CN101220045A - 一类菲环共轭、中心修饰的扩展卟啉衍生物的制备及应用 - Google Patents

一类菲环共轭、中心修饰的扩展卟啉衍生物的制备及应用 Download PDF

Info

Publication number
CN101220045A
CN101220045A CNA2007100192834A CN200710019283A CN101220045A CN 101220045 A CN101220045 A CN 101220045A CN A2007100192834 A CNA2007100192834 A CN A2007100192834A CN 200710019283 A CN200710019283 A CN 200710019283A CN 101220045 A CN101220045 A CN 101220045A
Authority
CN
China
Prior art keywords
compound
porphyrin
phenanthro
reaction
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007100192834A
Other languages
English (en)
Inventor
沈珍
吴迪
游效曾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CNA2007100192834A priority Critical patent/CN101220045A/zh
Publication of CN101220045A publication Critical patent/CN101220045A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本发明报道了首例中位苯基取代、β位菲环共轭的[26]六环卟啉(1.1.0.1.1.0)衍生物5,10,19,24-四(4-取代苯基)-二菲并[9,10-h:9,10-v]-29,31,32,34-四硫代-[26]扩展卟啉(1.1.0.1.1.0)。该化合物的紫外-可见光谱吸收峰在597nm,比四苯基-四硫代[26]六环卟啉(1.1.0.1.1.0)红移了74nm,比二菲环共轭卟啉的红移了92nm,接近600nm的红光区域。这是迄今为止吸收波长最大的中心修饰扩展卟啉化合物,可大大提高对可见光的吸收效率。这类化合物在分子天线、分子逻辑门、分子导线、太阳能电池、光存储、分子识别及光动力辅助治疗等方面有着广泛的应用前景。该化合物对银离子有独特的识别作用,在酸性条件下对叠氮酸根和磷酸根也有识别作用,可用紫外吸收光谱方法检测它们的存在。

