CN101220039A - Chiral center aza ring carbene precursor salt with camphor framework, synthesizing method and uses thereof - Google Patents

Chiral center aza ring carbene precursor salt with camphor framework, synthesizing method and uses thereof Download PDF

Info

Publication number
CN101220039A
CN101220039A CNA2008100331070A CN200810033107A CN101220039A CN 101220039 A CN101220039 A CN 101220039A CN A2008100331070 A CNA2008100331070 A CN A2008100331070A CN 200810033107 A CN200810033107 A CN 200810033107A CN 101220039 A CN101220039 A CN 101220039A
Authority
CN
China
Prior art keywords
precursor salt
cdcl
camphor
nmr
carbene precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100331070A
Other languages
Chinese (zh)
Other versions
CN101220039B (en
Inventor
游书力
李毅
冯桢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Organic Chemistry of CAS
Original Assignee
Shanghai Institute of Organic Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Organic Chemistry of CAS filed Critical Shanghai Institute of Organic Chemistry of CAS
Priority to CN2008100331070A priority Critical patent/CN101220039B/en
Publication of CN101220039A publication Critical patent/CN101220039A/en
Application granted granted Critical
Publication of CN101220039B publication Critical patent/CN101220039B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention provides a multiple chiral center nitrogen heterocyclic carbene precursor salt of camphor skeleton, a synthetic method and usage thereof. The precursor salt has a structural formula as indicated on the right and can be prepared by taking inexpensive and easily available camphor as a starting material through two-step synthesizing. The invention has relatively better application in the reactions of catalyzing polarity reversal of aldehyde compounds and extended polarity reversal of unsaturated aldehyde compounds and can be used for preparing chiral Gamma-butyl lactone compounds or chiral and high different flavonoid compounds.

Description

Many chiral centres aza ring carbene precursor salt, synthetic method and purposes with camphor skeleton
Technical field
The present invention relates to a class chirality aza ring carbene precursor salt, synthetic method and purposes, promptly a kind of many chiral centres aza ring carbene precursor salt, synthetic method and purposes with camphor skeleton.
Background technology
In recent years, organic molecule catalysis has caused extensive concern [(a) Seayad, the J. of academia and industry member in worldwide owing to advantages such as it are easily synthetic, and structural modification is convenient, and heavy metal free is residual; List, B.Org.Biomol.Chem.2005,3,719. (b) Dalko, P.I.; Moisan, L.Angew.Chem.Int.Ed.2004,43,5138.], be that the organic reaction of catalyst has obtained development [(a) Enders, D. rapidly especially in recent years wherein by N-heterocyclic carbine; Balensiefer, T.Acc.Chem.Res.2004,37,534. (b) Johnson, J.S.Angew.Chem., Int.Ed.2004,43,1326. (c) Zeitler, K.Angew.Chem., Int.Ed.2005,44,7506. (d) Marion, N.; Diez-Gonz á lez, S.; Nolan, S.P.Angew.Chem., Int.Ed.2007,46,2988.].In this field, our latest developments a kind of many chiral centres aza ring carbene precursor salt, synthetic method and purposes with camphor skeleton.With the commercial optical purity camphor that cheaply is easy to get is that raw material sets out, and can synthesizing series has many chiral centres aza ring carbene precursor salt of camphor skeleton.Such precursor salt all has preferably in the expansion pole reversal reaction of the reversal of poles of catalysis aldehyde compound and unsaturated aldehyde compounds to be used.
In recent years, along with people's reaching its maturity to the research of chirality carbone catalyst, N-heterocyclic carbine is obtained very big development as organic micromolecule catalyst catalysis asymmetric reaction, some outstanding chirality carbone catalysts have appearred successively, wherein, is N-heterocyclic carbine catalyst effect particularly outstanding [(a) Kerr, the M.S. of skeleton with the Rovis development with chirality indenes amine alcohol; Read de Alaniz, J.; Rovis, T.J.Am.Chem.Soc.2002,124,10298. (b) Kerr, M.S.; Rovis, T.Synlett 2003,1934. (c) Kerr, M.S.; Rovis, T.J.Am.Chem.Soc.2004,126,8876. (d) Read de Alaniz, J.; Rovis, T.J.Am.Chem.Soc.2005,127,6284.].But in general, the type of N-heterocyclic carbine catalyzer is limited, seeks the chirality N-heterocyclic carbine catalyzer of novel skeleton and makes it to be applicable to some reactions or more reactions and can have good catalytic activity and enantioselectivity is one of focus of chemist research always.
The natural camphor skeleton can provide chiral environment well, and its derivative successfully is applied in the asymmetric synthesis.Chiral ligand, prothetic group with camphor skeleton by deeply systematically research [a) Crosby, J.Tetrahedron 1991,47,4789. (b) Scott, J.S.; In Morrison, J.D.Asymmetric Synthesis.Orlando:Academic Press, 1984,4,1.].In view of the camphor compounds can provide outstanding chiral environment, and two kinds of equal wide material sources of enantiomorph, cheaply be easy to get, the inventor has been developed this type of and has been had many chiral centres aza ring carbene precursor salt, synthetic method and the purposes of camphor skeleton.
Summary of the invention
One of purpose of the present invention provides a kind of many chiral centres aza ring carbene precursor salt with camphor skeleton.
Two of purpose of the present invention provides the synthetic method of this kind aza ring carbene precursor salt.
Three of purpose of the present invention provides the purposes of this kind aza ring carbene precursor salt.
The invention provides a kind of many chiral centres aza ring carbene precursor salt with camphor skeleton, its structural formula is
Figure S2008100331070D00021
Furtherly can for
Figure S2008100331070D00022
Wherein *The expression chiral centre, R is selected from C arbitrarily 1~C 16Fused ring aryl, the C of aryl, fused ring aryl or replacement of alkyl, aryl and replacement 5~C 20Heterocyclic radical that contains N, O or S or heteroaryl; Substituting group on above-mentioned aryl or the fused ring aryl is selected from H, F, Cl, Br, I, C arbitrarily 1-C 16-oxyl, C 1~C 16Alkyl, thiazolinyl, alkynyl, C 3~C 18Cycloalkyl or amino; Wherein X is selected from Cl, Br, I, OTf, BF arbitrarily 4Or ClO 4Described Tf is a trifyl.Described fused ring aryl can be naphthyl, phenanthryl or anthryl etc.
