, the present invention makes full use of the fuzzy control method, based on the change of the actual front wheel rotation angle of the agricultural machinery, and satisfies the different requirements of the PID control parameters under different errors and error change rates, and online tuning PID parameters. It not only has the advantages of flexibility and adaptability of fuzzy control, but also has the characteristics of high precision of PID control, which can improve the stability and precision of automatic steering control of agricultural machinery and the robustness of the control system.

Figure 200810056478

Description

一种机械自动转向控制方法 A kind of mechanical automatic steering control method

技术领域technical field

本发明涉及农业机械导航控制领域,具体涉及一种机械自动转向的控制方法。The invention relates to the field of navigation control of agricultural machinery, in particular to a control method for automatic steering of machinery.

背景技术Background technique

农业机械导航控制的主要目的是根据各传感器得到的相对精确的导航定位结果,确定农业机械本身与预定义路径的位置关系,结合农业机械的运动状态及相应控制算法,决策出合适的前轮转角,以修正路径跟踪误差,使农业机械的当前航向与目标航向快速重合。导航控制分为纵向控制和横向控制,其中横向控制主要指转向控制,纵向控制主要指速度的调节。农业机械自动转向控制方法,是实现其精确的航向跟踪和自动导航控制的基础。The main purpose of agricultural machinery navigation control is to determine the positional relationship between the agricultural machinery itself and the predefined path based on the relatively accurate navigation and positioning results obtained by each sensor, and to determine the appropriate front wheel angle in combination with the movement state of the agricultural machinery and the corresponding control algorithm. , to correct the path tracking error, so that the current heading of the agricultural machinery coincides with the target heading quickly. Navigation control is divided into longitudinal control and lateral control, wherein lateral control mainly refers to steering control, and longitudinal control mainly refers to speed adjustment. The automatic steering control method of agricultural machinery is the basis for realizing its precise heading tracking and automatic navigation control.

常用的导航控制方法包括线性模型控制方法、最优控制方法和模糊控制方法。美国伊利诺伊大学对农用机械的自动控制和多传感器的信息融合做了深入广泛的研究,成功开发了能实现多种耕作作业的拖拉机,并利用电液控制系统执行转向动作,实现了农用拖拉机沿行间隙行走的无人驾驶。日本东京大学利用机器视觉技术进行自动导航系统研究,根据线性转向控制模型,将目标方向角度和车辆纵向角度融合,计算出转向轮偏转角度,完成转弯控制。美国的Noguchi N等人应用神经网络和遗传算法,建立了具有自学习能力的农用车辆控制系统,实验结果表明,该模型对在平坦路面行驶的车辆具有很好的控制效果,但不适合于路面倾斜的情况。Benson、Dong ZL等人应用PID(比例-积分-微分proportion-integral-derivative)控制方法设计了PID控制器,该算法不依赖于精确的数学模型,避免了繁琐的建模过程,只需要一些对象的响应特征来组合控制,对算法的比例参数、积分参数和微分参数进行合理的调节。实验结果表明该方法具有良好的路径跟踪效果。国内的周俊与刘成良等人基于卡尔曼滤波的思想,融合了各传感器的观测值,给出了农业机器人导航的预测跟踪控制方法,避免了以视觉系统为主的计算耗时而导致状态反馈滞后而产生的不利影响,对导航控制的鲁棒性和精度有一定改善。华南农业大学集成GPS技术、计算机技术和多传感器技术,开发了以电动机为动力的农用智能移动作业平台,经实验证明,该平台路径跟踪的控制难度较大。Commonly used navigation control methods include linear model control methods, optimal control methods and fuzzy control methods. The University of Illinois in the United States has done in-depth and extensive research on the automatic control of agricultural machinery and the information fusion of multi-sensors. It has successfully developed a tractor that can realize a variety of farming operations, and uses the electro-hydraulic control system to perform steering actions. Unmanned driving in gaps. The University of Tokyo in Japan uses machine vision technology to conduct research on automatic navigation systems. According to the linear steering control model, the target direction angle and the longitudinal angle of the vehicle are fused to calculate the steering wheel deflection angle and complete the turning control. Noguchi N et al. in the United States established a control system for agricultural vehicles with self-learning ability by applying neural network and genetic algorithm. The experimental results show that this model has a good control effect on vehicles running on flat roads, but it is not suitable for roads. Inclined situation. Benson, Dong ZL and others applied the PID (proportion-integral-differential proportion-integral-derivative) control method to design the PID controller. This algorithm does not depend on the precise mathematical model and avoids the tedious modeling process. The response characteristics of the algorithm are combined to control, and the proportional parameters, integral parameters and differential parameters of the algorithm are adjusted reasonably. Experimental results show that the method has good path tracking effect. Based on the idea of Kalman filtering, domestic Zhou Jun and Liu Chengliang and others combined the observation values of various sensors to give a predictive tracking control method for agricultural robot navigation, avoiding the state feedback caused by time-consuming calculations based on the visual system The adverse effects caused by the lag can improve the robustness and accuracy of the navigation control. South China Agricultural University integrated GPS technology, computer technology and multi-sensor technology to develop an agricultural intelligent mobile operation platform powered by electric motors. Experiments have proved that the path tracking control of this platform is relatively difficult.

通过分析可知,导航控制的重点和难点是提高转向控制的稳定性和路径跟踪精度。常规PID控制方法可以获得较高精度的路径跟踪效果,且具有一定的鲁棒性和可靠性,但该方法的抗干扰能力较弱。Through the analysis, it can be known that the focus and difficulty of navigation control is to improve the stability of steering control and the accuracy of path tracking. Conventional PID control method can obtain high-precision path tracking effect, and has certain robustness and reliability, but the anti-interference ability of this method is weak.

模糊控制方法是近年来发展起来的新型控制方法,其优点是不需要掌握受控对象的精确数学模型,根据人工控制规则,组织控制决策决定控制量的大小,可以获得良好的动态特性,但其静态特性比较差。在田间作业条件下,建立农业机械的运动学和动力学模型比较困难,随着作业环境和作业条件的变化,其运动特性随时间变化,各种干扰因素对常规控制方法的影响也比较大。The fuzzy control method is a new type of control method developed in recent years. Its advantage is that it does not need to master the precise mathematical model of the controlled object. According to the manual control rules, the organizational control decision determines the size of the control amount and can obtain good dynamic characteristics. The static characteristics are relatively poor. Under field conditions, it is difficult to establish kinematics and dynamics models of agricultural machinery. As the operating environment and operating conditions change, its motion characteristics change with time, and various disturbance factors have a greater impact on conventional control methods.

发明内容Contents of the invention

本发明的目的在于改进和完善现有的农业机械自动转向控制技术中存在的不足,提供一种导航跟踪精度相对较高、稳定性较好的机械自动转向控制方法。The purpose of the present invention is to improve and improve the deficiencies in the existing automatic steering control technology of agricultural machinery, and provide a mechanical automatic steering control method with relatively high navigation tracking accuracy and good stability.

为实现上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:

一种机械自动转向控制方法,该机械的存储装置中存储有PID控制器的比例常数、微分常数和积分常数,该方法包括以下步骤:A mechanical automatic steering control method, the mechanical storage device stores the proportional constant, differential constant and integral constant of the PID controller, the method comprises the following steps:

(1)根据机械转向要到达的目标点确定其位置偏差和航向偏差;(1) Determine its position deviation and course deviation according to the target point to be reached by the mechanical steering;

(2)根据所述位置偏差和航向偏差确定当前期望前轮转角,并控制转向机构根据所述当前期望前轮转角来控制前轮转向,同时通过角度传感器采集当前实际前轮转角;(2) Determine the current expected front wheel angle according to the position deviation and heading deviation, and control the steering mechanism to control the front wheel steering according to the current expected front wheel angle, and simultaneously collect the current actual front wheel angle through the angle sensor;

(3)计算当前期望前轮转角与当前实际前轮转角的误差及误差的变化率,PID控制器根据所述误差及误差的变化率确定PID比例常数的增量、微分常数的增量和积分常数的增量,得到调整后的比例常数、微分常数和积分常数;(3) Calculate the error between the current expected front wheel angle and the current actual front wheel angle and the rate of change of the error, and the PID controller determines the increment of the PID proportional constant, the increment and the integral of the differential constant according to the error and the rate of change of the error Increment of constants to obtain adjusted proportional constants, differential constants and integral constants;

(4)利用调整后的比例常数、微分常数和积分常数求出当前期望前轮转角的增量,得到调整后的期望前轮转角,并控制转向机构根据所述调整后的期望前轮转角来控制前轮转向。(4) Use the adjusted proportional constant, differential constant and integral constant to obtain the increment of the current expected front wheel angle, obtain the adjusted expected front wheel angle, and control the steering mechanism according to the adjusted expected front wheel angle. Control the steering of the front wheels.

其中,所述PID控制器与转向机构之间连接有步进电机,所述PID确定当前期望前轮转角后向所述步进电机发送控制指令,所述步进电机根据所述控制指令控制转向机构使其根据所述当前期望前轮转角来控制前轮转向。Wherein, a stepping motor is connected between the PID controller and the steering mechanism, and the PID sends a control command to the stepping motor after determining the current expected front wheel angle, and the stepping motor controls the steering according to the control command The mechanism makes it control the steering of the front wheels according to the current desired front wheel rotation angle.

其中,在步骤(1)中,根据所述机械当前时刻的行驶速度确定所述机械的最佳前视距离,依据所述最佳前视距离确定目标航向角,由所述目标航向角和最佳前视距离确定机械的目标点坐标。Wherein, in step (1), the optimal look-ahead distance of the machine is determined according to the travel speed of the machine at the current moment, and the target heading angle is determined according to the optimal look-ahead distance, and the target heading angle and the maximum The optimal look-ahead distance determines the coordinates of the target point of the machine.

其中,根据所述机械当前时刻的行驶速度确定所述机械的最佳前视距离的方法为:Wherein, the method for determining the optimal forward-looking distance of the machine according to the running speed of the machine at the current moment is:

LL == 22 vv ≤≤ 1.51.5 mm // sthe s vv ++ 0.750.75 vv >> 1.51.5 mm // sthe s

其中,L为机械当前时刻最佳前视距离,v为行进速度。Among them, L is the best forward-looking distance of the machine at the current moment, and v is the traveling speed.

其中,由所述目标航向角和最佳前视距离确定机械的目标点坐标:Wherein, the target point coordinates of machinery are determined by the target heading angle and the best look-ahead distance:

xpre=x+L·cos(θp)x pre =x+L·cos(θ p )

ypre=y+L·sin(θp)y pre =y+L·sin(θ p )

其中,(xpre,ypre)表示目标点坐标,(x,y)表示机械当前位置点的坐标,L表示最佳前视距离,θp表示机械的目标航向角。Among them, (x pre , y pre ) represents the coordinates of the target point, (x, y) represents the coordinates of the current position of the machine, L represents the optimal look-ahead distance, and θ p represents the target heading angle of the machine.