Description

一类菲环共轭、中心修饰的扩展卟啉衍生物的制备及应用
一、技术领域
本发明涉及5,10,19,4-四苯基-二菲并[9,10-h:9,10-v]-29,31,32,34-四硫代-[26]六环卟啉(1.1.0.1.1.0)衍生物的制备方法及其在阴、阳离子识别等方面的应用。
二、背景技术
卟啉类化合物具有许多独特的光电性能、良好的光和热稳定性,在可见光范围内有较大的摩尔吸光系数,因而在生物化学、医药学、分析化学、光催化和材料科学等领域已得到了广泛的关注和应用。近年来,利用卟啉分子独特的电子结构和光电性能,设计和合成光电功能材料及光电器件的研制等方面已成为国内外十分活跃的研究领域,例如在模拟生物光合作用中心的光致电荷和能量转移方面,卟啉分子作为模型化合物中的光吸收单元,可以实现光诱导电荷分离[参见:(a)Gust D.,Moore T.A.Science,1989,244,35;(b)Wasielewski M.R.Chem.Review,1992,92,435;(c)Moore T.A.,Gust D.,et al.Nature,1984,307,630;(d)Liddell P.A.;Kuciauskas D.,Sumida J.P.,et al.J.Am.Chem.Soc,.1997,119,1400;(e)Kuciauskas D.;LiddellP.A.;Moore A.L.,et al J.Am.Chem.Soc.1998,120,10880;(f)Yfroah G.S.,Liddell P.A.Nature,1997,385,239;(g)Yfroah G.S.,Liddell P.A.et al.Nature,1998,392,497.];此外,卟啉化合物在有机场效应电子管(OFETs)[参见:Aramaki S.,Sakai Y.,Ono N.Appl.Phy.Let.,2004,84,2085.]、分子天线[参见:(a)Li J.,Ambroise A.,Yang S.I.,Diers J.R.,Seth J.,Wack C.R.,Bocian D.F.,Holten D.,Lindsey J.S.J.Am.Chem.Soc.,1999,121,8927;(b)Choi M.S.,Aida T.,Yamazaki T.et al.Angew.Chem.Int.Ed.,2001,40,3194.]、光-能转换器[参见:Gust D.,Moore T.A.,Moore A.L.Acc.Chem.Res.2001,34,40.]、光电转换材料[参见:Crossley M.J.,burn P.L.Chem.Commun.,1991,21,1569.]、分子开关[参见:Wasielewiski M.R.,Goszrola D.Z.Science,1992,257,63.]、分子逻辑门[参见:Wagner R.W.,Lindsey J.S.J.Am.Chem.Soc.,1996,119,3996.]、分子导线[参见:Richard W.,Wagner R.W.,Lindsey J.S.J.Am.Chem.Soc.1994,116,9759.]、有机太阳能电池[参见:(a)Antohe S.,Tugulea L.Phys.Stat.Sol(A),1996,1153,581;(b)Takahashi K.,Kuraya N.,et al.Solar Enegy Materials&Solar Cell,2000,61,403.]、有机电致发光[参见:Baldo M.A.,O’Bren D.F.et al.Nature,1998,395,151.]、非线性光学材料[参见:LidzeyD.G.,Bradley D.C.,et al.Nature,1998,395,53.]、光存储[参见:(a)Tyler B.N.,Neil R.B.Adv.Mater,2001,13(5),347;(b)Liu Z.M.,Amir A.,Yasseri J.,Lindsey J.S.,et al Science 2003,302(28),1543.]、分子识别及医药[参见:杨继彰,中国新药杂志,1995,4(3),59]等方面有着广泛的应用前景。