The synthetic method of compound provided by the invention is to be set out to synthesize by camphor to make.Its reaction formula is as follows:
Figure S2008100331070D00031
Figure S2008100331070D00032
Solvent refers to organic solvent in the reaction formula.
Further describing of this reaction is: in organic solvent, temperature is 0 ℃~150 ℃, has the lactan and the general molecular formula H of camphor skeleton 2The hydrazine of NNHR and Mel external cause reagent, orthoformate alkyl ester are raw material, react 10 minutes~5 days.Described lactan and general molecular formula H with camphor skeleton 2The mol ratio of the hydrazine of NNHR and Mel external cause reagent, orthoformate alkyl ester is followed successively by 1: 0.8~5: 1~5: 1~20.The mol ratio of recommendation response is: lactan: general molecular formula H 2The hydrazine of NNHR: Mel external cause reagent: orthoformate alkyl ester=1: 1~2: 1~2: 5~10.Temperature of reaction is relevant with the time, and when temperature of reaction was relatively lower, the reaction times was just long relatively, and the recommendation response temperature is: 120~140 ℃.Described H 2NNHR, R can be selected from C arbitrarily as previously mentioned in the formula 1~C 16Aryl, fused ring aryl or the fused ring aryl of alkyl, aryl and replacement on replacement fused ring aryl, C 5~C 20Heterocyclic radical that contains N, O or S or heteroaryl; Described aryl or substituting group are selected from H, F, Cl, Br, I, C arbitrarily 1~C 16-oxyl, C 1~C 16Alkyl, thiazolinyl, alkynyl, cycloalkyl or amino.X in the products therefrom can be selected from Cl, Br, I, OTf, BF arbitrarily 4Or ClO 4Etc. common negatively charged ion.
Described organic solvent is chlorobenzene, benzene, tetracol phenixin, tetrahydrofuran (THF) (THF), ether, methylene dichloride, toluene, hexanaphthene, sherwood oil, acetone, pyridine, dioxane or acetonitrile.
The isomer that reaction produces can separate smoothly with the method for column chromatography or recrystallization usually.Reaction product is a kind of many chiral centres aza ring carbene precursor salt with camphor skeleton provided by the present invention.Adopt the inventive method products therefrom-aza ring carbene precursor salt with the process recrystallization, thin-layer chromatography, methods such as column chromatography are separated.As the method with recrystallization, recommending solvent is the mixed solvent of polar solvent and non-polar solvent.Recommend solvent to can be methyl alcohol-acetone, methyl alcohol-ethyl acetate, methylene dichloride-normal hexane, Virahol-sherwood oil, ethyl acetate-sherwood oil, ethyl acetate-normal hexane or Virahol-ethyl acetate-mixed solvents such as sherwood oil.With thin-layer chromatography and column chromatography method, used developping agent is the mixed solvent of polar solvent and non-polar solvent.Recommend solvent to can be Virahol-sherwood oil, ethyl acetate-sherwood oil, ethyl acetate-normal hexane or Virahol-ethyl acetate-mixed solvents such as sherwood oil, its volume ratio can be respectively: polar solvent: non-polar solvent=1: 0.1~500.For example: ethyl acetate: sherwood oil=1: 0.1~50, Virahol: sherwood oil=1: 0.1~500.
Many chiral centres aza ring carbene precursor salt with camphor skeleton of the present invention can be applied in the pole reversal reaction of carbene catalyzed aldehyde compound, with α, beta-unsaturated aldehyde or intramolecularly group compounds of aldehydes and ketones are substrate, can obtain having the gamma-butyrolactone compounds or the high isoflavonoid compound of chirality.
The invention provides a kind of brand-new N-heterocyclic carbine catalyst precursor salt, the simple synthetic method of this compound, mild condition, starting raw material cheaply are easy to get, and are suitable for industrialization.This part is used to prepare gamma-butyrolactone compounds or the high isoflavonoid compound with chirality, compare with existing N-heterocyclic carbine catalyst precursor salt, speed of reaction, productive rate, enantioselectivity are all good, have higher actual application value, are suitable for industrialization.
Embodiment
To help to understand the present invention by following embodiment, but not limit content of the present invention.
Embodiment one
(1) (2S)-(-)-the amino iso-borneol six-ring of exo-lactan synthetic:
Figure S2008100331070D00041
In the 500mL three-necked bottle, add (2S)-(-)-exo-amino iso-borneol [Chen, Y.-K.; Jeon, S.-J.; Walsh, P.J.; Nugent, W.A.; Kendall, C.; Wipf, P.Organic Synthesis 2005,82,87.] (6.0g, 36.4mmol), CH 2Cl 2(200mL), Et 3N (11.2mL, 80mmol), ice bath is chilled to 0 ℃, slowly drip chloroacetyl chloride (3.2mL, 40mmol).Remove ice-water bath, return to room temperature naturally, stirring is spent the night.TLC follows the tracks of reaction until the raw material completely consumed.Ice-water bath is cooled to 0 ℃, and (13.1g 153mmol)/i-PrOH (100mL), stirred 2 days slowly to drip KOtBu.TLC follows the tracks of and reacts completely.Removal of solvent under reduced pressure adds ethyl acetate (150mL), distilled water (150mL), separatory.Water merges organic phase with ethyl acetate (100mL * 3) extraction, and respectively with saturated sodium bicarbonate, saturated common salt water washing, anhydrous sodium sulfate drying concentrates.Column chromatography purification (sherwood oil: ethyl acetate=1: 1).Obtain white crystal 3.6g (productive rate 66%).
The amino iso-borneol six-ring of P1 (2S)-(-)-exo-lactan
Figure S2008100331070D00051
(and enantiomorph)
White crystal [α] D 20=+97.1 ° of (c=0.20, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 0.85 (s, 3H), 1.00 (s, 3H), 1.08 (m, 1H), 1.13 (s, 3H), 1.53-1.74 (m, 4H), 3.37 (d, J=6.6Hz, 1H), 3.66 (d, J=6.9Hz, 1H), 3.77 (d, J=15.3Hz, 1H), 4.12 (d, J=15Hz, 1H), 6.38 (brs, 1H); 13C NMR (75MHz, CDCl 3) δ 11.1,20.5,22.0,25.8,32.9,47.4,49.1,50.4,58.3,66.2,83.7,171.0; IR (KBr): ν Max(cm -1)=3178,3066,2955,2873,1688,1429,1353,1114,830,807,446; MS (EI, m/z, rel.intensity) 209 (M +, 19), 95 (100); High resolution mass spectrum calculating value C 12H 19NO 2(M +): 209.1416; Measured value: 209.1423.