其中,所述当前实际前轮转角与当前期望前轮转角之间的误差变化率EC由当前实际前轮转角与当前期望前轮转角之间的误差E的微分求得。Wherein, the error change rate EC between the current actual front wheel angle and the current expected front wheel angle is obtained by the differential of the error E between the current actual front wheel angle and the current expected front wheel angle.

其中,在步骤(4)中,利用调整后的积分常数、微分常数和积分常数求出前轮转角的增量的方法为:Wherein, in step (4), the method of obtaining the increment of the front wheel angle by using the adjusted integral constant, differential constant and integral constant is:

Δui=KP(ei-ei-1)+KIei+KD(ei-2ei-1+ei-2)]Δu i =K P (e i -e i-1 )+K I e i +K D (e i -2e i-1 +e i-2 )]

其中,ei,ei-1,ei-2分别为当前时刻i,第一时刻i-1,第二时刻i-2期望前轮转角与当前实际前轮转角的偏差,其中,第一时刻i-1为当前时刻i的前一时刻,第二时刻i-2为第一时刻i-1的前一时刻,KP为比例常数,KI=KP*T/TI,KD=KP*TD/T,T为采样周期,TI为积分常数,TD为微分常数,其中所述采样周期为1秒。Among them, e i , e i-1 , and e i-2 are the deviations between the current moment i, the first moment i-1, and the second moment i-2, respectively, between the expected front wheel angle and the current actual front wheel angle, where the first The moment i-1 is the moment before the current moment i, the second moment i-2 is the moment before the first moment i-1, K P is a proportional constant, K I =K P *T/ TI , K D =K P *T D /T, T is the sampling period, T I is the integral constant, T D is the differential constant, wherein the sampling period is 1 second.

其中,所存储的所述比例常数KP的取值范围为,0≤KP≤1000,所述积分常数TI的取值范围为0≤TI≤0.5,所述微分常数TD的取值范围为0≤TD≤10。Wherein, the value range of the stored proportional constant K P is 0≤K P ≤1000, the value range of the integral constant T I is 0≤T I ≤0.5, and the value range of the differential constant T D is The value range is 0≤T D ≤10.

其中,所存储的所述比例常数为KP为75、积分常数为TI为0.01、微分常数TD为8。Wherein, the stored proportional constant is 75 for K P , the integral constant is 0.01 for T I , and the differential constant T D is 8.

本发明的基于参数自整定PID控制器的机械自动转向控制方法,既具有模糊控制灵活性和适应性的优点,又具有PID控制精度较高的特点。与当前的农用机械自动转向控制方法相比,具有以下优点:The mechanical automatic steering control method based on the parameter self-tuning PID controller of the present invention not only has the advantages of fuzzy control flexibility and adaptability, but also has the characteristics of high PID control precision. Compared with the current automatic steering control method of agricultural machinery, it has the following advantages:

(1)在现有导航控制方法的基础上,充分利用模糊控制方法,提高了农业机械自动转向控制的稳定性和精确度。(1) On the basis of the existing navigation control method, the fuzzy control method is fully utilized to improve the stability and accuracy of the automatic steering control of agricultural machinery.

(2)依据农业机械前轮转角的变化,满足其在不同误差、误差变化率状态下对PID控制参数的不同要求,利用基于参数自整定PID控制器的转向控制方法,实现农业机械的自动转向控制。该方法优于常规PID控制方法,可提高控制系统的鲁棒性。(2) According to the change of the front wheel angle of agricultural machinery, meet its different requirements for PID control parameters under different errors and error change rates, and use the steering control method based on parameter self-tuning PID controller to realize automatic steering of agricultural machinery control. This method is superior to the conventional PID control method and can improve the robustness of the control system.

附图说明Description of drawings

图1为本发明中机械与预定义路径的位置关系解析图;Fig. 1 is an analytical diagram of the positional relationship between machinery and a predefined path in the present invention;

图2为本发明机械自动转向控制方法的系统框图;Fig. 2 is a system block diagram of the mechanical automatic steering control method of the present invention;

图3为本发明机械自动转向控制方法的原理图;Fig. 3 is a schematic diagram of the mechanical automatic steering control method of the present invention;

图4为本发明机械自动转向控制方法的模糊推理部分原理图;Fig. 4 is the schematic diagram of the fuzzy reasoning part of the mechanical automatic steering control method of the present invention;

图5为本发明机械自动转向控制方法的工作流程图;Fig. 5 is the working flowchart of the mechanical automatic steering control method of the present invention;

图6为本发明中机械自动转向控制部分的组成示意图;Fig. 6 is a schematic diagram of the composition of the mechanical automatic steering control part in the present invention;

具体实施方式Detailed ways

以下实施例用于说明本发明,但不用来限制本发明的范围。The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention.

本实施例中的农业机械根据现有技术具有DGPS定位技术,目前GPS系统提供的定位精度是优于10米,而为得到更高的定位精度,通常采用差分GPS技术即DGPS定位技术:将一台GPS接收机安置在基准站上进行观测。根据基准站已知精密坐标,计算出基准站到卫星的距离改正数,并由基准站实时将这一数据发送出去。用户接收机在进行GPS观测的同时,也接收到基准站发出的改正数,并对其定位结果进行改正,从而提高定位精度,利用DGPS定位技术采集农业机械的位置坐标,为航位推算或定位算法提供原始数据。The agricultural machinery in the present embodiment has DGPS positioning technology according to the prior art, and the positioning accuracy provided by the GPS system is better than 10 meters at present, and in order to obtain higher positioning accuracy, usually adopt differential GPS technology, that is, the DGPS positioning technology: a A GPS receiver is placed on the base station for observation. According to the known precise coordinates of the base station, the distance correction number from the base station to the satellite is calculated, and the data is sent by the base station in real time. While the user receiver is performing GPS observation, it also receives the correction number sent by the reference station, and corrects its positioning result, thereby improving the positioning accuracy, and using DGPS positioning technology to collect the position coordinates of agricultural machinery for dead reckoning or positioning Algorithms provide raw data.

本实施例中农业机械根据现有技术还包括电子罗盘、角度传感器和加速度计等。其中电子罗盘测量农业机械的航向角度;角度传感器获得农业机械的前轮转角;加速度计测量农业机械的加速度,从而得到农业机械当前时刻的行进速度。According to the prior art, the agricultural machinery in this embodiment also includes an electronic compass, an angle sensor, an accelerometer, and the like. Among them, the electronic compass measures the heading angle of the agricultural machinery; the angle sensor obtains the front wheel angle of the agricultural machinery; the accelerometer measures the acceleration of the agricultural machinery, so as to obtain the current speed of the agricultural machinery.

如图6所示,本实施例中农业机械的自动转向控制部分主要涉及下位机和上位机两部分,下位机角度传感器获得农业机械的前轮转角,上位机采用ARM芯片,与加速度计连接实现传感器数据的采集与处理、控制算法的实现及控制指令的输出等,ARM芯片与电机驱动器连接,该电机驱动器中的控制驱动机构根据上位机的转向控制指令,及时准确地控制转向步进电机执行动作,上位机还可以通过RS232串口连接笔迹本等信息处理终端,与其相互传输数据。As shown in Figure 6, the automatic steering control part of the agricultural machinery in this embodiment mainly involves two parts, the lower computer and the upper computer. The angle sensor of the lower computer obtains the front wheel angle of the agricultural machinery. The acquisition and processing of sensor data, the realization of control algorithms and the output of control instructions, etc., the ARM chip is connected to the motor driver, and the control drive mechanism in the motor driver can timely and accurately control the steering stepping motor according to the steering control instructions of the host computer. Action, the host computer can also connect to the handwriting book and other information processing terminals through the RS232 serial port, and transmit data with each other.

本实施例中的对农业机械的自动转向控制方法具体如下:The automatic steering control method for agricultural machinery in this embodiment is specifically as follows:

1.预定义路径设定1. Predefined path setting

本实施例中的农业机械的预定义路径采用数据集{P0,P1,...,Pk-1,Pk,,Pk+1,...,Pn}表示,其中的P加注不同的下标表示预定义路径上不同的位置点,在分析时用不同的坐标表示,其中每一个位置点的坐标为高斯投影平面坐标,分别表示为{(x0,y0),(x1,y1),...,(xk-1,yk-1),(xk,yk),(xk+1,yk+1),...,(xn,yn)},其中x表示横坐标,y表示纵坐标。The predefined path of the agricultural machinery in this embodiment is represented by a data set {P 0 , P 1 , ..., P k-1 , P k , P k+1 , ..., P n }, where Adding different subscripts to P indicates different position points on the predefined path, which are represented by different coordinates during analysis, where the coordinates of each position point are Gaussian projection plane coordinates, respectively expressed as {(x 0 , y 0 ) , (x 1 , y 1 ), ..., (x k-1 , y k-1 ), (x k , y k ), (x k+1 , y k+1 ), ..., ( x n , y n )}, where x represents the abscissa and y represents the ordinate.

利用DGPS定位技术采集预定义路径各个位置点坐标,即{(x0,y0),(x1,y1),...,(xk-1,yk-1),(xk,yk),(xk+1,yk+1),...,(xn,yn)}。如预定义路径为直线,只需选定路经的起点PA和终点PB,利用DGPS定位技术获取定位数据,通过坐标转换得到该两点的高斯平面坐标,分别表示为(xA,yA)和(xB,yB)。Use DGPS positioning technology to collect the coordinates of each location point on the predefined path, namely {(x 0 , y 0 ), (x 1 , y 1 ),..., (x k-1 , y k-1 ), (x k , y k ), (x k+1 , y k+1 ), ..., (x n , y n )}. If the predefined path is a straight line, you only need to select the starting point PA and the ending point P B of the path, use DGPS positioning technology to obtain positioning data, and obtain the Gaussian plane coordinates of the two points through coordinate conversion, which are expressed as (x A , y A ) and (x B , y B ).

预先采用DGPS定位技术采集了预定义路径上各个点的坐标,在农业机械具体行驶过程中,对其自动转向控制的方法如下所述。DGPS positioning technology is used in advance to collect the coordinates of each point on the predefined path. During the specific driving process of agricultural machinery, the method of automatic steering control is as follows.