通常,卟啉是由四个吡咯环通过四个亚甲基相连而成的共轭体系。而扩展的卟啉衍生物由五个或更多吡咯环组成大环体系,如五环卟啉sapphyrins,[参见;a)J.L.Sessler,M.Cyr,A.K,Burrel,Tetrahedron 1992,48,9661,and the references cited therein;b)J.L.Sessler,J.M.Davis,Acc.Chem.Res.2001,34,989;c)S.K.Pushpan,A.Srinivasan,V.G. Anand,S.Venkatraman,T.K.Chandrashekar,B.S.Joshi,R.Roy,H.Furuta,J.Am.Chem.Soc.2001,123,5138-5139.]pentaphyrins,[参见:a)H.Rexhausen,A.Gossauer,J.Chem.Soc.,Chem.Commun.1983,275;b)S.Shimizu,N.Aratani,A.Osuka,Chem.Euro.J.2006,12,4909-4918;c)C.Comuzzi,S.Cogoi,M.Overhand,M.Van der,A.Gijs;H.S.Overkleeft,L.E.Xodo,J.Med.Chem.2006,49,196-204;d)A.Srinivasan,T.lshizuka,H.Maeda,H.Furuta,Angew.Chem.In.Ed.2004,43,2951-2955;e)D.T.Gryko,M.Tasior,B.Koszarna,J.Porphyrins Phthalocyanines 2003,7,239-248.]六环卟啉hexaphyrins,[参见:a)A.Krivokapic,A.R.Cowley,H.L.Anderson,J.Org.Chem.2003,68,1089-1096 andthe references cited therein;b)A.Srinivasan,T.lshizuka,A.Osuka,H.Furuta,J.Am.Chem.Soc.2003,125,878-879;c)H.Rath,V.G.Anand,J.Sankar,S.Venkatraman,T.K.Chandrashekar,B.S.Joshi,C.L.Khetrapal,U.Schilde,M.O.Senge,Org.Lett.2003,5,3531-3533;d)A.Krivokapic,H.L.Anderson,Org.Biomol.Chem.2003,1,3639-3641;e)J.L.Sessler,P.J.Melfi,D.Seidel,A.E.V.Gorden,D.K.Ford,P.D.Palmer,C.D.Tait,Tetrahedron 2004,60,l1089-11097;f)H.Hata.H.Shinokubo,A.Osuka,Angew.Chem.In.Ed.2005,44,932-935.S932/1-S932/8.]rubyrin,[参见:a)For a comprehensive review of expanded porphyrins,see:J.L.Sessler,D.Seidel,Angew.Chem.Int.Ed.2003,42,5134-5175.b)S.J.Narayanan,A.Srinivasan,B.Sridevi,T.K.Chandrashekar,M.O.Senge,K.-I.Sugiura.Y.Sakata,Eur.J.Org.Chem.2000,13,2357-2360.]和八环卟啉octaphyrins[参见:L.Latos-Grazynski,Angew.Chem.In.Ed.2004,43,5124-5128.]等,它们表现出更为丰富的物理和化学性质。尤其是扩大了的环内空腔,为各种阴离子和阳离子提供了特殊的配位环境[参见:a)A.Srinivasan,M.Ravikumar,R.P.Pandian,S.Mahajan,K.Simipushpan,B.Sridevi,S.J.Narayanan,T.K.Chandrashekar,J.Porphyrins Phthalocyanines 1998,2,305-314;b)A.Srinivasan,S.K.Pushpan,M.R.Kumar,S.Mahajan,T.K.Chandrashekar,R.Roy,P.Ramamurthy,J.Chem.Soc.,Perkin Trans.2.1999,961-968.],近年来成为人们研究的热点。
[26]六环卟啉(1.1.0.1.1.0)(rubyrin)是扩展卟啉的一种,它由六个吡咯环通过四个亚甲基连接而成[参见:J.L.Sessler,T.Morishima,V.Lynch,Angew.Chem.Int.Ed.1991,30,977-980]。[26]六环卟啉(1.1.0.1.1.0)中心的六个氮原子中的一个或几个被其他原子(如O,S,Se,Te等)取代,称为中心修饰的[26]六环卟啉(1.1.0.1.1.0)。例如中位-四苯基[26]六环卟啉(1.1.0.1.1.0)中四个氮原子被硫原子取代形成中位-四苯基-四硫代[26]六环卟啉(1.1.0.1.1.0)(S4 Rubyrin)(附图1)[参见A.Srinivasan,V.M.Reddy,S.J.Narayanan,B.Sridevi,S.Pushpan,M.Ravikumar,T.K.Chandrashekar,Angew.Chem.Int.Ed.1997,36,2598-2600;T.K.Chandrashekar,S.Venkatraman,Acc.Chem.Res.2003,36,676-691.]