(2) N-heterocyclic carbine catalyst precursor salt is synthetic:
In the single neck bottle of 50mL, and the adding lactan (0.50g, 2.4mmol), CH 2Cl 2(15mL), and trimethoxy tetrafluoride boron salt (0.43g, 2.9mmol), stirring at room one day, TLC follows the tracks of reaction and consumes substantially until raw material.Add hydrazine (2.4-12mmol), stirring at room two days, TLC follows the tracks of reaction and consumes substantially until raw material of last step.CH is removed in decompression 2Cl 2, adding chlorobenzene (25mL), (2.5mL/day, 15mmol), 120 ℃ were refluxed three days triethyl orthoformate.NMR tracks to reaction system does not have considerable change.Recover room temperature, removal of solvent under reduced pressure, behind the simple column chromatography (ethyl acetate), recrystallization (petrol ether/ethyl acetate) is purified.
P2(exo,R=Ph,X=BF 4)
Figure S2008100331070D00052
(and enantiomorph)
White solid, [α] D 20=+29.4 ° of (c=0.20, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 0.66 (s, 3H), 0.86 (s, 3H), 1.00 (s, 3H), 1.19-1.28 (m, 2H), 1.55-1.59 (m, 1H), 1.79-1.82 (m, 1H), 2.65 (d, J=4.8Hz, 1H), 4.07 (d, J=7.2Hz, 1H), 4.46 (d, J=6.9Hz, 1H), 4.72 (d, J=15.3Hz, 1H), 5.03 (d, J=15Hz, 1H), 7.46-7.53 (m, 3H), 7.85-7.88 (m, 2H), 10.26 (s, 1H); 13C NMR (75MHz, CDCl 3) δ 11.0,20.2,21.2,25.4,32.4,48.2,49.6,50.0,58.7,60.8,83.8,120.5,130.1,130.6,134.9,139.0,151.2; IR (KBr): ν Max(cm -1)=3104,2879,1594,1394,1227,1104,1063,975,805,764,688,521; MS (ESI, m/z, rel.intensity) 310.2 (M-BF 4); High resolution mass spectrum calculating value C 19H 24N 3O (M-BF 4): 310.1914; Measured value: 310.1914.
P3(exo,R=4-MeOC 6H 5,X=BF 4)
Figure S2008100331070D00061
(and enantiomorph)
White solid [α] D 20=+31.7 ° of (c=0.20, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 0.67 (s, 3H), 0.87 (s, 3H), 1.01 (s, 3H), 1.25-1.29 (m, 2H), and 1.61-1.68 (m, 1H), 1.80-1.90 (m, 1H), 2.64 (d, J=4.8Hz, 1H), 3.83 (s, 3H), 4.08 (d, J=6.9Hz, 1H), 4.44 (d, J=6.9Hz, 1H), 4.70 (d, J=15.3Hz, 1H), 5.03 (d, J=15.3Hz, 1H), 6.94 (d, J=9.0Hz, 2H), 7.77 (d, J=9.3Hz, 2H), 10.13 (s, 1H); 13C NMR (75MHz, CDCl 3) δ 11.0,20.2,21.2,25.4,32.4,48.2,49.6,49.9,55.7,58.7,60.7,83.8,115.0,122.2,128.0,138.2,151.0,161.1; IR (KBr): ν Max(cm -1)=3154,2947,1590,1514,1459,1261,1110,1062,977,827,522; MS (ESI, m/z, rel.intensity) 340.2 (M-BF 4); High resolution mass spectrum calculating value C 20H 26N 3O 2(M-BF 4): 340.2020; Measured value: 340.2014.
P4(exo,R=2,4,6-MeC 6H 2,X=BF 4)
Figure S2008100331070D00062
(and enantiomorph)
White solid, [α] D 20=+6.6 ° of (c=0.20, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 0.67 (s, 3H), 0.88 (s, 3H), 1.02 (s, 3H), 1.22-1.25 (m, 2H), 1.58-1.66 (m, 1H), 1.82-1.85 (m, 1H), 2.01 (s, 6H), 2.37 (s, 3H), 2.65 (d, J=4.2Hz, 1H), 4.12 (d, J=6.9Hz, 1H), 4.55 (d, J=7.2Hz, 1H), 4.74 (d, J=15.0Hz, 1H), 5.02 (d, J=15.0Hz, 1H), 7.00 (s, 2H), 9.80 (s, 1H); 13C NMR (75MHz, CDCl 3) δ 11.1,17.0,20.1,21.1,21.2,25.3,32.6,48.2,49.6,50.0,58.7,60.7,84.0,129.6,131.1,141.8,143.1,151.1; IR (KBr): ν Max(cm -1)=3141,2951,2927,1589,1458,1222,1105,1060,976,805,647,522; MS (ESI, m/z, rel.intensity) 352.2 (M-BF 4); High resolution mass spectrum calculating value C 22H 30N 3O (M-BF 4): 352.2383; Measured value: 352.2400.
P5(exo,R=C 6F 5,X=BF 4)
Figure S2008100331070D00071
(and enantiomorph)
The cotton-shaped solid of white, [α] D 20=+29.0 ° of (c=0.20, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 0.64 (s, 3H), 0.91 (s, 3H), 1.03 (s, 3H), and 1.24-1.39 (m, 2H), 1.67-1.71 (m, 1H), 1.93-1.97 (m, 1H), 2.46 (d, J=4.2Hz, 1H), 4.14 (d, J=6.6Hz, 1H), 4.55 (d, J=6.9Hz, 1H), 4.75 (d, J=15.0Hz, 1H), 5.05 (d, J=15.0Hz, 1H), 10.14 (s, 1H); 13C NMR (75MHz, CDCl 3) δ 10.9,19.8,21.0,25.1,32.4,48.4,49.5,50.1,58.5,60.9,83.8,110.7,136.2,139.0,141.7,142.2,144.?, 145.3,152.2; IR (KBr): ν Max(cm -1)=3134,2967,1608,1531,1517,1394,1215,1076,1004,987,852,800,628,524,462; MS (ESI, m/z, rel.intensity) 400.2 (M-BF 4); High resolution mass spectrum calculating value C 19H 19N 3O (M-BF 4): 400.1443; Measured value: 400.1436.