2.自动转向控制方法2. Automatic steering control method

(1)获取农业机械当前位置点Pc、航向角θc及行进速度v(1) Obtain the current position point P c , heading angle θ c and travel speed v of the agricultural machinery

如图1所示为本发明中机械与预定义路径的位置关系解析图,农业机械在行驶过程中,当前时刻农业机械的位置点Pc、航向角θc和行进速度v的数据获取方法如下:As shown in Figure 1, it is an analytical diagram of the positional relationship between the machine and the predefined path in the present invention. During the driving process of the agricultural machine, the data acquisition method of the position point Pc , the heading angle θc and the travel speed v of the agricultural machine at the current moment are as follows :

①农业机械当前位置点Pc:本实施例中通过DGPS定位技术首先获得的农业机械当前时刻的位置点坐标,再经过航位推算或定位校正得到农业机械当前位置点Pc①Current location point P c of agricultural machinery: In this embodiment, the current location point coordinates of the agricultural machinery are first obtained through DGPS positioning technology, and then the current location point P c of agricultural machinery is obtained through dead reckoning or positioning correction;

②农业机械当前航向角度θc:本实施例采用电子罗盘获得,并转换为高斯平面下的角度值;②Current heading angle θ c of agricultural machinery: this embodiment uses an electronic compass to obtain it, and converts it into an angle value under the Gaussian plane;

③农业机械当前行驶速度v:首先由加速度计获得农业机械当前的加速度值,再经过积分计算得到当前的行进速度。③Current driving speed v of agricultural machinery: First, the current acceleration value of agricultural machinery is obtained by the accelerometer, and then the current traveling speed is obtained through integral calculation.

(2)根据预定义路径确定农业机械的目标点P′p (2) Determine the target point P′ p of agricultural machinery according to the predefined path

本实施例中采用采用动态路径搜索算法,推算出农业机械最佳前视距离L及目标点坐标,进而确定目标点P′pIn this embodiment, a dynamic path search algorithm is used to calculate the optimal look-ahead distance L of the agricultural machinery and the coordinates of the target point, and then determine the target point P′ p .

所述的动态路径搜索算法是基于预瞄跟随理论,通过动态计算农业机械当前时刻的最佳前视距离L,确定其在预定义路径上的目标点坐标,具体步骤如下:The dynamic path search algorithm is based on the preview following theory, by dynamically calculating the optimal look-ahead distance L of the agricultural machinery at the current moment, and determining its target point coordinates on the predefined path, the specific steps are as follows:

(21)确定农业机械的最佳前视距离L:本发明主要考虑农业机械行进速度对其前视距离的影响,通过实验确定出行进速度和前视距离的关系,表示为:(21) Determining the optimum look-ahead distance L of agricultural machinery: the present invention mainly considers the impact of the speed of travel of agricultural machinery on its look-ahead distance, and determines the relationship between travel speed and look-ahead distance through experiments, expressed as:

LL == 22 vv ≤≤ 1.51.5 mm // sthe s vv ++ 0.750.75 vv >> 1.51.5 mm // sthe s -- -- -- (( 11 ))

式中L为农业机械当前时刻最佳前视距离,v为行进速度;In the formula, L is the best forward-looking distance of agricultural machinery at the current moment, and v is the traveling speed;

(22)确定农业机械的目标点P′p的坐标:根据决策出的最佳前视距离L,农业机械的目标点P′p的坐标计算公式可表示为:(22) Determine the coordinates of the target point P′ p of agricultural machinery: According to the optimal look-ahead distance L determined by the decision, the coordinate calculation formula of the target point P′ p of agricultural machinery can be expressed as:

xpre=x+L·cos(θp)  (2)x pre =x+L·cos(θ p ) (2)

ypre=y+L·sin(θp)  (3)y pre =y+L·sin(θ p ) (3)

式中,(xpre,ypre)表示目标点P′p的坐标,(x,y)表示农业机械当前位置点Pc的坐标,L表示最佳前视距离,θp表示农业机械目标航向。In the formula, (x pre , y pre ) represents the coordinates of the target point P′ p , (x, y) represents the coordinates of the current position point P c of the agricultural machinery, L represents the optimal look-ahead distance, and θ p represents the target heading of the agricultural machinery .

如图1所示,其中:As shown in Figure 1, where:

农业机械目标航向θp的确定方法为: θ p = P c P ′ p → , 即θp为农业机械当前位置点Pc指向目标点P′p的矢量;The method to determine the target course θ p of agricultural machinery is: θ p = P c P ′ p &Right Arrow; , That is, θ p is the vector of the current position point P c of the agricultural machinery pointing to the target point P′ p ;

(3)确定农业机械的当前位置偏差De和航向偏差θe (3) Determine the current position deviation D e and heading deviation θ e of agricultural machinery

参见图1,其中农业机械的当前位置偏差De和航向偏差θe的定义如下:See Figure 1, where the current position deviation D e and heading deviation θ e of agricultural machinery are defined as follows:

农业机械当前的航向偏差θe:定义为农业机械目标航向θp与当前航向角θc的差值,表示为θe=θpcCurrent heading deviation θ e of agricultural machinery: defined as the difference between the target heading θ p of agricultural machinery and the current heading angle θ c , expressed as θ e = θ p - θ c ;

农业机械位置偏差De:定义为农业机械当前位置点Pc及其在预定义路径上的投影点P′c间的距离,表示为 D e = | P c P c ′ → | , 其中当前位置点Pc在预定义路径上的投影点P′c通过求互相垂直的两直线的交点获得;Agricultural machinery position deviation D e : defined as the distance between the current position point P c of agricultural machinery and its projection point P′ c on the predefined path, expressed as D. e = | P c P c ′ &Right Arrow; | , Wherein the projection point P′ c of the current position point P c on the predefined path is obtained by finding the intersection of two straight lines perpendicular to each other;

本实施例中规定当农业机械沿预定义路径方向行进时,若农业机械当前位置点Pc位于预定义路径的右侧,则位置偏差De为正;若其当前位置点Pc位于预定义路径的左侧,则位置偏差De为负。In this embodiment, it is stipulated that when the agricultural machinery travels along the predefined path direction, if the current position point P c of the agricultural machinery is on the right side of the predefined path, the position deviation D e is positive; The left side of the path, the position deviation De is negative.

因此位置偏差De和航向偏差θe方向的判断方法如下:Therefore, the judgment method of position deviation D e and course deviation θ e direction is as follows:

位置偏差De方向判定方法:若航向偏差θe为正,则位置偏差De为正,反之则为负。Positional deviation D e direction determination method: If the course deviation θ e is positive, then the positional deviation D e is positive, otherwise it is negative.

航向偏差θe方向判定方法:若航向偏差θe为正,则说明农业机械在预定义路径的右边,反之则在左边。Judgment method of heading deviation θ e direction: if the heading deviation θ e is positive, it means that the agricultural machinery is on the right side of the predefined path, otherwise it is on the left side.

(4)PID控制器首先根据农业机械的位置偏差和航向偏差确定农业机械的初始期望前轮转角,并根据该初始期望前轮转角向步进电机发送指令,步进电机根据该指令控制转向机构使其控制前轮按初始期望前轮转角转向,同时,通过角度传感器采集实际的前轮转角,根据农业机械实际前轮转角的变化,通过参数自整定PID控制算法,在线整定PID参数,推算出下一时刻期望前轮转角,并向步进电机发送指令,步进电机根据该指令控制转向机构使其控制前轮按期望前轮转角转向,重复以上过程实现期望前轮转角的不断在线调整,完成自动转向过程。(4) The PID controller first determines the initial expected front wheel angle of the agricultural machine according to the position deviation and course deviation of the agricultural machine, and sends instructions to the stepper motor according to the initial expected front wheel angle, and the stepper motor controls the steering mechanism according to the order Make it control the front wheels to steer according to the initial expected front wheel angle. At the same time, collect the actual front wheel angle through the angle sensor. According to the change of the actual front wheel angle of the agricultural machinery, through the parameter self-tuning PID control algorithm, adjust the PID parameters online, and calculate Expect the front wheel angle at the next moment, and send an instruction to the stepper motor, and the stepper motor controls the steering mechanism according to the instruction to control the front wheel to steer according to the expected front wheel angle, repeat the above process to achieve continuous online adjustment of the expected front wheel angle, Complete the auto steering process.

本实施例中农业机械自动转向控制步骤是基于参数自整定PID控制器的,参数自整定PID控制器在线整定PID参数KP、TI、TD,推算出下一时刻期望前轮转角方法包括为:The agricultural machinery automatic steering control step in this embodiment is based on the parameter self-tuning PID controller. The parameter self-tuning PID controller online tunes the PID parameters K P , T I , T D , and calculates the expected front wheel angle at the next moment. The method includes: for:

(41)初始化前轮转角的PID控制参数KP、TI、TD和采样周期T;(41) Initialize the PID control parameters K P , T I , T D and sampling period T of the front wheel rotation angle;

本实施例采用增量式PID控制算法,根据仿真试验结果,设置PID参数KP、TI、TD的初始值,分别为75、0.01和8,选取采样周期T为1秒,增量式PID控制方法只与最近的两次前轮转角偏差有关系,当存在误差或计算精度不足时,对控制量计算的影响程度较小,增量式PID控制方法的目的在于对当前时刻i农业机械的期望前轮转角进行整定,使下一时刻按整定后的期望前轮转角控制转向,具体根据下式获取:In this embodiment, the incremental PID control algorithm is adopted. According to the simulation test results, the initial values of the PID parameters K P , T I , and T D are set to 75, 0.01, and 8 respectively, and the sampling period T is selected to be 1 second. The PID control method is only related to the latest two front wheel angle deviations. When there is an error or the calculation accuracy is insufficient, the influence on the calculation of the control quantity is small. The purpose of the incremental PID control method is to control the current i agricultural machinery The expected front wheel angle is set, so that the steering is controlled according to the set expected front wheel angle at the next moment, which can be obtained according to the following formula:

Δui=ui-ui-1=KP(ei-ei-1)+KIei+KD(ei-2ei-1+ei-2)](4)Δu i =u i -u i-1 =K P (e i -e i-1 )+K I e i +K D (e i -2e i-1 +e i-2 )](4)

其中,ui,ui-1分别为当前时刻i,第一时刻i-1农业机械的期望前轮转角,ei,ei-1,ei-2分别为当前时刻i、第一时刻i-1、第二时刻i-2期望前轮转角与实际前轮转角的偏差,其中,第一时刻i-1为在当前时刻i的前一时刻,第二时刻i-2为在第一时刻i-1的前一时刻,KP为比例系数,KI=KP*T/TI,KD=KP*TD/T,其中,T为采样周期,优选的初始数值范围为0.1~1s,TI为积分时间常数,TD为微分时间常数,0≤KP≤1000,0≤TI≤0.5。Among them, u i , u i-1 are the current moment i and the expected front wheel angle of the agricultural machinery at the first moment i-1 respectively, e i , e i-1 , e i-2 are the current moment i and the first moment respectively. i-1, the deviation between the expected front wheel angle and the actual front wheel angle at the second moment i-2, wherein, the first moment i-1 is the moment before the current moment i, and the second moment i-2 is the moment before the first moment i At the moment before the moment i-1, K P is the proportional coefficient, K I =K P *T/T I , K D =K P *T D /T, wherein, T is the sampling period, and the preferred initial value range is 0.1~1s, T I is integral time constant, T D is differential time constant, 0≤K P ≤1000, 0≤T I ≤0.5.