。硫代扩展卟啉不仅具有与卟啉类似的广泛用途,同时由于扩大了卟啉的中心空腔,可以容纳尺寸较大的阴阳离子,而且由于硫原子改变了卟啉环的大小和配位环境,可以与特定的离子产生配位,并呈现出特殊的光、电化学性质[参见:a)A.Srinivasan,V.M.Reddy,S.J.Narayanan,B.Sridevi,S.Pushpan,M.Ravikumar,T.K.Chandrashekar,Angew.Chem.Int.Ed.1997.36,2598-2600;b)T.K.Chandrashekar,S.Venkatraman,Acc.Chem.Res.2003,36,676-691.]。近年来,人们合成了一系列中位苯基取代的中心修饰的[26]六环卟啉(1.1.0.1.1.0),并对其阴阳离子的识别作用有所报道。[参见:a)A.Srinivasan,V.M.Reddy,S.J.Narayanan,B.Sridevi,S.Pushpan,M.Ravikumar,T.K.Chandrashekar,Angew.Chem.Int.Ed.1997,36,2598-2600;b]T.K.Chandrashekar,S.Venkatraman,Acc.Chem.Res.2003,36,676-691.]。
卟啉的特征光谱一般是由一个吸收在400nm左右很强的Soret谱带或称B峰和四个吸收在500nm以上较弱的Q谱带构成。一般的卟啉分子的强吸收带很少有超过500nm的。但是无论是应用在光动力治疗和近红外传感器,还是应用在非金属电子导体、催化和太阳能转换材料等领域,都需要作为光敏剂的卟啉化合物在波长较长的可见光波段(500nm以上)具有强吸收。设计合成电子吸收在可见/近红外区域的卟啉类化合物是当前国际研究的前沿领域。人们在探索吸收光波长更长的卟啉化合物方面已进行了很多努力。已经知道,卟啉类分子的紫外-可见吸收峰主要受其分子母体平面性的影响,平面性愈差,吸收光谱λmax愈加红移[参见Haddad,R.E.,Gazeau,S.,Pecaut,J.J.Am.Chem.Soc.,2003,125,1253]。另外,将多个卟啉相连[参见:a]H.Uno,Y.Kitawaki,N.Ono,Chem.Commun.2002,116-117;b]M.G.H.Vicente,K.M.J.Smith,Porphyrins Phthalocyanines 2004,8,26-42;c]T.Ogawa,Y.Nishimoto,N.Yoshida,N.Ono,A.Osuka,Angew.Chem.,Int.Ed.1999,38,176-179;d]Y.lnokuma,N.Ono,H.Uno,D.Y.Kim,S.B.Noh,D.Kim,A.Osuka,Chem.Commun.2005.3782-3784.],用S原子取代中心氮原子[参见Broadhurst,M.J.;Grigg,R.;Johnson,A.W.J.Chem.Soc.(C),1971,3681],或者改变卟啉分子中位或β位的取代基团[参见:Lash T.D.in The Porphyrin Handbook,ed.Kadish,K.M.;Smith,K.M.;Guilard,R.,Academic Press,SanDiego,2000,vol.2,125],都可以使光谱红移,例如中位-四苯基-21,23-二硫代卟啉S2TPP的λmax(435nm)就比中心没有修饰的中位-四苯基卟啉TPP(419nm)红移了16nm。而中位-四苯基-2,3,12,13-四甲基-21,23-二硫代卟啉(446nm)又比β位没有甲基取代的S2TPP(435nm)红移了11nm。但是,即使是四个中位和四个β位都被苯环取代的中位-四苯基-β-2,3,12,13-四苯基-21,23-二硫代卟啉也只有454nm,离500nm还很远。长期的研究发现,使卟啉电子吸收光谱产生明显红移的途径中,最有效的方法有两条,一是增加卟啉环中吡咯环的个数,形成扩展卟啉;二是吡咯环β位共轭芳环,扩大共轭体系。[26]六环卟啉(1.1.0.1.1.0)的Soret吸收峰为523nm,比四苯基卟啉(TPP)红移了104nm[参见:T.K.Chandrashekar,S.Venkatraman,Acc.Chem.Res.2003,36,676-691.],而β位共轭了四个菲环的卟啉的电子吸收光谱又红移了170nm[参见:H.-J.Xu,Z.Shen,T.Okujima,N.Ono,X.-Z.You,Tetrahedron Lett 2006,47,931-934.]。本专利中,将这两种途径结合,合成了首个芳环共轭的扩展卟啉,报道了它在阳离子识别和阴离子识别等方面的应用。
三、发明内容
本发明的目的是提供中位-四苯基-二菲并-四硫代[26]六环卟啉(1.1.0.1.1.0)衍生物制备方法及其在阳、阴离子识别等方面的应用。