P6(exo,R=3,5-CF 3C 6H 3,X=BF 4)
Figure S2008100331070D00072
(and enantiomorph)
White solid 1H NMR (300MHz, CDCl 3) δ 0.66 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.21-1.27 (m, 2H), 1.58-1.60 (m, 1H), 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 7.95 (s, 1H), 8.44 (s, 2H), 10.47 (s, 1H); 19F NMR (282MHz, CDCl 3): δ-63.3 ,-151.5 ,-151.6. 13C NMR (75MHz, CDCl 3) δ 11.0,20.3,21.0,25.4,29.7,32.3,48.3,49.6,49.9,58.7,61.2,83.8,120.3,121.2,124.0 (m), 133.8 (q, J=34.8Hz), 136.0,140.5,160.0; IR (KBr): ν Max(cm -1)=3134,2967,1608,1531,1517,1394,1215,1076,1004,987,852,800,628,524,462; MS (ESI, m/z, rel.intensity) 446.2 (M-BF 4); High resolution mass spectrum calculating value C 21H 22N 3OF 6(M-BF 4): 446.1672; Measured value: 446.1662.
P7 (exo, R=9-anthryl, X=BF 4)
Figure S2008100331070D00081
(and enantiomorph)
White solid 1H NMR (300MHz, CDCl 3) δ 0.68 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.21-1.27 (m, 2H), 1.58-1.60 (m, 1H), 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 7.95-8.50 (m, 9H), 10.47 (s, 1H); MS (ESI, m/z, rel.intensity) 410.2 (M-BF 4); High resolution mass spectrum calculating value C 27H 28N 3O (M-BF 4): 410.5302; Measured value: 410.5312.
P7 (exo, R=9-phenanthryl, X=BF 4)
Figure S2008100331070D00082
(and enantiomorph)
White solid 1H NMR (300MHz, CDCl 3) δ 0.68 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.21-1.27 (m, 2H), 1.58-1.60 (m, 1H), 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 7.95-8.50 (m, 9H), 10.47 (s, 1H); MS (ESI, m/z, rel.intensity) 410.2 (M-BF 4); High resolution mass spectrum calculating value C 27H 28N 3O (M-BF 4): 410.5302; Measured value: 410.5312.
P8 (exo, R=cyclohexyl, X=BF 4)
Figure S2008100331070D00091
White solid 1H NMR (300MHz, CDCl 3) δ 0.68 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.11-1.62 (m, 6H), 1.25-1.29 (m, 2H), 1.58-1.60 (m, 1H), and 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 10.47 (s, 1H); MS (ESI, m/z, rel.imensity) 316.2 (M-BF 4); High resolution mass spectrum calculating value C 19H 30N 3O (M-BF 4): 316.4065; Measured value: 316.4082.
P9 (exo, R=p-methylphenyl, X=BF 4)
Figure S2008100331070D00092
(and enantiomorph)
White solid, 1H NMR (300MHz, CDCl 3) δ 0.67 (s, 3H), 0.87 (s, 3H), 1.01 (s, 3H), 1.25-1.29 (m, 2H), and 1.61-1.68 (m, 1H), 1.80-1.90 (m, 1H), 2.64 (d, J=4.8Hz, 1H), 2.67 (s, 3H), 4.08 (d, J=6.9Hz, 1H), 4.44 (d, J=6.9Hz, 1H), 4.70 (d, J=15.3Hz, 1H), 5.03 (d, J=15.3Hz, 1H), 6.94 (d, J=9.0Hz, 2H), 7.77 (d, J=9.3Hz, 2H), 10.13 (s, 1H); MS (ESI, m/z, rel.intensity) 324.2 (M-BF 4); High resolution mass spectrum calculating value C 20H 26N 3O (M-BF 4): 324.2020; Measured value: 324.2014.
P10 (exo, R=p-nitrophenyl, X=BF 4)
Figure S2008100331070D00101
(and enantiomorph)
White solid, 1H NMR (300MHz, CDCl 3) δ 0.66 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.21-1.27 (m, 2H), 1.58-1.60 (m, 1H), 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 8.44 (m, 4H), 10.47 (s, 1H); MS (ESI, m/z, rel.intensity) 355.2 (M-BF 4); High resolution mass spectrum calculating value C 19H 23N 4O 3(M-BF 4): 355.4140; Measured value: 355.4145.
P11(exo,R=Ph,X=Cl)
Figure S2008100331070D00102
(and enantiomorph)
White solid, 1H NMR (300MHz, CDCl 3) δ 0.66 (s, 3H), 0.86 (s, 3H), 1.00 (s, 3H), 1.19-1.28 (m, 2H), 1.55-1.59 (m, 1H), 1.79-1.82 (m, 1H), 2.65 (d, J=4.8Hz, 1H), 4.07 (d, J=7.2Hz, 1H), 4.46 (d, J=6.9Hz, 1H), 4.72 (d, J=15.3Hz, 1H), 5.03 (d, J=15Hz, 1H), 7.46-7.53 (m, 3H), 7.85-7.88 (m, 2H), 10.26 (s, 1H); 13CNMR (75MHz, CDCl 3) δ 11.0,20.2,21.2,25.4,32.4,48.2,49.6,50.0,58.7,60.8,83.8,120.5,130.1,130.6,134.9,139.0,151.2; IR (KBr): ν Max(cm -1)=3104,2879,1594,1394,1227,1104,1063,975,805,764,688,521; MS (ESI, m/z, rel.intensity) 310.2 (M-Cl); High resolution mass spectrum calculating value C 19H 24N 3O (M-Cl): 310.1914; Measured value: 310.1914.