(42)确定PID控制器的前轮转角控制量的模糊逻辑规则表和模糊逻辑控制表;(42) determine the fuzzy logic rule table and the fuzzy logic control table of the front wheel angle control quantity of PID controller;

本实施例中PID控制器采用自适应模糊PID控制器,实现PID三个参数KP、TI、TD的在线整定,进而决策农业机械的前轮转角,以提高农业机械自动转向控制的精度和稳定性。In this embodiment, the PID controller adopts an adaptive fuzzy PID controller to realize the online adjustment of the three PID parameters K P , T I , and T D , and then decide the front wheel angle of the agricultural machinery to improve the precision of the automatic steering control of the agricultural machinery and stability.

(421)确定PID控制器的前轮转角控制量的模糊逻辑规则表;(421) determine the fuzzy logic rule table of the front wheel angle control quantity of PID controller;

自适应模糊PID控制器设计的核心是总结驾驶人员的技术知识和实际操作经验,转化为模糊控制规则,建立模糊逻辑决策表,实现PID参数变化量的决策。考虑到误差、误差变化率以及PID控制器三个参数KP、KP、KP的变化量Δkp、Δki、Δkd变量的正负特性,将每一种变量的取值范围分为7种,分别为:正大(PB)、正中(PM)、正小(PS)、零(ZO)、负小(NS)、负中(NM)和负大(NB),最终得到模糊误差E、模糊误差变化率EC及PID控制器三个参数的变化量Δkp、Δki、Δkd的模糊控制表(如表1、表2、表3所示),表1、表2、表3中对应于模糊误差E的正大PB1、正中PM1、正小PS1、负小NS1、负中NM1和负大NB1共7个等级,对应于模糊误差变化率EC的正大PB2、正中PM2、正小PS2、负小NS2、负中NM2和负大NB2共7个等级,对应于变化量Δkp的正大PB3、正中PM3、正小PS3、负小NS3、负中NM3和负大NB3共7个等级,对应于变化量Δkp的正大PB4、正中PM4、正小PS4、负小NS4、负中NM4和负大NB4共7个等级,对应于变化量Δkp的正大PB5、正中PM5、正小PS5、负小NS5、负中NM5和负大NB5共7个等级。The core of adaptive fuzzy PID controller design is to summarize the driver's technical knowledge and practical operating experience, transform them into fuzzy control rules, establish a fuzzy logic decision table, and realize the decision of PID parameter variation. Considering the error, error change rate and the positive and negative characteristics of the three parameters K P , K P , K P of the PID controller, the variation Δk p , Δk i , Δk d variables, the value range of each variable is divided into 7 kinds, respectively: positive big (PB), positive middle (PM), positive small (PS), zero (ZO), negative small (NS), negative middle (NM) and negative big (NB), and finally get the fuzzy error E , fuzzy error rate of change EC, and the fuzzy control tables of the three parameters of the PID controller, Δk p , Δk i , Δk d (as shown in Table 1, Table 2, and Table 3), Table 1, Table 2, and Table 3 There are 7 grades in the middle corresponding to the positive big PB1, positive middle PM1, positive small PS1, negative small NS1, negative middle NM1 and negative big NB1 of the fuzzy error E, and positive big PB2, positive middle PM2, positive small PS2 corresponding to the fuzzy error change rate EC , negative small NS2, negative medium NM2 and negative large NB2, and there are 7 grades in total, positive large PB3, positive medium PM3, positive small PS3, negative small NS3, negative medium NM3 and negative large NB3 corresponding to the variation Δk p , Corresponding to the variation Δkp, there are 7 grades including positive large PB4, positive medium PM4, positive small PS4, negative small NS4, negative medium NM4 and negative large NB4, and positive large PB5, positive medium PM5, positive small PS5, negative Small NS5, negative medium NM5 and negative large NB5 have a total of 7 grades.

本实施例中不限于将上述中的每个变化分为7个数值范围,也可以进一步细化为更多的数值范围,但符合下面表中所述的模糊规则。This embodiment is not limited to dividing each of the above changes into 7 numerical ranges, and may be further refined into more numerical ranges, but it complies with the fuzzy rules described in the following table.

表1ΔKP的模糊规则表Table 1 Fuzzy rule table of ΔK P

Figure S2008100564780D00101
Figure S2008100564780D00101

表2ΔKI的模糊规则表Table 2 Fuzzy rule table of ΔK I

Figure S2008100564780D00102
Figure S2008100564780D00102

表3ΔKD的模糊规则表Table 3 Fuzzy rule table of ΔK D

Figure S2008100564780D00103
Figure S2008100564780D00103

Figure S2008100564780D00111
Figure S2008100564780D00111

本实施例中参数整定原则为:模糊决策的输出量是PID参数的变化量ΔKP、ΔKI、ΔKD。根据不同的模糊误差E的绝对值|E|和模糊误差变化率EC的绝对值|EC|对KP、KI、KD进行整定,原则如下:The parameter setting principle in this embodiment is: the output of fuzzy decision-making is the variation of PID parameters ΔK P , ΔK I , ΔK D . K P , K I , K D are adjusted according to the absolute value |E| of different fuzzy errors E and the absolute value |EC|

★当模糊误差|E|较大时,如3≤|E|≤5,为使系统具有较好的跟踪性能,加快系统的响应速度,应取较大的KP,如500≤KP≤1000;同时为避免系统在初始时,由于误差的瞬时增大可能出现的微分饱和而使控制作用超出允许范围,此时应取较小的KD,如0≤KD≤3;同时为避免系统响应出现较大超调,产生积分饱和,应对积分作用加以限制,通常取KI=0。★When the fuzzy error |E| is large, such as 3≤|E|≤5, in order to make the system have better tracking performance and speed up the response speed of the system, a larger K P should be selected, such as 500≤K P ≤ 1000; at the same time, in order to avoid the differential saturation that may occur due to the instantaneous increase of the error at the initial stage of the system and make the control action exceed the allowable range, a smaller K D should be selected at this time, such as 0≤K D ≤3; at the same time, to avoid Large overshoot occurs in the system response, resulting in integral saturation, and the integral action should be limited, usually K I =0.

★当模糊误差|E|适中,如1≤|E|≤3,为使系统响应具有较小超调,应取稍小的KP,如0≤KP≤100;此时KD的取值对系统响应的影响较大,要大小适中,如3≤KD≤8.以保证系统的响应速度;同时可增加一些积分对控制的作用,但若KI太大,易造成积分饱和,太小则不能加快系统响应速度,所以KI的取值要适当,如0≤KI≤0.3。★When the fuzzy error |E| is moderate, such as 1≤|E|≤3, in order to make the system response have a small overshoot, a slightly smaller K P should be selected, such as 0≤K P ≤100; The value of KI has a great influence on the system response, and it should be moderate, such as 3≤K D ≤8. To ensure the response speed of the system; at the same time, it can increase the effect of some integrals on the control, but if K I is too large, it is easy to cause integral saturation, If it is too small, the system response speed cannot be accelerated, so the value of K I should be appropriate, such as 0≤K I ≤0.3.

★当模糊误差|E|较小时,如0≤|E|≤1,为使系统具有较好的稳态性,应取较大的KP与KI,如KP如500≤KP≤1000,如0.3≤KI≤0.5;同时为避免系统在设定值附近出现振荡,KD值的选择非常重要,一般可根据|EC|来确定:当模糊误差变化率|EC|值较小时,如0≤|EC|≤2,KD可取大些,如5≤KD≤10;当|EC|值较大时,如2≤|EC|≤5,KD可取小些,如0≤KD≤5,通常KD为中等大小。★When the fuzzy error |E| is small, such as 0≤|E|≤1, in order to make the system have better stability, a larger K P and K I should be taken, such as K P such as 500≤K P ≤ 1000, such as 0.3≤K I ≤0.5; at the same time, in order to avoid the system from oscillating near the set value, the choice of K D value is very important, generally it can be determined according to |EC|: when the fuzzy error change rate |EC| value is small , such as 0≤|EC|≤2, K D can be larger, such as 5≤K D ≤10; when |EC| is larger, such as 2≤|EC|≤5, K D can be smaller, such as 0 ≤K D ≤5, usually K D is medium size.

(422)确定PID控制器的前轮转角控制量的模糊逻辑控制表;(422) determine the fuzzy logic control table of the front wheel angle control quantity of PID controller;

在实验仿真中,将误差e及误差变化率e’的精确值模糊化成模糊量误差E、模糊量误差变化率EC,即分别以误差e、误差变化率e’的精确值为中心值取一段数值范围,得到模糊量误差E、模糊量误差变化率EC,对模糊量误差E选取模糊子集{NB1,NM1,NS1,ZO1,PS1,PM1,PB1},对模糊量误差变化率EC选取模糊子集{NB2,NM2,NS2,ZO2,PS2,PM2,PB2}。选取PID控制参数KP的变化量ΔKP的模糊子集{NB3,NM3,NS3,ZO3,PS3,PM3,PB3},选取PID控制参数KI的变化量ΔKI的模糊子集{NB4,NM4,NS4,ZO4,PS4,PM4,PB4},选取PID控制参数KD的变化量ΔKD的模糊子集{NB5,NM5,NS5,ZO5,PS5,PM5,PB5},取模糊量误差E和模糊量误差变化率EC变化范围,将该范围定义为模糊集上的论域,表示为E’={-15,-12,-9,-6,-3,0,3,6,9,12,15},EC’={-5,-4,-3,-2,-1,0,1,2,3,4,5},其中E’中每一个整数都对应于模糊误差E中的一段数值范围,EC’中每一个整数都对应于模糊误差变化率中的一段数值范围。In the experimental simulation, the exact values of error e and error change rate e' are fuzzified into fuzzy quantity error E and fuzzy quantity error change rate EC, that is, the exact values of error e and error change rate e' are respectively used as the center value to take a section Numerical range, get fuzzy quantity error E, fuzzy quantity error change rate EC, select fuzzy subset {NB1, NM1, NS1, ZO1, PS1, PM1, PB1} for fuzzy quantity error E, select fuzzy quantity error change rate EC Subset {NB2, NM2, NS2, ZO2, PS2, PM2, PB2}. Select the fuzzy subset {NB3, NM3, NS3, ZO3, PS3, PM3, PB3} of the variation ΔK P of the PID control parameter K P , and select the fuzzy subset {NB4, NM4 of the variation ΔK I of the PID control parameter K I , NS4, ZO4, PS4, PM4, PB4}, select the fuzzy subset {NB5, NM5, NS5, ZO5, PS5, PM5, PB5} of the variation ΔK D of the PID control parameter K D , and take the fuzzy quantity error E and fuzzy Quantitative error change rate EC change range, which is defined as the domain of discourse on fuzzy sets, expressed as E'={-15, -12, -9, -6, -3, 0, 3, 6, 9, 12 , 15}, EC'={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}, where each integer in E' corresponds to the Each integer in EC' corresponds to a range of values in the rate of change of the fuzzy error.