本发明的技术方案如下:
中位-四苯基-二菲并-四硫代[26]六环卟啉(1.1.0.1.1.0),其结构通式见附图1。其中,R基团可以是氢、氟、氯、溴、碘等。
一种制备上述中位-四苯基-二菲并-四硫代[26]六环卟啉(1.1.0.1.1.0)衍生物的方法,化学反应式见附图2。
在反应容器中加入5,5’-二苯基羟基甲基-2,2’-双噻吩衍生物、菲并吡咯和催化量的BF3·Et2O,以无水二氯甲烷作溶剂,在无氧条件下反应48小时后,以氧化剂(如DDQ等)处理。产物进行柱层析分离,经甲醇和氯仿重结晶后得到中位-四苯基-二菲并-四硫代[26]六环卟啉(1.1.0.1.1.0)衍生物。
该化合物对银离子有独特的识别作用。在银离子存在下,其紫外-可见吸收光谱(附图3)有明显变化,红移了19nm(附图5),而铜、汞、镍、铅等其他阳离子不能使化合物的吸收光谱变化。
该化合物在酸性条件下对叠氮酸根离子(N3-)和磷酸根离子(PO4 3-)有识别作用。在叠氮酸根N3-(附图6)和磷酸根PO4 3-(附图7)存在时,其紫外-可见吸收光谱有明显变化(附图7),而氟离子(F-)、氯离子(Cl-)、溴离子(Br-)等其他阴离子存在时,光谱变化不明显。
1H-NMR、IR、UV-Vis及HRMS(ESI)MASS表征并证实了[26]六环卟啉(1.1.0.1.1.0)衍生物的结构。检测所用仪器为:Bruker DRX500型核磁共振仪(TMS为内标,氘代CDCl3为溶剂),岛津UV-3100型紫外-可见分光光度计(扫描范围400~1100nm,光路狭缝2nm),X-4数显显微熔点仪,德国Bruker microTOF spectrometer质谱工作站。
本发明的有益效果
本发明与现有技术相比,其显著优点是:结合了使卟啉电子吸收光谱明显红移的最有效的两条途径,首次合成了中位为苯基取代、β位为菲环共轭的[26]六环卟啉(1.1.0.1.1.0)衍生物,这类共轭扩展卟啉化合物的Soret谱带出现597nm,与β位无芳环共轭的四苯基-四硫代[26]六环卟啉(1.1.0.1.1.0)(523nm)比较其Soret谱带红移了74nm,比二菲环共轭的卟啉(505nm)的Soret谱带红移了90nm,接近了600nm的红光区域。这是迄今为止吸收波长最大的中心修饰扩展卟啉化合物,可大大提高对可见光的吸收效率,提高太阳能电池的转换效率。这类化合物在有机场效应电子管(OFETs)、分子天线、光-能转换器、光电转换材料、分子开关、分子逻辑门、分子导线、有机太阳能电池、有机电致发光、非线性光学材料、光存储、分子识别及光动力辅助治疗等方面有着广泛的应用前景。该化合物对银离子有独特的识别作用,可用紫外吸收光谱方法检测银离子的存在;在酸性条件下对叠氮酸根离子(N3-)和磷酸根离子(PO4 3-)有识别作用,可用紫外吸收光谱方法检测叠氮酸根离子和磷酸根离子的存在。
四、附图说明
图1为中位-四苯基-二菲并-四硫代卟啉衍生物结构式;
图2为制备中位-四苯基-二菲并-四硫代卟啉衍生物的化学反应式;
图3为本发明化合物1b和1b在三氟乙酸存在时的紫外-可见吸收光谱;
图4为本发明化合物1b的高分辨质谱图;
图5为在Ag+存在下本发明化合物1b的紫外光谱变化;
图6为在N3-存在下本发明化合物1b+三氟乙酸的紫外光谱变化;
图7为在PO4 3-存在下本发明化合物1b+三氟乙酸的紫外光谱变化;
五、具体实施方式
实施例1:5,10,19,24-四(4-氟苯基)-二菲并[9,10-h:9,10-v]-29,31,32,34-四硫代-[26]扩展卟啉(1.1.0.1.1.0)(1b)的合成:在250ml圆底烧瓶中加入1mmol(414mg)5,5’-二(4-氟苯基)羟基甲基-2,2’-双噻吩、1mmol(217mg)菲并吡咯和60ml无水二氯甲烷,放入磁子开始搅拌,氩气保护下将反应瓶放入低温装置中并避光,控制反应温度在-30±10℃,加入总量为0.17ml的BF3·Et2O,使其在低温下反应2小时后,再让其自然升温至室温继续反应46小时。1mmolDDQ(227mg)加入到反应溶液中,反应1小时。减压蒸去溶剂进行层析分离,经甲醇和氯仿重结晶后得到蓝黑色晶体。产率:10%(59mg);溶点:>250℃;UV-vis(CHCl3):λmax(ε×105)=597(1.63),716(0.200),784(0.235),923(0.280),1076(0.048)nm;UV-vis(CHCl3+1%TFA):λmax(ε×105)=624(1.542),894(0.220),1068(0.122)nm;(图3)1H NMR(500MHz,CDCl3,25℃,TMS):δ8.65(m,8H),8.55(m,4H),7.95(m,4H),7.53(m,8H),7.37(m,4H),7.08(m,4H),1.16(m,4H),0.86(m,4H);HRMS(ESI):calcd for[C76H41F4N2S4]+:1185.2083;found:1185.2095.(图4)