P12(exo,R=4-MeOC 6H 5,X=Cl)
Figure S2008100331070D00103
(and enantiomorph)
White solid 1H NMR (300MHz, CDCl 3) δ 0.67 (s, 3H), 0.87 (s, 3H), 1.01 (s, 3H), 1.25-1.29 (m, 2H), and 1.61-1.68 (m, 1H), 1.80-1.90 (m, 1H), 2.64 (d, J=4.8Hz, 1H), 3.83 (s, 3H), 4.08 (d, J=6.9Hz, 1H), 4.44 (d, J=6.9Hz, 1H), 4.70 (d, J=15.3Hz, 1H), 5.03 (d, J=15.3Hz, 1H), 6.94 (d, J=9.0Hz, 2H), 7.77 (d, J=9.3Hz, 2H), 10.13 (s, 1H); 13C NMR (75MHz, CDCl 3) δ 11.0,20.2,21.2,25.4,32.4,48.2,49.6,49.9,55.7,58.7,60.7,83.8,115.0,122.2,128.0,138.2,151.0,161.1; IR (KBr): ν Max(cm -1)=3154,2947,1590,1514,1459,1261,1110,1062,977,827,522; MS (ESI, m/z, rel.intemsity) 340.2 (M-Cl); High resolution mass spectrum calculating value C 20H 26N 3O 2(M-Cl): 340.2020; Measured value: 340.2014.
P13(exo,R=2,4,6-MeC 6H 2,X=Cl)
Figure S2008100331070D00111
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 0.67 (s, 3H), 0.88 (s, 3H), 1.02 (s, 3H), 1.22-1.25 (m, 2H), 1.58-1.66 (m, 1H), 1.82-1.85 (m, 1H), 2.01 (s, 6H), 2.37 (s, 3H), 2.65 (d, J=4.2Hz, 1H), 4.12 (d, J=6.9Hz, 1H), 4.55 (d, J=7.2Hz, 1H), 4.74 (d, J=15.0Hz, 1H), 5.02 (d, J=15.0Hz, 1H), 7.00 (s, 2H), 9.80 (s, 1H); 13C NMR (75MHz, CDCl 3) δ 11.1,17.0,20.1,21.1,21.2,25.3,32.6,48.2,49.6,50.0,58.7,60.7,84.0,129.6,131.1,141.8,143.1,151.1; IR (KBr): ν Max(cm -1)=3141,2951,2927,1589,1458,1222,1105,1060,976,805,647,522; MS (ESI, m/z, rel.intensity) 352.2 (M-Cl); High resolution mass spectrum calculating value C 22H 30N 3O (M-Cl): 352.2383; Measured value: 352.2400.
P14(exo,R=C 6F 5,X=Cl)
Figure S2008100331070D00112
(and enantiomorph)
The cotton-shaped solid of white, 1H NMR (300MHz, CDCl 3) δ 0.64 (s, 3H), 0.91 (s, 3H), 1.03 (s, 3H), and 1.24-1.39 (m, 2H), 1.67-1.71 (m, 1H), 1.93-1.97 (m, 1H), 2.46 (d, J=4.2Hz, 1H), 4.14 (d, J=6.6Hz, 1H), 4.55 (d, J=6.9Hz, 1H), 4.75 (d, J=15.0Hz, 1H), 5.05 (d, J=15.0Hz, 1H), 10.14 (s, 1H); 13C NMR (75MHz, CDCl 3) δ 10.9,19.8,21.0,25.1,32.4,48.4,49.5,50.1,58.5,60.9,83.8,110.7,136.2,139.0,141.7,142.2,144.?, 145.3,152.2; IR (KBr): ν Max(cm -1)=3134,2967,1608,1531,1517,1394,1215,1076,1004,987,852,800,628,524,462; MS (ESI, m/z, rel.intensity) 400.2 (M-Cl); High resolution mass spectrum calculating value C 19H 19N 3O(M-Cl): 400.1443; Measured value: 400.1436.
P15(exo,R=3,5-CF 3C 6H 3,X=Cl)
Figure S2008100331070D00121
(and enantiomorph)
White solid 1H NMR (300MHz, CDCl 3) δ 0.66 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.21-1.27 (m, 2H), 1.58-1.60 (m, 1H), 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 7.95 (s, 1H), 8.44 (s, 2H), 10.47 (s, 1H); 13C NMR (75MHz, CDCl 3) δ 11.0,20.3,21.0,25.4,29.7,32.3,48.3,49.6,49.9,58.7,61.2,83.8,120.3,121.2,124.0 (m), 133.8 (q, J=34.8Hz), 136.0,140.5,160.0; IR (KBr): ν Max(cm -1)=3134,2967,1608,1531,1517,1394,1215,1076,1004,987,852,800,628,524,462; MS (ESI, m/z, rel.intensity) 446.2 (M-Cl); High resolution mass spectrum calculating value C 21H 22N 3OF 6(M-Cl): 446.1672; Measured value: 446.1662.
P16 (exo, the R=9-anthryl, X=Cl)
(and enantiomorph)
White solid 1H NMR (300MHz, CDCl 3) δ 0.68 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.21-1.27 (m, 2H), 1.58-1.60 (m, 1H), 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 7.95-8.50 (m, 9H), 10.47 (s, 1H); MS (ESI, m/z, rel.intensity) 410.2 (M-Cl); High resolution mass spectrum calculating value C 27H 28N 3O (M-Cl): 410.5302; Measured value: 410.5312.
P17 (exo, the R=9-phenanthryl, X=Cl)
Figure S2008100331070D00131
(and enantiomorph)
White solid 1H NMR (300MHz, CDCl 3) δ 0.68 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.21-1.27 (m, 2H), 1.58-1.60 (m, 1H), 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 7.95-8.50 (m, 9H), 10.47 (s, 1H); MS (ESI, m/z, rel.intensity) 410.2 (M-Cl); High resolution mass spectrum calculating value C 27H 28N 3O (M-Cl): 410.5302; Measured value: 410.5312.
P18 (exo, the R=cyclohexyl, X=Cl)
Figure S2008100331070D00132
White solid 1H NMR (300MHz, CDCl 3) δ 0.68 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.11-1.62 (m, 6H), 1.25-1.29 (m, 2H), 1.58-1.60 (m, 1H), and 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 10.47 (s, 1H); MS (ESI, m/z, rel.intensity) 316.2 (M-Cl); High resolution mass spectrum calculating value C 19H 30N 3O (M-Cl): 316.4065; Measured value: 316.4082.