基于专家知识和现场操作人员的经验制定模糊规则,打开模糊规则器,输入不同的离散量E’、EC’,得到PID参数变化量ΔKP、ΔKI、ΔKD的对应值,构成模糊控制表(如表4、表5、表6所示)。Formulate fuzzy rules based on expert knowledge and field operator experience, open the fuzzy ruler, input different discrete quantities E', EC', and obtain the corresponding values of PID parameter changes ΔK P , ΔK I , ΔK D to form a fuzzy control table (As shown in Table 4, Table 5, and Table 6).

表4ΔKP的模糊控制表Table 4 Fuzzy control table of ΔK P

Figure S2008100564780D00121
Figure S2008100564780D00121

Figure S2008100564780D00131
Figure S2008100564780D00131

表5ΔKI的模糊控制表Table 5 Fuzzy control table of ΔK I

Figure S2008100564780D00132
Figure S2008100564780D00132

表6ΔKD的模糊控制表Table 6 Fuzzy control table of ΔK D

Figure S2008100564780D00133
Figure S2008100564780D00133

Figure S2008100564780D00141
Figure S2008100564780D00141

本实施例中首先初始PID控制器的三个参数KP、KI、KP,KP为比例系数,KI=KP*T/TI,KD=KP*TD/T,其中,T为采样周期,TI为积分时间常数,TD为微分时间常数,本实施例根据仿真试验结果,设置PID参数KP、TI、TD的初始值分别为75、0.01和8,选取采样周期T为1秒,确定了PID控制器的前轮转角控制量的模糊逻辑规则表和模糊逻辑控制表后,如图5所示,结合前面所述的内容详述在农业机械行进过程中自动转向控制过程:In this embodiment, the three parameters K P , K I , and K P of the initial PID controller are first, K P is a proportional coefficient, K I =K P *T/T I , K D =K P *T D /T, Among them, T is the sampling period, T I is the integral time constant, and T D is the differential time constant. In this embodiment, according to the simulation test results, the initial values of the PID parameters K P , T I , and T D are set to 75, 0.01, and 8 respectively. , select the sampling period T as 1 second, after determining the fuzzy logic rule table and the fuzzy logic control table of the front wheel angle control amount of the PID controller, as shown in Figure 5, combined with the above-mentioned content, it will be described in detail in the agricultural machinery. Automatic steering control process during process:

a:取当前采样值;a: take the current sampling value;

b:根据前面所述的方法确定农业机械当前的位置点Pc和目标点P′p的坐标,确定当前农业机械的位置偏差De和航向偏差θeb: Determine the coordinates of the current position point P c and the target point P′ p of the agricultural machinery according to the method described above, and determine the position deviation D e and heading deviation θ e of the current agricultural machinery;

c:由当前时刻农业机械的位置偏差De和航向偏差θe确定农业机械的当前期望前轮转角ui,并根据该当前期望前轮转角ui向步进电机发送指令,步进电机根据该指令控制转向机构使其控制前轮按当前期望前轮转角ui转向,同时,通过角度传感器采集实际的前轮转角,该实际前轮转角与当前期望前轮转角的误差为ei,对当前期望前轮转角的误差ei求微分(de/dt),得到误差变化率e’;c: The current expected front wheel angle u i of the agricultural machine is determined by the position deviation D e and heading deviation θ e of the agricultural machine at the current moment, and according to the current expected front wheel angle u i sends commands to the stepper motor, and the stepper motor follows This command controls the steering mechanism to control the front wheels to steer according to the current expected front wheel angle u i , and at the same time, collects the actual front wheel angle through the angle sensor. The error between the actual front wheel angle and the current expected front wheel angle is e i , for Differentiate (de/dt) the error e i of the current expected front wheel angle to obtain the error change rate e';

d:对当前期望前轮转角的误差ei和误差变化率e’作为输入量输入到PID控制器,PID控制器将误差ei的精确值转换为模糊误差E,将误差变化率e’的精确值转换为模糊误差变化率ECd: The error e i and the error change rate e' of the current expected front wheel angle are input to the PID controller as input quantities, and the PID controller converts the precise value of the error e i into a fuzzy error E, and the Conversion of exact values to fuzzy error rate of change EC

将糊化后的输入量E、EC做为模糊推理部分的输入,再由E、EC和总的控制规则R,根据推理合成规则进行模糊推理得到模糊控制量U为: U = ( E × EC ) T 1 · R The input quantities E and EC after gelatinization are used as the input of the fuzzy inference part, and then the fuzzy inference is carried out according to the reasoning synthesis rule from E, EC and the general control rule R to obtain the fuzzy control quantity U as: u = ( E. × EC ) T 1 &Center Dot; R

其中,T1代表一定的控制规则,U为相应的控制量(在实施例中分别代表Δkp、Δki、Δkd)。Wherein, T 1 represents a certain control rule, and U represents a corresponding control quantity (respectively representing Δk p , Δk i , and Δk d in the embodiment).

e.逆模糊化:经模糊控制算法计算后得到的控制量,为控制量语言变量的论域中的值,不能直接控制对象,须将其转换为控制量基本论域中的值。控制量的比例因子定义如下:e. Defuzzification: The control quantity calculated by the fuzzy control algorithm is the value in the domain of the language variable of the control quantity, which cannot directly control the object, and must be converted into the value in the basic domain of the control quantity. The scale factor of the control quantity is defined as follows:

ku=umax/lk u =u max /l

其中,l为控制量在0~umax范围内量化后分成的档数,采用重心法对输出模糊控制量U进行逆模糊化。Among them, l is the number of bins after the control quantity is quantized in the range of 0 ~ u max , and the output fuzzy control quantity U is defuzzified by using the center of gravity method.

本实施例中当系统某时刻的误差e、误差变化率e′已知,即可通过确定参数变化量的值,在线整定PID控制器当前时刻的参数KP、KI、KD。;In this embodiment, when the error e and the error change rate e' of the system at a certain moment are known, the parameters K P , KI , and K D of the PID controller at the current moment can be adjusted online by determining the value of the parameter variation. ;

f:对当前的KP、KI、KD进行整定;KP=KP′+ΔKP、KI=KI′+ΔKI、KD=KD′+ΔKD,其中,K′P、K′I、K′D为上一时刻的PID参数;f: Adjust the current K P , K I , K D ; K P =K P ′+ΔK P , K I =K I ′+ΔK I , K D =K D ′+ΔK D , among them, K′ P , K' I , K' D are the PID parameters at the previous moment;

g:PID控制器根据下式获取控制参数Δuig: The PID controller obtains the control parameter Δu i according to the following formula:

Δui=KP(ei-ei-1)+KIei+KD(ei-2ei-1+ei-2)](4)Δu i =K P (e i -e i-1 )+K I e i +K D (e i -2e i-1 +e i-2 )](4)

得到整定后的期望前轮转角Δui+ui,根据该整定后的期望前轮转角向步进电机发送指令,步进电机根据该指令控制转向机构使其控制前轮按整定后的期望前轮转角ui转向,完成一步控制;Get the expected front wheel angle Δu i + u i after setting, and send instructions to the stepper motor according to the expected front wheel angle Wheel turning angle u i turns to complete one-step control;

h:然后等待下一次采样,重复执行步骤b~g,如此循环,当农业机械的位置偏差和航向偏差在设定的误差范围内时,结束该过程,即可完成农业机械的自动转向控制h: Then wait for the next sampling, repeat steps b~g, and repeat like this. When the position deviation and heading deviation of the agricultural machinery are within the set error range, the process ends, and the automatic steering control of the agricultural machinery can be completed

如图3所示,本实施例中自适应模糊PID控制器以农业机械的当前时刻前轮转角与期望前轮转角之间的误差e和误差e的变化率e’作为输入量,在农业机械行进过程中通过不断检测e和e’,根据模糊控制原理确定的模糊逻辑决策表来对控制器的3个参数KP、TI、TD进行在线修改,使其具有良好的动态和静态性能。As shown in Figure 3, in this embodiment, the adaptive fuzzy PID controller takes the error e between the front wheel angle of the agricultural machinery at the current moment and the expected front wheel angle and the change rate e' of the error e as input quantities, and the agricultural machinery During the running process, the three parameters K P , T I , and T D of the controller are modified online according to the fuzzy logic decision table determined by the fuzzy control principle through continuous detection of e and e', so that it has good dynamic and static performance .

下面以求KP为例说明推理方法:The reasoning method is illustrated below by taking K P as an example:

(一)根据表1,可将每条KP调整规律写出,例如,第一条可写为:R1:if E=NB and EC=NB then KP=PS,该规则隶属度的计算方法为:(1) According to Table 1, each K P adjustment rule can be written out, for example, the first rule can be written as: R 1 : if E=NB and EC=NB then K P =PS, the calculation of the degree of membership of this rule The method is:

μμ KK pp 11 (( CC PP )) == μμ NBNB ,, EE. (( EE. )) ^^ μμ NBNB ,, ECEC (( ECEC )) -- -- -- (( 55 ))

同理,可求出关于KP的所有规则的隶属度μKpi(cp)(i=1,2,...,n),其中,n为关于KP的所有规则的条数,cPi为第i条规则中所取模糊集合的中心值,μNB,E(E)代表当E取NB时的隶属度,μNB,EC(EC)代表当EC取NB时的隶属度。Similarly, the degree of membership μ Kpi (c p )(i=1, 2, ..., n) of all rules about K P can be obtained, wherein, n is the number of all rules about K P , c Pi is the central value of the fuzzy set taken in the i-th rule, μ NB, E (E) represents the membership degree when E takes NB, and μ NB, EC (EC) represents the membership degree when EC takes NB.

(二)当系统在某时刻误差E、误差变化率EC已知,KP的计算公式为:(2) When the system error E and error change rate EC are known at a certain moment, the calculation formula of K P is:

KK PP == ΣΣ ii == 11 nno (( μμ KK pip (( cc pp )) ×× cc pip )) ΣΣ ii == 11 nno μμ KK pip (( cc pp )) -- -- -- (( 66 ))

同理,可以得到KI、KD的计算公式,如(7),(8)所示。其中,m、l分别为关于KI、KD的所有规则的条数。Similarly, calculation formulas of K I and K D can be obtained, as shown in (7), (8). Among them, m and l are the numbers of all rules about K I and K D respectively.

KK II == ΣΣ ii == 11 mm (( μμ KK iii (( dd ii )) ×× dd iii )) ΣΣ ii == 11 mm μμ KK iii (( dd ii )) -- -- -- (( 77 ))

KK DD. == ΣΣ ii == 11 11 (( μμ KK didi (( gg dd )) ×× gg didi )) ΣΣ ii == 11 ll μμ KK diidii (( gg dd )) -- -- -- (( 88 ))

从式(5)~(8)可以看出,KP、KI、KD与模糊误差E和模糊误差变化率EC之间建立了一种函数关系,可以满足系统在不同模糊误差E、模糊误差变化率EC状态下对PID控制参数的不同要求,所以该控制器优于常规PID控制器。From formulas (5) to (8), it can be seen that K P , K I , K D establish a functional relationship with the fuzzy error E and the fuzzy error change rate EC, which can meet the requirements of the system in different fuzzy errors E, fuzzy The error rate of change EC state has different requirements for PID control parameters, so this controller is superior to conventional PID controllers.