实施例2:5,10,19,24-四苯基-二菲并[9,10-h:9,10-v]-29,31,32,34-四硫代-[26]扩展卟啉(1.1.0.1.1.0)(1a)的合成:制备方法同实施例1,只是加入1mmol(378mg)5,5’-二苯基羟基甲基-2,2’-双噻吩。产率:12%。UV-vis(CHCl3):λmax(ε×105)=598(1.62),717(0.192),785(0.230),924(0.277),1077(0.042)nm;HRMS(ESI):calcd for[C76H41F4N2S4]+:1112.24;found:1112.2409.
实施例3:5,10,19,24-四(4-氯苯基)-二菲并[9,10-h:9,10-v]-29,31,32,34-四硫代-[26]扩展卟啉(1.1.0.1.1.0)(1c)的合成:制备方法同实施例1,只是加入1mmol(447mg)5,5’-二(4-氯苯基)羟基甲基-2,2’-双噻吩。产率:11%。UV-vis(CHCl3):λmax(ε×105)=599(1.65),717(0.202),786(0.230),925(0.276),1079(0.041)nm;HRMS(ESI):calcd for[C76H41F4N2S4]+:1250.08;found:1250.0779.
实施例4:5,10,19,24-四(4-溴苯基)-二菲并[9,10-h:9,10-v]-29,31,32,34-四硫代-[26]扩展卟啉(1.1.0.1.1.0)(1d)的合成:制备方法同实施例1,只是加入1mmol(536mg)5,5’-二(4-溴苯基)羟基甲基-2,2’-双噻吩。产率:9%。UV-vis(CHCl3):λmax(ε×105)=600(1.61),719(0.211),788(0.233),928(0.276),1082(0.043)nm;HRMS(ESI):calcd for[C76H41F4N2S4]+:1427.88;found:1427.8824.
实施例5:5,10,19,24-四(4-碘苯基)-二菲并[9,10-h:9,10-v]-29,31,32,34-四硫代-[26]扩展卟啉(1.1.0.1.1.0)(1e)的合成:制备方法同实施例1,只是加入1mmol(630mg)5,5’-二(4-碘苯基)羟基甲基-2,2’-双噻吩。产率:7%。λmax(ε×105)=601(1.60),721(0.190),790(0.232),930(0.278),1083(0.047)nm HRMS(ESI):calcd for[C76H41F4N2S4]+:1615.83;found:1615.8313.
实施例6:5,10,19,24-四苯基-二菲并[9,10-h:9,10-v]-29,31,32,34-四硫代-[26]扩展卟啉(1.1.0.1.1.0)(1b)的合成:制备方法同实施例1,只是将氧化剂DDQ换为空气。产率:1%。
实施例7:5,10,19,24-四(4-氟苯基)-二菲并[9,10-h:9,10-v]-29,31,32,34-四硫代-[26]扩展卟啉(1.1.0.1.1.0)(1b)的合成:制备方法同实施例1,只是加入0.8mmol(331mg)5,5’-二(4-氟苯基)羟基甲基-2,2’-双噻吩和1mmol(217mg)菲并吡咯。产率:8%(47mg)。
实施例8:5,10,19,4-四(4-氟苯基)-二菲并[9,10-h:9,10-v]-29,31,32,34-四硫代-[26]扩展卟啉(1.1.0.1.1.0)(1b)的合成:制备方法同实施例1,只是加入1.25mmol(517mg)5,5’-二(4-氟苯基)羟基甲基-2,2’-双噻吩和1mmol(217mg)菲并吡咯。产率:8%(47mg)。
实施例9:将化合物1b溶于二氯甲烷中,配成2×10-5摩尔浓度,取2.5毫升放入比色皿中;另配制10-2摩尔浓度的Ag+溶液,依次用微量注射器量取5微升的Ag+溶液加入比色皿中,测定紫外吸收光谱。当Ag+的浓度为1×10-5摩尔浓度时,紫外光谱开始红移(图5),当Ag+和化合物1b的浓度相等时,紫外光谱最大吸收峰红移至615nm,并不再随着Ag+浓度升高而继续红移。
实施例10:将化合物1b溶于二氯甲烷中,配成2×10-5摩尔浓度,取2.5毫升放入比色皿中;另配制10-1摩尔浓度的三氟乙酸溶液,一次性滴加15微升于比色皿中,化合物1b·三氟乙酸的紫外吸收光谱最大吸收峰位于624nm;另配制10-2摩尔浓度的NaN3溶液,依次用微量注射器量取5微升的NaN3溶液加入比色皿中,测定紫外吸收光谱。当N3 +的浓度为3×10-4摩尔浓度时,紫外光谱开始蓝移,当N3 +的浓度为6×10-4摩尔浓度时,紫外光谱最大吸收峰蓝移至595nm,并不再随着N3 +的浓度升高而继续蓝移。(附图6)
实施例11:实施方法同实施例10,只是将NaN3溶液换成磷酸钠Na3PO4溶液。(附图7)。