P19 (exo, the R=p-methylphenyl, X=Cl)
Figure S2008100331070D00141
(and enantiomorph)
White solid, 1H NMR (300MHz, CDCl 3) δ 0.67 (s, 3H), 0.87 (s, 3H), 1.01 (s, 3H), 1.25-1.29 (m, 2H), and 1.61-1.68 (m, 1H), 1.80-1.90 (m, 1H), 2.64 (d, J=4.8Hz, 1H), 2.67 (s, 3H), 4.08 (d, J=6.9Hz, 1H), 4.44 (d, J=6.9Hz, 1H), 4.70 (d, J=15.3Hz, 1H), 5.03 (d, J=15.3Hz, 1H), 6.94 (d, J=9.0Hz, 2H), 7.77 (d, J=9.3Hz, 2H), 10.13 (s, 1H); MS (ESI, m/z, rel.intensity) 324.2 (M-Cl); High resolution mass spectrum calculating value C 20H 26N 3O (M-Cl): 324.2020; Measured value: 324.2014.
P20 (exo, the R=p-nitrophenyl, X=Cl)
Figure S2008100331070D00142
(and enantiomorph)
White solid, 1H NMR (300MHz, CDCl 3) δ 0.66 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.21-1.27 (m, 2H), 1.58-1.60 (m, 1H), 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 8.44 (m, 4H), 10.47 (s, 1H); MS (ESI, m/z, rel.intensity) 355.2 (M-Cl); High resolution mass spectrum calculating value C 19H 23N 4O 3(M-Cl): 355.4140; Measured value: 355.4145.
P21(exo,R=Ph,X=OTf)
Figure S2008100331070D00151
(and enantiomorph)
White solid, 1H NMR (300MHz, CDCl 3) δ 0.66 (s, 3H), 0.86 (s, 3H), 1.00 (s, 3H), 1.19-1.28 (m, 2H), 1.55-1.59 (m, 1H), 1.79-1.82 (m, 1H), 2.65 (d, J=4.8Hz, 1H), 4.07 (d, J=7.2Hz, 1H), 4.46 (d, J=6.9Hz, 1H), 4.72 (d, J=15.3Hz, 1H), 5.03 (d, J=15Hz, 1H), 7.46-7.53 (m, 3H), 7.85-7.88 (m, 2H), 10.26 (s, 1H); 13CNMR (75MHz, CDCl 3) δ 11.0,20.2,21.2,25.4,32.4,48.2,49.6,50.0,58.7,60.8,83.8,120.5,130.1,130.6,134.9,139.0,151.2; IR (KBr): ν Max(cm -1)=3104,2879,1594,1394,1227,1104,1063,975,805,764,688,521; MS (ESI, m/z, rel.intensity) 310.2 (M-OTf); High resolution mass spectrum calculating value C 19H 24N 3O (M-OTf): 310.1914; Measured value: 310.1914.
P22(exo,R=4-MeOC 6H 5,X=OTf)
Figure S2008100331070D00152
(and enantiomorph)
White solid 1H NMR (300MHz, CDCl 3) δ 0.67 (s, 3H), 0.87 (s, 3H), 1.01 (s, 3H), 1.25-1.29 (m, 2H), and 1.61-1.68 (m, 1H), 1.80-1.90 (m, 1H), 2.64 (d, J=4.8Hz, 1H), 3.83 (s, 3H), 4.08 (d, J=6.9Hz, 1H), 4.44 (d, J=6.9Hz, 1H), 4.70 (d, J=15.3Hz, 1H), 5.03 (d, J=15.3Hz, 1H), 6.94 (d, J=9.0Hz, 2H), 7.77 (d, J=9.3Hz, 2H), 10.13 (s, 1H); 13C NMR (75MHz, CDCl 3) δ 11.0,20.2,21.2,25.4,32.4,48.2,49.6,49.9,55.7,58.7,60.7,83.8,115.0,122.2,128.0,138.2,151.0,161.1; IR (KBr): ν Max(cm -1)=3154,2947,1590,1514,1459,1261,1110,1062,977,827,522; MS (ESI, m/z, rel.intensity) 340.2 (M-OTf); High resolution mass spectrum calculating value C 20H 26N 3O 2(M-OTf): 340.2020; Measured value: 340.2014.
P23(exo,R=2,4,6-MeC 6H 2,X=OTf)
Figure S2008100331070D00161
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 0.67 (s, 3H), 0.88 (s, 3H), 1.02 (s, 3H), 1.22-1.25 (m, 2H), 1.58-1.66 (m, 1H), 1.82-1.85 (m, 1H), 2.01 (s, 6H), 2.37 (s, 3H), 2.65 (d, J=4.2Hz, 1H), 4.12 (d, J=6.9Hz, 1H), 4.55 (d, J=7.2Hz, 1H), 4.74 (d, J=15.0Hz, 1H), 5.02 (d, J=15.0Hz, 1H), 7.00 (s, 2H), 9.80 (s, 1H); 13C NMR (75MHz, CDCl 3) δ 11.1,17.0,20.1,21.1,21.2,25.3,32.6,48.2,49.6,50.0,58.7,60.7,84.0,129.6,131.1,141.8,143.1,151.1; IR (KBr): ν Max(cm -1)=3141,2951,2927,1589,1458,1222,1105,1060,976,805,647,522; MS (ESI, m/z, rel.intensity) 352.2 (M-OTf); High resolution mass spectrum calculating value C 22H 30N 3O (M-OTf): 352.2383; Measured value: 352.2400.
P24(exo,R=C 6F 5,X=OTf)
(and enantiomorph)
The cotton-shaped solid of white, 1H NMR (300MHz, CDCl 3) δ 0.64 (s, 3H), 0.91 (s, 3H), 1.03 (s, 3H), and 1.24-1.39 (m, 2H), 1.67-1.71 (m, 1H), 1.93-1.97 (m, 1H), 2.46 (d, J=4.2Hz, 1H), 4.14 (d, J=6.6Hz, 1H), 4.55 (d, J=6.9Hz, 1H), 4.75 (d, J=15.0Hz, 1H), 5.05 (d, J=15.0Hz, 1H), 10.14 (s, 1H); 13C NMR (75MHz, CDCl 3) δ 10.9,19.8,21.0,25.1,32.4,48.4,49.5,50.1,58.5,60.9,83.8,110.7,136.2,139.0,141.7,142.2,144.?, 145.3,152.2; IR (KBr): ν Max(cm -1)=3134,2967,1608,1531,1517,1394,1215,1076,1004,987,852,800,628,524,462; MS (ESI, m/z, rel.intensity) 400.2 (M-OTf); High resolution mass spectrum calculating value C 19H 19N 3O (M-OTf): 400.1443; Measured value: 400.1436.