ΔKP、ΔKI、ΔKD的模糊规则表建立后,即可进行KP、KI、KD的在线整定。设模糊误差E,模糊误差变化率EC和ΔKP、ΔKI、ΔKD均服从正态分布,可得出各模糊子集的隶属度,根据各模糊子集的隶属度赋值表和各参数模糊控制模型,应用模糊合成推理设计PID参数变化量的模糊决策表,查出修正参数代入下式计算:After the fuzzy rule tables of ΔK P , ΔK I , and ΔK D are established, online adjustment of K P , KI , and K D can be performed. Assuming that the fuzzy error E, the rate of change of the fuzzy error EC and ΔK P , ΔK I , ΔK D all obey the normal distribution, the membership degree of each fuzzy subset can be obtained. According to the membership degree assignment table of each fuzzy subset and the fuzzy parameter For the control model, the fuzzy decision table of PID parameter variation is designed by using fuzzy synthetic reasoning, and the corrected parameters are found out and substituted into the following formula for calculation:

KP=K′P+ΔKP,其中,K′P为上一时刻的PID参数,ΔKP可由模糊规则表1查得;K P =K′ P +ΔK P , where K′ P is the PID parameter at the last moment, and ΔK P can be found from fuzzy rule table 1;

KI=K′I+ΔKI,其中,K′I为上一时刻的PID参数,ΔKP可由模糊规则表2查得;K I =K' I +ΔK I , where K' I is the PID parameter at the last moment, and ΔK P can be found from fuzzy rule table 2;

KD=K′D+ΔKD,其中,K′D为上一时刻的PID参数,ΔKP可由模糊规则表3查得。K D =K' D +ΔK D , where K' D is the PID parameter at the last moment, and ΔK P can be obtained from fuzzy rule table 3.

将系统误差E和误差变化率EC变化范围定义为模糊集上的离散论域,表示为:E’={-15,-12,-9,-6,-3,0,3,6,9,12,15},EC’={-5,-4,-3,-2,-1,0,1,2,3,4,5},打开模糊规则器,输入不同的离散量E、EC,得到对应的ΔKP、ΔKI、ΔKD,构成模糊控制表(如表4、表5、表6所示)。The range of system error E and error rate of change EC is defined as a discrete domain on fuzzy sets, expressed as: E'={-15, -12, -9, -6, -3, 0, 3, 6, 9 , 12, 15}, EC'={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}, open the fuzzy regularizer, input different discrete quantities E, EC to get the corresponding ΔK P , ΔK I , ΔK D to form a fuzzy control table (as shown in Table 4, Table 5, and Table 6).

本发明提供的机械自动转向控制系统框图如图2所示,该系统是基于参数自整定PID控制器的,本实施例中参数自整定PID控制部分主要由以下几部分组成:The block diagram of the mechanical automatic steering control system provided by the present invention is as shown in Figure 2. This system is based on the parameter self-tuning PID controller. In the present embodiment, the parameter self-tuning PID control part mainly consists of the following parts:

①模糊控制器:为模糊控制系统的核心,是采用基于模糊控制知识表示和规则推理的语言型模糊控制器,主要包括输入量的模糊化、模糊推理和逆模糊化三部分。根据被控对象的不同以及对系统静态、动态特性要求的不同,模糊控制器的规则也有所不同,从而控制算法各异;①Fuzzy controller: as the core of the fuzzy control system, it is a language-based fuzzy controller based on fuzzy control knowledge representation and rule reasoning. It mainly includes three parts: fuzzification of input, fuzzy reasoning and defuzzification. According to the different controlled objects and the different requirements for the static and dynamic characteristics of the system, the rules of the fuzzy controller are also different, so the control algorithms are different;

②执行机构:包括直流电机和步进电机等;② Executing agencies: including DC motors and stepping motors, etc.;

③被控对象:可以是一种设备或装置以及它们的群体,在一定的约束条件下工作;③Controlled object: It can be a kind of equipment or device and their groups, working under certain constraints;

④传感器:需设置传感器将被控对象或各种过程的被控制量转换为电信号;④Sensor: It is necessary to set the sensor to convert the controlled object or the controlled quantity of various processes into an electrical signal;

⑤D/A转换器实现数/模转换和模/数转换。⑤D/A converter realizes digital/analog conversion and analog/digital conversion.

虽然本发明是集体结合以上优选实施例示出和说明的,但是熟悉该技术领域的人员可以理解,其中无论在形式上还是在细节上都可以做出各种改变,这并不背离本发明的精神实在和专利保护范围。While the present invention has been shown and described collectively in conjunction with the above preferred embodiments, it will be understood by those skilled in the art that various changes may be made therein, both in form and in detail, without departing from the spirit of the invention Reality and scope of patent protection.

Claims (10)

1. mechanical automatic steering control method stores proportionality constant, derivative constant and the integration constant of PID controller in this mechanical memory storage, it is characterized in that this method may further comprise the steps:
(1) impact point that will arrive according to mechanical steering is determined its position deviation and course deviation;
(2) the PID controller is determined current expectation front wheel angle according to described position deviation and course deviation, and controls steering mechanism and control front-wheel steer according to described current expectation front wheel angle, gathers current actual front wheel corner by angular transducer simultaneously;
(3) error and the error change rate of current expectation front wheel angle of calculating and current actual front wheel corner, the PID controller is determined the increment of PID proportionality constant, the increment of derivative constant and the increment of integration constant according to described error and error change rate, obtains adjusted proportionality constant, derivative constant and integration constant;
(4) the PID controller utilizes adjusted proportionality constant, derivative constant and integration constant to obtain the increment of current expectation front wheel angle, obtain adjusted expectation front wheel angle, and control steering mechanism controls front-wheel steer according to described adjusted expectation front wheel angle.
2. mechanical automatic steering control method as claimed in claim 1, it is characterized in that, be connected with stepper motor between described PID controller and the steering mechanism, described PID determines behind the current expectation front wheel angle to described stepper motor sending controling instruction, and described stepper motor makes it control front-wheel steer according to described current expectation front wheel angle according to described steering order control steering mechanism.
3. mechanical automatic steering control method as claimed in claim 1, it is characterized in that, in step (1), determine the best forward sight distance of described machinery according to the travel speed of described mechanical current time, determine target course according to described best forward sight distance, determine the impact point coordinate of machinery by described target course and best forward sight distance.
4. mechanical automatic steering control method as claimed in claim 3 is characterized in that, determines that according to the travel speed of described mechanical current time the method for the best forward sight distance of described machinery is:
L = 2 v ≤ 1.5 m / s v + 0.75 v > 1.5 m / s
Wherein, L is the best forward sight distance of mechanical current time, and v is a gait of march.
5. mechanical automatic steering control method as claimed in claim 4 is characterized in that, is determined the impact point coordinate of machinery by described target course and best forward sight distance:
x pre=x+L·cos(θ p)
y pre=y+L·sin(θ p)
Wherein, (x Pre, y Pre) expression impact point coordinate, (L represents best forward sight distance, θ for x, the y) coordinate of the mechanical current location point of expression pThe target course of expression machinery.
6. mechanical automatic steering control method as claimed in claim 1, it is characterized in that the error rate EC between described current actual front wheel corner and the current expectation front wheel angle is tried to achieve by the differential of the error E between current actual front wheel corner and the current expectation front wheel angle.
7. mechanical automatic steering control method as claimed in claim 1 is characterized in that, in step (4), the method for utilizing adjusted integration constant, derivative constant and integration constant to obtain the increment of front wheel angle is:
Δu i=K P(e i-e i-1)+K Ie i+K D(e i-2e i-1+e i-2)]
Wherein, e i, e I-1, e I-2Be respectively current time i, first moment i-1, the deviation of second moment i-2 expectation front wheel angle and current actual front wheel corner, wherein, first moment i-1 is the previous moment of current time i, second moment i-2 is the previous moment of first moment i-1, K PBe proportionality constant, K I=K P* T/T I, K D=K P* T D/ T, T are the sampling period, T IBe integration constant, T DBe derivative constant.
8. mechanical automatic steering control method as claimed in claim 7 is characterized in that, described sampling period T is 1 second.
9. mechanical automatic steering control method as claimed in claim 1 is characterized in that, the described proportionality constant K that is stored PSpan be 0≤K P≤ 1000, described integration constant T ISpan be 0≤T I≤ 0.5, described derivative constant T DSpan be 0≤T D≤ 10.
10. mechanical automatic steering control method as claimed in claim 1 is characterized in that the described proportionality constant of being stored is K PBe 75, integration constant is T IBe 0.01, derivative constant T DBe 8.
CNA2008100564780A 2008-01-18 2008-01-18 A kind of mechanical automatic steering control method Pending CN101221447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008100564780A CN101221447A (en) 2008-01-18 2008-01-18 A kind of mechanical automatic steering control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008100564780A CN101221447A (en) 2008-01-18 2008-01-18 A kind of mechanical automatic steering control method

Publications (1)

Publication Number Publication Date
CN101221447A true CN101221447A (en) 2008-07-16

Family

ID=39631325

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008100564780A Pending CN101221447A (en) 2008-01-18 2008-01-18 A kind of mechanical automatic steering control method

Country Status (1)