Claims (8)

1.5,10,19,24-四苯基-二菲并[9,10-h:9,10-v]-29,31,32,34-四硫代-[26]六环卟啉(1.1.0.1.1.0)衍生物,其结构式如下:
Figure A2007100192830002C1
R为氢、氟、氯、溴或碘等。
2.权利要求1化合物的制备方法,具体步骤如下:
(1)在反应容器中加入5,5’二(4-取代苯基)羟基甲基-2,2’-双噻吩、菲并吡咯和无水二氯甲烷,其中5,5’-二(4-取代苯基)羟基甲基-2,2’-双噻吩与菲并吡咯摩尔比为1.25∶1至1∶0.8,在无氧条件下将反应瓶放入低温装置中并避光,控制反应温度在0℃以下,然后加入催化量的BF3·Et2O,使其在低温下反应2小时后,再让其自然升温至室温继续反应46小时;
(2)将与菲并吡咯同摩尔数的氧化剂加入到步骤(1)的反应溶液中,反应1小时,减压蒸去溶剂得中位-四苯基二菲并二硫代[26]六环卟啉(1.1.0.1.1.0)。
3.根据权利要求2所述的制备方法,其特征在于步骤(1)中控制反应温度在-30±10℃之间。
4.根据权利要求2所述的制备方法,其特征在于步骤(2)中氧化剂为DDQ。
5.根据权利要求2所述的制备方法,其特征在于步骤(1)中吡咯衍生物与噻吩衍生物的反应摩尔比为(1∶1)。
6.权利要求1的化合物的用途,其特征是:权利要求1的化合物的紫外可见吸收光谱显著的红移,其最大吸收峰到达近600nm的红光区域。
7.权利要求1的化合物的用途,其特征是:对银离子有识别作用。在银离子存在下,权利要求1的化合物的紫外吸收光谱红移;而铜、汞、镍、铅等其他阳离子不能使化合物的光谱变化。
8.权利要求1的化合物的用途,其特征是:在酸性条件下对叠氮酸根离子(N3-)和磷酸根离子(PO4 3-)有识别作用。在叠氮酸根离子(N3-)和磷酸根离子(PO4 3-)存在时,质子化的权利要求1的化合物紫外吸收光谱明显蓝移,而氟离子F-,氯离子Cl-,溴离子Br-等其他阴离子只能使化合物的光谱有微小变化。
CNA2007100192834A 2007-01-11 2007-01-11 一类菲环共轭、中心修饰的扩展卟啉衍生物的制备及应用 Pending CN101220045A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2007100192834A CN101220045A (zh) 2007-01-11 2007-01-11 一类菲环共轭、中心修饰的扩展卟啉衍生物的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2007100192834A CN101220045A (zh) 2007-01-11 2007-01-11 一类菲环共轭、中心修饰的扩展卟啉衍生物的制备及应用