P25(exo,R=3,5-CF 3C 6H 3,X=OTf)
Figure S2008100331070D00171
(and enantiomorph)
White solid 1H NMR (300MHz, CDCl 3) δ 0.66 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.21-1.27 (m, 2H), 1.58-1.60 (m, 1H), 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 7.95 (s, 1H), 8.44 (s, 2H), 10.47 (s, 1H); 13C NMR (75MHz, CDCl 3) δ 11.0,20.3,21.0,25.4,29.7,32.3,48.3,49.6,49.9,58.7,61.2,83.8,120.3,121.2,124.0 (m), 133.8 (q, J=34.8Hz), 136.0,140.5,160.0; IR (KBr): ν Max(cm -1)=3134,2967,1608,1531,1517,1394,1215,1076,1004,987,852,800,628,524,462; MS (ESI, m/z, rel.intensity) 446.2 (M-OTf); High resolution mass spectrum calculating value C 21H 22N 3OF 6(M-OTf): 446.1672; Measured value: 446.1662.
P26 (exo, the R=9-anthryl, X=OTf)
Figure S2008100331070D00172
(and enantiomorph)
White solid 1H NMR (300MHz, CDCl 3) δ 0.68 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.21-1.27 (m, 2H), 1.58-1.60 (m, 1H), 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 7.95-8.50 (m, 9H), 10.47 (s, 1H); MS (ESI, m/z, rel.intensity) 410.2 (M-OTf); High resolution mass spectrum calculating value C 27H 28N 3O (M-OTf): 410.5302; Measured value: 410.5312.
P27 (exo, the R=9-phenanthryl, X=OTf)
Figure S2008100331070D00181
(and enantiomorph)
White solid 1H NMR (300MHz, CDCl 3) δ 0.68 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.21-1.27 (m, 2H), 1.58-1.60 (m, 1H), 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 7.95-8.50 (m, 9H), 10.47 (s, 1H); MS (ESI, m/z, rel.intensity) 410.2 (M-OTf); High resolution mass spectrum calculating value C 27H 28N 3O (M-OTf): 410.5302; Measured value: 410.5312.
P28 (exo, the R=cyclohexyl, X=OTf)
Figure S2008100331070D00182
White solid 1H NMR (300MHz, CDCl 3) δ 0.68 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.11-1.62 (m, 6H), 1.25-1.29 (m, 2H), 1.58-1.60 (m, 1H), and 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 10.47 (s, 1H); MS (ESI, m/z, rel.intensity) 316.2 (M-OTf); High resolution mass spectrum calculating value C 19H 30N 3O (M-OTf): 316.4065; Measured value: 316.4082.
P29 (exo, the R=p-methylphenyl, X=OTf)
Figure S2008100331070D00183
(and enantiomorph)
White solid, 1H NMR (300MHz, CDCl 3) δ 0.67 (s, 3H), 0.87 (s, 3H), 1.01 (s, 3H), 1.25-1.29 (m, 2H), and 1.61-1.68 (m, 1H), 1.80-1.90 (m, 1H), 2.64 (d, J=4.8Hz, 1H), 2.67 (s, 3H), 4.08 (d, J=6.9Hz, 1H), 4.44 (d, J=6.9Hz, 1H), 4.70 (d, J=15.3Hz, 1H), 5.03 (d, J=15.3Hz, 1H), 6.94 (d, J=9.0Hz, 2H), 7.77 (d, J=9.3Hz, 2H), 10.13 (s, 1H); MS (ESI, m/z, rel.intensity) 324.2 (M-OTf); High resolution mass spectrum calculating value C 20H 26N 3O (M-OTf): 324.2020; Measured value: 324.2014.
P30 (exo, the R=p-nitrophenyl, X=OTf)
Figure S2008100331070D00191
(and enantiomorph)
White solid, 1H NMR (300MHz, CDCl 3) δ 0.66 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.21-1.27 (m, 2H), 1.58-1.60 (m, 1H), 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 8.44 (m, 4H), 10.47 (s, 1H); MS (ESI, m/z, rel.intensity) 355.2 (M-OTf); High resolution mass spectrum calculating value C 19H 23N 4O 3(M-OTf): 355.4140; Measured value: 355.4145.
P31(exo,R=Ph,X=ClO 4)
Figure S2008100331070D00192
(and enantiomorph)
White solid, 1H NMR (300MHz, CDCl 3) δ 0.66 (s, 3H), 0.86 (s, 3H), 1.00 (s, 3H), 1.19-1.28 (m, 2H), 1.55-1.59 (m, 1H), 1.79-1.82 (m, 1H), 2.65 (d, J=4.8Hz, 1H), 4.07 (d, J=7.2Hz, 1H), 4.46 (d, J=6.9Hz, 1H), 4.72 (d, J=15.3Hz, 1H), 5.03 (d, J=15Hz, 1H), 7.46-7.53 (m, 3H), 7.85-7.88 (m, 2H), 10.26 (s, 1H); 13CNMR (75MHz, CDCl 3) δ 11.0,20.2,21.2,25.4,32.4,48.2,49.6,50.0,58.7,60.8,83.8,120.5,130.1,130.6,134.9,139.0,151.2; IR (KBr): ν Max(cm -1)=3104,2879,1594,1394,1227,1104,1063,975,805,764,688,521; MS (ESI, m/z, rel.intensity) 310.2 (M-ClO 4); High resolution mass spectrum calculating value C 19H 24N 3O (M-ClO 4): 310.1914; Measured value: 310.1914.
P32(exo,R=4-MeOC 6H 5,X=ClO 4)
Figure S2008100331070D00201
(and enantiomorph)
White solid 1H NMR (300MHz, CDCl 3) δ 0.67 (s, 3H), 0.87 (s, 3H), 1.01 (s, 3H), 1.25-1.29 (m, 2H), and 1.61-1.68 (m, 1H), 1.80-1.90 (m, 1H), 2.64 (d, J=4.8Hz, 1H), 3.83 (s, 3H), 4.08 (d, J=6.9Hz, 1H), 4.44 (d, J=6.9Hz, 1H), 4.70 (d, J=15.3Hz, 1H), 5.03 (d, J=15.3Hz, 1H), 6.94 (d, J=9.0Hz, 2H), 7.77 (d, J=9.3Hz, 2H), 10.13 (s, 1H); 13C NMR (75MHz, CDCl 3) δ 11.0,20.2,21.2,25.4,32.4,48.2,49.6,49.9,55.7,58.7,60.7,83.8,115.0,122.2,128.0,138.2,151.0,161.1; IR (KBr): ν Max(cm -1)=3154,2947,1590,1514,1459,1261,1110,1062,977,827,522; MS (ESI, m/z, rel.imensity) 340.2 (M-ClO 4); High resolution mass spectrum calculating value C 20H 26N 3O 2(M-ClO 4): 340.2020; Measured value: 340.2014.