Country Link
CN (1) CN101221447A (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833334A (en) * 2010-02-09 2010-09-15 北京农业信息技术研究中心 Tractor automatic navigation control system and method thereof
CN101973313A (en) * 2010-10-27 2011-02-16 江苏大学 Device and method for stable steering control of vehicles based on self-autonomous body technology
CN101866181B (en) * 2009-04-16 2011-12-14 中国农业大学 Navigation method and navigation device of agricultural machinery as well as agricultural machinery
CN102466802A (en) * 2010-11-04 2012-05-23 瑞士优北罗股份有限公司 Method for tracking vehicle position and vehicle azimuth using dead reckoning and tracking device for implementing the method
CN102629843A (en) * 2012-04-06 2012-08-08 江苏大学 Method for constructing neutral network generalized inverse adaptive controller of three-motor driving system
CN101846734B (en) * 2009-03-26 2012-08-22 中国农业大学 Agricultural machinery navigation and position method and system and agricultural machinery industrial personal computer
CN102710203A (en) * 2012-06-07 2012-10-03 东北大学 Permanent magnetic motor control device and permanent magnetic motor control method based on energy optimization
WO2013023355A1 (en) * 2011-08-15 2013-02-21 长沙中联重工科技发展股份有限公司 Method and device for measuring opening angle of unfolded component of engineering machinery
CN103777522A (en) * 2014-01-21 2014-05-07 上海海事大学 Unmanned surface vessel linear tracking method based on fuzzy PID
CN103984234A (en) * 2014-05-15 2014-08-13 张万军 Electro hydraulic servo system self-correction fuzzy PID control method
CN103995535A (en) * 2014-06-04 2014-08-20 苏州工业职业技术学院 Method for controlling PID controller route based on fuzzy control
CN104076687A (en) * 2014-06-04 2014-10-01 江苏大学 Decoupling control method for active suspension and electric power steering integration system
CN104603708A (en) * 2012-09-10 2015-05-06 天宝导航有限公司 Agricultural autopilot steering compensation
CN104898664A (en) * 2015-04-10 2015-09-09 哈尔滨力盛达机电科技有限公司 Agricultural all-terrain vehicle steering tracking compound control method
CN103895698B (en) * 2012-12-27 2015-12-23 中国科学院沈阳自动化研究所 Fluid pressure type agricultural machinery automatic steering control device and control method
CN105711640A (en) * 2014-12-22 2016-06-29 大众汽车有限公司 METHOD AND DEVICE FOR DETERMINING RESULT RATED VALUE FOR CONTROLLING operating equipment AND A VEHICLE
CN105867112A (en) * 2016-04-15 2016-08-17 浙江大学 Intelligent vehicle based on control algorithm with automatically optimized parameter and control method thereof
CN105955269A (en) * 2016-05-12 2016-09-21 武汉理工大学 Fuzzy PID algorithm based ship course controller
CN106168758A (en) * 2016-05-24 2016-11-30 中国人民解放军空军第航空学院 The course tracking control method of four motorized wheels electric automobile
CN106575102A (en) * 2014-06-24 2017-04-19 伍德沃德有限公司 Adaptive pid control system for industrial turbines
CN106712652A (en) * 2017-01-25 2017-05-24 北京鸿智电通科技有限公司 Adaptive hardware PID controller for controlling motor and control method of adaptive hardware PID controller
CN106773652A (en) * 2017-01-25 2017-05-31 北京鸿智电通科技有限公司 A kind of PID systems and its parameter automatic adjusting method
CN107132761A (en) * 2017-04-14 2017-09-05 烟台南山学院 A kind of electric steering engine design method using pure fuzzy and fuzzy complex controll
CN107272707A (en) * 2017-08-03 2017-10-20 郑州轻工业学院 Unmanned vehicle automatic orbit fuzzy follow-up control method based on IPV6
CN107390620A (en) * 2017-07-17 2017-11-24 杨新高 Agricultural work vehicle system
CN107421545A (en) * 2017-08-11 2017-12-01 广东电网有限责任公司电力科学研究院 Position deviation detection method, device and the robot of a kind of robot
CN107942663A (en) * 2017-11-21 2018-04-20 山东省计算中心(国家超级计算济南中心) Agricultural machinery automatic steering control method based on fuzzy PID algorithm
CN108227491A (en) * 2017-12-28 2018-06-29 重庆邮电大学 A kind of intelligent vehicle Trajectory Tracking Control method based on sliding formwork neural network
CN108303982A (en) * 2018-01-31 2018-07-20 深圳力子机器人有限公司 Automated guided vehicle, its control method and control system
CN108388241A (en) * 2018-01-05 2018-08-10 广州科语机器人有限公司 The path following method of mobile robot
CN108536138A (en) * 2017-12-29 2018-09-14 哈尔滨航天恒星数据系统科技有限公司 The course changing control parameter tuning method and system of agricultural machinery automated driving system
CN108549373A (en) * 2018-04-10 2018-09-18 清华大学 A kind of method and apparatus that vehicle operating information processing is carried out based on navigation angular displacement
CN108681238A (en) * 2018-05-10 2018-10-19 中国石油集团渤海钻探工程有限公司 One kind is with brill downhole electrical motor group speed self-adjusting control method
CN109154817A (en) * 2016-05-30 2019-01-04 株式会社久保田 Automatic running working truck
CN109283923A (en) * 2018-07-02 2019-01-29 清博(昆山)智能科技有限公司 A kind of modeling of tractor self-steering system
CN109313446A (en) * 2016-06-10 2019-02-05 天宝公司 Pellucidly realize the self-navigation of mobile machine
CN109358491A (en) * 2018-10-25 2019-02-19 中国电子科技集团公司第五十四研究所 Fault-tolerant control method for fuzzy PID fault determination based on Kalman filter
CN109581863A (en) * 2019-01-02 2019-04-05 青岛理工大学 Liquid manure concentration controller of intelligent mixed manure control system
CN109656240A (en) * 2017-10-10 2019-04-19 雷沃重工股份有限公司 A kind of vehicle route follow-up control apparatus, method and vehicle
CN109976159A (en) * 2019-04-09 2019-07-05 台州学院 Intelligent vehicle crosswise joint method based on safely controllable domain
CN110221597A (en) * 2019-04-18 2019-09-10 河北汉光重工有限责任公司 A kind of paths planning method and device for unmanned target
CN110474577A (en) * 2019-07-04 2019-11-19 武汉工程大学 A kind of driving device for step-by-step and control method for nucleic acid extraction work station
CN110502020A (en) * 2019-09-18 2019-11-26 北京工业大学 An automatic navigation control method for agricultural machinery
CN110550233A (en) * 2019-09-12 2019-12-10 中国商用飞机有限责任公司 Automatic adjusting method and system for airplane front wheel turning
CN110641462A (en) * 2019-10-30 2020-01-03 山东理工大学 Automatic steering method for agricultural machinery
CN111132422A (en) * 2019-12-10 2020-05-08 中移(杭州)信息技术有限公司 Tunnel management method, device and system
CN111158377A (en) * 2020-01-15 2020-05-15 浙江吉利汽车研究院有限公司 A lateral control method, system and vehicle for a vehicle
CN111806445A (en) * 2020-05-29 2020-10-23 北汽福田汽车股份有限公司 Vehicle transverse control method and device, medium, equipment and vehicle
CN112230541A (en) * 2020-10-28 2021-01-15 东风汽车集团有限公司 Anti-saturation variable speed integration method and system based on PID control
CN113805478A (en) * 2021-09-15 2021-12-17 深圳市道通智能汽车有限公司 Debugging method of vehicle PID (proportion integration differentiation) parameters and vehicle
CN113911206A (en) * 2021-11-29 2022-01-11 中国人民解放军陆军装甲兵学院士官学校 Automatic control method of agricultural machine
CN113985729A (en) * 2021-11-16 2022-01-28 江苏大学 Tractor paddy field operation path tracking method and system based on variable universe fuzzy PID theory
CN114421828A (en) * 2021-12-27 2022-04-29 上海智能网联汽车技术中心有限公司 A motor steering control system and method with automatic deviation correction function
CN115328139A (en) * 2022-08-19 2022-11-11 石河子大学 Agricultural robot driving path control method and system
CN115390436A (en) * 2022-08-22 2022-11-25 网易(杭州)网络有限公司 Control parameter determination method, device, equipment and storage medium
CN116867204A (en) * 2023-07-28 2023-10-10 重庆成峰水务工程有限责任公司 Multifunctional water supply controller
CN116901089A (en) * 2023-09-14 2023-10-20 浩科机器人(苏州)有限公司 Multi-angle vision distance robot control method and system