Publications (1)

Publication Number Publication Date
CN101220045A true CN101220045A (zh) 2008-07-16

Family

ID=39630151

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007100192834A Pending CN101220045A (zh) 2007-01-11 2007-01-11 一类菲环共轭、中心修饰的扩展卟啉衍生物的制备及应用

Country Status (1)

Country Link
CN (1) CN101220045A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106905351A (zh) * 2017-01-23 2017-06-30 河南师范大学 一种近红外吸收卟啉光敏剂的合成方法
CN108641719A (zh) * 2018-04-27 2018-10-12 上海应用技术大学 环保的基于卟啉类化合物的荧光晶体及其制备方法
CN109115694A (zh) * 2018-09-28 2019-01-01 北京师范大学 一种implication逻辑门
CN116715680A (zh) * 2023-05-26 2023-09-08 上海大学 具有稳定自由基性质的扩展卟啉化合物及制备方法与应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106905351A (zh) * 2017-01-23 2017-06-30 河南师范大学 一种近红外吸收卟啉光敏剂的合成方法
CN108641719A (zh) * 2018-04-27 2018-10-12 上海应用技术大学 环保的基于卟啉类化合物的荧光晶体及其制备方法
CN109115694A (zh) * 2018-09-28 2019-01-01 北京师范大学 一种implication逻辑门
CN116715680A (zh) * 2023-05-26 2023-09-08 上海大学 具有稳定自由基性质的扩展卟啉化合物及制备方法与应用
CN116715680B (zh) * 2023-05-26 2024-05-31 上海大学 具有稳定自由基性质的扩展卟啉化合物及制备方法与应用

Similar Documents

Publication Publication Date Title
Feng et al. Aggregation behaviour of pyrene-based luminescent materials, from molecular design and optical properties to application
Mori et al. Fused porphyrinoids as promising near-infrared absorbing dyes
Alemayehu et al. Gold tris (carboxyphenyl) corroles as multifunctional materials: room temperature near-ir phosphorescence and applications to photodynamic therapy and dye-sensitized solar cells
Sekaran et al. β-Pyrrole functionalized porphyrins: Synthesis, electronic properties, and applications in sensing and DSSC
Angaridis et al. Functionalized porphyrin derivatives for solar energy conversion
CN102417511B (zh) 酰腙锌卟啉及其配合物的合成和应用
Jin et al. Synthesis, characterization and photovoltaic properties of two novel near-infrared absorbing perylene dyes containing benzo [e] indole for dye-sensitized solar cells
Dinçalp et al. Effect of side chain substituents on the electron injection abilities of unsymmetrical perylene diimide dyes
US6916982B2 (en) Synthesis of perylene-porphyrin building blocks and polymers thereof for the production of light-harvesting arrays
Çakmak et al. Synthesis and dye sensitized solar cell applications of Bodipy derivatives with bis-dimethylfluorenyl amine donor groups
Hua et al. Novel soluble and thermally-stable fullerene dyad containing perylene
CN101220045A (zh) 一类菲环共轭、中心修饰的扩展卟啉衍生物的制备及应用
Zhu et al. Novel planar binuclear zinc phthalocyanine sensitizer for dye-sensitized solar cells: Synthesis and spectral, electrochemical, and photovoltaic properties
Mikroyannidis et al. Synthesis of new low band gap dyes with BF2–azopyrrole complex and their use for dye-sensitized solar cells
Das et al. Synthetic aspects of carbazole containing porphyrins and porphyrinoids
Walter et al. Syntheses and optoelectronic properties of amino/carboxyphenylporphyrins for potential use in dye-sensitized TiO 2 solar cells
Bartolomeu et al. Multicomponent reactions mediated by NbCl5 for the synthesis of phthalonitrile-quinoline dyads: Methodology, scope, mechanistic insights and applications in phthalocyanine synthesis
Lu et al. Phosphorous tetrabenzocorrolazine from its metal-free phthalocyanine precursor: Its facile synthesis, high fluorescence emission, efficient singlet oxygen formation, and promising hole transporting material
CN105622676B (zh) 一种二茂铁锌卟啉化合物及其合成和作为染料敏化剂的应用
Tiwari et al. Synthesis of 2-nitro-3-(pyrrol-1-yl)-5, 10, 15, 20-tetraarylporphyrins via a Clauson-Kaas reaction and the study of their electronic properties
CN105694526B (zh) 二茂铁Zn卟啉有机染料及其合成和在制备染料敏化太阳能电池中的应用
CN101210024A (zh) 中位-四芳基二菲并二硒代卟啉衍生物的合成及其应用
CN101210017A (zh) 中位-四芳基二菲并二氧代卟啉衍生物的合成及其应用
Zhang et al. Effect of structural optimization on the photovoltaic performance of dithieno [3, 2-b: 2′, 3′-d] pyrrole-based dye-sensitized solar cells
Kandhadi et al. trans-A 2 B-corrole bearing 2, 3-di (2-pyridyl) quinoxaline (DPQ)/phenothiazine moieties: synthesis, characterization, electrochemistry and photophysics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080716