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846734B (en) * 2009-03-26 2012-08-22 中国农业大学 Agricultural machinery navigation and position method and system and agricultural machinery industrial personal computer
CN101866181B (en) * 2009-04-16 2011-12-14 中国农业大学 Navigation method and navigation device of agricultural machinery as well as agricultural machinery
CN101833334B (en) * 2010-02-09 2011-09-21 北京农业信息技术研究中心 Tractor automatic navigation control system and its method
CN101833334A (en) * 2010-02-09 2010-09-15 北京农业信息技术研究中心 Tractor automatic navigation control system and method thereof
CN101973313B (en) * 2010-10-27 2014-05-28 江苏大学 Device and method for stable steering control of vehicles based on self-autonomous body technology
CN101973313A (en) * 2010-10-27 2011-02-16 江苏大学 Device and method for stable steering control of vehicles based on self-autonomous body technology
CN102466802A (en) * 2010-11-04 2012-05-23 瑞士优北罗股份有限公司 Method for tracking vehicle position and vehicle azimuth using dead reckoning and tracking device for implementing the method
CN102466802B (en) * 2010-11-04 2015-09-02 瑞士优北罗股份有限公司 Dead reckoning is used to follow the trail of the method at vehicle location and vehicle heading angle and realize the follow-up mechanism of the method
WO2013023355A1 (en) * 2011-08-15 2013-02-21 长沙中联重工科技发展股份有限公司 Method and device for measuring opening angle of unfolded component of engineering machinery
CN102629843A (en) * 2012-04-06 2012-08-08 江苏大学 Method for constructing neutral network generalized inverse adaptive controller of three-motor driving system
CN102710203B (en) * 2012-06-07 2014-10-01 东北大学 A permanent magnet motor control device and method based on energy optimization
CN102710203A (en) * 2012-06-07 2012-10-03 东北大学 Permanent magnetic motor control device and permanent magnetic motor control method based on energy optimization
CN104603708A (en) * 2012-09-10 2015-05-06 天宝导航有限公司 Agricultural autopilot steering compensation
CN103895698B (en) * 2012-12-27 2015-12-23 中国科学院沈阳自动化研究所 Fluid pressure type agricultural machinery automatic steering control device and control method
CN103777522B (en) * 2014-01-21 2016-09-28 上海海事大学 Unmanned water surface ship line tracking method based on fuzzy
CN103777522A (en) * 2014-01-21 2014-05-07 上海海事大学 Unmanned surface vessel linear tracking method based on fuzzy PID
CN103984234A (en) * 2014-05-15 2014-08-13 张万军 Electro hydraulic servo system self-correction fuzzy PID control method
CN104076687B (en) * 2014-06-04 2016-09-14 江苏大学 A kind of Active suspension and the decoupling control method of electric power steering integrated system
CN104076687A (en) * 2014-06-04 2014-10-01 江苏大学 Decoupling control method for active suspension and electric power steering integration system
CN103995535A (en) * 2014-06-04 2014-08-20 苏州工业职业技术学院 Method for controlling PID controller route based on fuzzy control
CN106575102A (en) * 2014-06-24 2017-04-19 伍德沃德有限公司 Adaptive pid control system for industrial turbines
US10359798B2 (en) 2014-06-24 2019-07-23 Woodward, Inc. Adaptive PID control system for industrial turbines
CN106575102B (en) * 2014-06-24 2019-11-15 伍德沃德有限公司 Adaptive PID Control for industrial turbines
CN105711640B (en) * 2014-12-22 2019-09-13 大众汽车有限公司 Method and apparatus and vehicle for determining a resultant setpoint for adjusting steering equipment
CN105711640A (en) * 2014-12-22 2016-06-29 大众汽车有限公司 METHOD AND DEVICE FOR DETERMINING RESULT RATED VALUE FOR CONTROLLING operating equipment AND A VEHICLE
CN104898664A (en) * 2015-04-10 2015-09-09 哈尔滨力盛达机电科技有限公司 Agricultural all-terrain vehicle steering tracking compound control method
CN105867112A (en) * 2016-04-15 2016-08-17 浙江大学 Intelligent vehicle based on control algorithm with automatically optimized parameter and control method thereof
CN105867112B (en) * 2016-04-15 2019-02-12 浙江大学 A kind of intelligent car based on automatic parameter optimization control algorithm and its control method
CN105955269A (en) * 2016-05-12 2016-09-21 武汉理工大学 Fuzzy PID algorithm based ship course controller
CN106168758A (en) * 2016-05-24 2016-11-30 中国人民解放军空军第航空学院 The course tracking control method of four motorized wheels electric automobile
CN106168758B (en) * 2016-05-24 2019-12-06 中国人民解放军空军第一航空学院 course tracking control method of four-wheel independent drive electric vehicle
CN109154817B (en) * 2016-05-30 2021-09-24 株式会社久保田 Automatic traveling work vehicle
CN109154817A (en) * 2016-05-30 2019-01-04 株式会社久保田 Automatic running working truck
CN109313446A (en) * 2016-06-10 2019-02-05 天宝公司 Pellucidly realize the self-navigation of mobile machine
CN106712652B (en) * 2017-01-25 2019-03-26 北京鸿智电通科技有限公司 A kind of hardware self-adapting PID controller and its control method controlling motor
CN106712652A (en) * 2017-01-25 2017-05-24 北京鸿智电通科技有限公司 Adaptive hardware PID controller for controlling motor and control method of adaptive hardware PID controller
CN106773652B (en) * 2017-01-25 2021-01-19 北京鸿智电通科技有限公司 PID system and automatic parameter adjusting method thereof
CN106773652A (en) * 2017-01-25 2017-05-31 北京鸿智电通科技有限公司 A kind of PID systems and its parameter automatic adjusting method
CN107132761A (en) * 2017-04-14 2017-09-05 烟台南山学院 A kind of electric steering engine design method using pure fuzzy and fuzzy complex controll
CN107132761B (en) * 2017-04-14 2020-10-16 烟台南山学院 A Design Method of Electric Steering Gear Using Pure Fuzzy and Fuzzy PID Composite Control
CN107390620A (en) * 2017-07-17 2017-11-24 杨新高 Agricultural work vehicle system
CN107272707A (en) * 2017-08-03 2017-10-20 郑州轻工业学院 Unmanned vehicle automatic orbit fuzzy follow-up control method based on IPV6
CN107421545A (en) * 2017-08-11 2017-12-01 广东电网有限责任公司电力科学研究院 Position deviation detection method, device and the robot of a kind of robot
CN107421545B (en) * 2017-08-11 2020-09-01 广东电网有限责任公司电力科学研究院 Robot position deviation detection method and device and robot
CN109656240A (en) * 2017-10-10 2019-04-19 雷沃重工股份有限公司 A kind of vehicle route follow-up control apparatus, method and vehicle
CN107942663A (en) * 2017-11-21 2018-04-20 山东省计算中心(国家超级计算济南中心) Agricultural machinery automatic steering control method based on fuzzy PID algorithm
CN108227491A (en) * 2017-12-28 2018-06-29 重庆邮电大学 A kind of intelligent vehicle Trajectory Tracking Control method based on sliding formwork neural network
CN108536138B (en) * 2017-12-29 2021-04-20 哈尔滨航天恒星数据系统科技有限公司 Steering control parameter setting method and system for automatic driving system of agricultural machine
CN108536138A (en) * 2017-12-29 2018-09-14 哈尔滨航天恒星数据系统科技有限公司 The course changing control parameter tuning method and system of agricultural machinery automated driving system
CN108388241B (en) * 2018-01-05 2021-02-12 广州科语机器人有限公司 Path tracking method for mobile robot
CN108388241A (en) * 2018-01-05 2018-08-10 广州科语机器人有限公司 The path following method of mobile robot
CN108303982B (en) * 2018-01-31 2021-11-30 深圳力子机器人有限公司 Automatic guide transport vehicle, and control method and control system thereof
CN108303982A (en) * 2018-01-31 2018-07-20 深圳力子机器人有限公司 Automated guided vehicle, its control method and control system
CN108549373A (en) * 2018-04-10 2018-09-18 清华大学 A kind of method and apparatus that vehicle operating information processing is carried out based on navigation angular displacement
CN108681238A (en) * 2018-05-10 2018-10-19 中国石油集团渤海钻探工程有限公司 One kind is with brill downhole electrical motor group speed self-adjusting control method
CN109283923A (en) * 2018-07-02 2019-01-29 清博(昆山)智能科技有限公司 A kind of modeling of tractor self-steering system
CN109358491A (en) * 2018-10-25 2019-02-19 中国电子科技集团公司第五十四研究所 Fault-tolerant control method for fuzzy PID fault determination based on Kalman filter
CN109358491B (en) * 2018-10-25 2021-03-23 中国电子科技集团公司第五十四研究所 Fault-tolerant control method for fuzzy PID fault determination based on Kalman filter
CN109581863A (en) * 2019-01-02 2019-04-05 青岛理工大学 Liquid manure concentration controller of intelligent mixed manure control system
WO2020140188A1 (en) * 2019-01-02 2020-07-09 青岛理工大学 Intelligent mixed fertilizer control method and control system
CN109976159A (en) * 2019-04-09 2019-07-05 台州学院 Intelligent vehicle crosswise joint method based on safely controllable domain
CN110221597A (en) * 2019-04-18 2019-09-10 河北汉光重工有限责任公司 A kind of paths planning method and device for unmanned target
CN110474577A (en) * 2019-07-04 2019-11-19 武汉工程大学 A kind of driving device for step-by-step and control method for nucleic acid extraction work station
CN110550233A (en) * 2019-09-12 2019-12-10 中国商用飞机有限责任公司 Automatic adjusting method and system for airplane front wheel turning
CN110502020B (en) * 2019-09-18 2022-05-17 北京工业大学 Automatic navigation control method of agricultural machine
CN110502020A (en) * 2019-09-18 2019-11-26 北京工业大学 An automatic navigation control method for agricultural machinery
CN110641462A (en) * 2019-10-30 2020-01-03 山东理工大学 Automatic steering method for agricultural machinery
CN111132422A (en) * 2019-12-10 2020-05-08 中移(杭州)信息技术有限公司 Tunnel management method, device and system
CN111158377B (en) * 2020-01-15 2021-04-27 浙江吉利汽车研究院有限公司 A lateral control method, system and vehicle for a vehicle
CN111158377A (en) * 2020-01-15 2020-05-15 浙江吉利汽车研究院有限公司 A lateral control method, system and vehicle for a vehicle
CN111806445A (en) * 2020-05-29 2020-10-23 北汽福田汽车股份有限公司 Vehicle transverse control method and device, medium, equipment and vehicle
CN112230541A (en) * 2020-10-28 2021-01-15 东风汽车集团有限公司 Anti-saturation variable speed integration method and system based on PID control
CN113805478A (en) * 2021-09-15 2021-12-17 深圳市道通智能汽车有限公司 Debugging method of vehicle PID (proportion integration differentiation) parameters and vehicle
CN113805478B (en) * 2021-09-15 2024-02-23 深圳市塞防科技有限公司 Method for debugging PID parameters of vehicle and vehicle
CN113985729A (en) * 2021-11-16 2022-01-28 江苏大学 Tractor paddy field operation path tracking method and system based on variable universe fuzzy PID theory
CN113985729B (en) * 2021-11-16 2024-05-14 江苏大学 Tractor paddy field operation path tracking method and system based on variable-domain fuzzy PID theory
CN113911206A (en) * 2021-11-29 2022-01-11 中国人民解放军陆军装甲兵学院士官学校 Automatic control method of agricultural machine
CN114421828A (en) * 2021-12-27 2022-04-29 上海智能网联汽车技术中心有限公司 A motor steering control system and method with automatic deviation correction function
CN115328139A (en) * 2022-08-19 2022-11-11 石河子大学 Agricultural robot driving path control method and system
CN115328139B (en) * 2022-08-19 2024-12-03 石河子大学 Agricultural robot driving path control method and system
CN115390436A (en) * 2022-08-22 2022-11-25 网易(杭州)网络有限公司 Control parameter determination method, device, equipment and storage medium
CN116867204A (en) * 2023-07-28 2023-10-10 重庆成峰水务工程有限责任公司 Multifunctional water supply controller
CN116901089A (en) * 2023-09-14 2023-10-20 浩科机器人(苏州)有限公司 Multi-angle vision distance robot control method and system
CN116901089B (en) * 2023-09-14 2024-01-05 浩科机器人(苏州)有限公司 Multi-angle vision distance robot control method and system

Similar Documents

Publication Publication Date Title
CN101221447A (en) A kind of mechanical automatic steering control method
Dominguez et al. Comparison of lateral controllers for autonomous vehicle: Experimental results
Naranjo et al. Power-steering control architecture for automatic driving
CN102145808B (en) Industrial laser guidance AGV double-closed-loop control system and control method thereof
Maalouf et al. A higher level path tracking controller for a four-wheel differentially steered mobile robot
US8195364B2 (en) Perception model for trajectory following autonomous and human augmented steering control
CN103324196A (en) Multi-robot path planning and coordination collision prevention method based on fuzzy logic
CN111522337B (en) A multi-drive wheel AGV navigation method based on fuzzy control
CN201993646U (en) Double closed loop control system of industrial laser guidance AGV (Automatic Guided Vehicle)
CN105867377A (en) A method for automatic navigation control of agricultural machinery
CN110471289B (en) Adaptive path tracking method and system based on visual navigation mobile equipment
CN101866181A (en) Navigation method for agricultural machinery, navigation device, and agricultural machinery
CN108045435A (en) A kind of intelligent vehicle empir-ical formulation control method of pavement self-adaptive
CN111596671A (en) An unmanned intelligent sweeper trajectory tracking control method and system
US20120158247A1 (en) Perception Model For Trajectory Following Autonomous And Human Augmented Steering Control
CN104898665A (en) Method and device for programming track of tour inspection robot
CN108388241A (en) The path following method of mobile robot
CN113665587A (en) Lateral control method, device, storage medium, and apparatus for autonomous vehicle
Wang et al. Path tracking control for autonomous harvesting robots based on improved double arc path planning algorithm
CN113721454B (en) A Path Tracking Control Method for an Articulated Vehicle
Wang et al. Improved pure pursuit algorithm based path tracking method for autonomous vehicle
CN113985729A (en) Tractor paddy field operation path tracking method and system based on variable universe fuzzy PID theory
CN113325849A (en) Motion control method for high-ground-clearance plant protection machine
Madan et al. Trajectory Tracking and Lane-Keeping Assistance for Autonomous Systems Using Pid and MPC Controllers
Dominguez-Quijada et al. Comparison of lateral controllers for autonomous vehicle: experimental results

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080716