P33(exo,R=2,4,6-MeC 6H 2,X=ClO 4)
Figure S2008100331070D00202
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 0.67 (s, 3H), 0.88 (s, 3H), 1.02 (s, 3H), 1.22-1.25 (m, 2H), 1.58-1.66 (m, 1H), 1.82-1.85 (m, 1H), 2.01 (s, 6H), 2.37 (s, 3H), 2.65 (d, J=4.2Hz, 1H), 4.12 (d, J=6.9Hz, 1H), 4.55 (d, J=7.2Hz, 1H), 4.74 (d, J=15.0Hz, 1H), 5.02 (d, J=15.0Hz, 1H), 7.00 (s, 2H), 9.80 (s, 1H); 13C NMR (75MHz, CDCl 3) δ 11.1,17.0,20.1,21.1,21.2,25.3,32.6,48.2,49.6,50.0,58.7,60.7,84.0,129.6,131.1,141.8,143.1,151.1; IR (KBr): ν Max(cm -1)=3141,2951,2927,1589,1458,1222,1105,1060,976,805,647,522; MS (ESI, m/z, rel.intensity) 352.2 (M-ClO 4); High resolution mass spectrum calculating value C 22H 30N 3O (M-ClO 4): 352.2383; Measured value: 352.2400.
P44(exo,R=C 6F 5,X=ClO 4)
Figure S2008100331070D00211
(and enantiomorph)
The cotton-shaped solid of white, 1H NMR (300MHz, CDCl 3) δ 0.64 (s, 3H), 0.91 (s, 3H), 1.03 (s, 3H), and 1.24-1.39 (m, 2H), 1.67-1.71 (m, 1H), 1.93-1.97 (m, 1H), 2.46 (d, J=4.2Hz, 1H), 4.14 (d, J=6.6Hz, 1H), 4.55 (d, J=6.9Hz, 1H), 4.75 (d, J=15.0Hz, 1H), 5.05 (d, J=15.0Hz, 1H), 10.14 (s, 1H); 13C NMR (75MHz, CDCl 3) δ 10.9,19.8,21.0,25.1,32.4,48.4,49.5,50.1,58.5,60.9,83.8,110.7,136.2,139.0,141.7,142.2,144.2,145.3,152.2; IR (KBr): ν Max(cm -1)=3134,2967,1608,1531,1517,1394,1215,1076,1004,987,852,800,628,524,462; MS (ESI, m/z, rel.intensity) 400.2 (M-ClO 4); High resolution mass spectrum calculating value C 19H 19N 3O (M-ClO 4): 400.1443; Measured value: 400.1436.
P35(exo,R=3,5-CF 3C 6H 3,X=ClO 4)
Figure S2008100331070D00212
(and enantiomorph)
White solid 1H NMR (300MHz, CDCl 3) δ 0.66 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.21-1.27 (m, 2H), 1.58-1.60 (m, 1H), 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 7.95 (s, 1H), 8.44 (s, 2H), 10.47 (s, 1H); 13C NMR (75MHz, CDCl 3) δ 11.0,20.3,21.0,25.4,29.7,32.3,48.3,49.6,49.9,58.7,61.2,83.8,120.3,121.2,124.0 (m), 133.8 (q, J=34.8Hz), 136.0,140.5,160.0; IR (KBr): ν Max(cm -1)=3134,2967,1608,1531,1517,1394,1215,1076,1004,987,852,800,628,524,462; MS (ESI, m/z, rel.intensity) 446.2 (M-ClO 4); High resolution mass spectrum calculating value C 21H 22N 3OF 6(M-ClO 4): 446.1672; Measured value: 446.1662.
P36 (exo, R=9-anthryl, X=ClO 4)
Figure S2008100331070D00221
(and enantiomorph)
White solid 1H NMR (300MHz, CDCl 3) δ 0.68 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.21-1.27 (m, 2H), 1.58-1.60 (m, 1H), 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 7.95-8.50 (m, 9H), 10.47 (s, 1H); MS (ESI, m/z, rel.intensity) 410.2 (M-ClO 4); High resolution mass spectrum calculating value C 27H 28N 3O (M-ClO 4): 410.5302; Measured value: 410.5312.
P37 (exo, R=9-phenanthryl, X=ClO 4)
Figure S2008100331070D00222
(and enantiomorph)
White solid 1H NMR (300MHz, CDCl 3) δ 0.68 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.21-1.27 (m, 2H), 1.58-1.60 (m, 1H), 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 7.95-8.50 (m, 9H), 10.47 (s, 1H); MS (ESI, m/z, rel.intensity) 410.2 (M-ClO 4); High resolution mass spectrum calculating value C 27H 28N 3O (M-ClO 4): 410.5302; Measured value: 410.5312.
P38 (exo, R=cyclohexyl, X=ClO 4)
Figure S2008100331070D00231
White solid 1H NMR (300MHz, CDCl 3) δ 0.68 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.11-1.62 (m, 6H), 1.25-1.29 (m, 2H), 1.58-1.60 (m, 1H), and 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 10.47 (s, 1H); MS (ESI, m/z, rel.intensity) 316.2 (M-ClO 4); High resolution mass spectrum calculating value C 19H 30N 3O (M-ClO 4): 316.4065; Measured value: 316.4082.
P39 (exo, R=p-methylphenyl, X=ClO 4)
Figure S2008100331070D00232
(and enantiomorph)
White solid, 1H NMR (300MHz, CDCl 3) δ 0.67 (s, 3H), 0.87 (s, 3H), 1.01 (s, 3H), 1.25-1.29 (m, 2H), and 1.61-1.68 (m, 1H), 1.80-1.90 (m, 1H), 2.64 (d, J=4.8Hz, 1H), 2.67 (s, 3H), 4.08 (d, J=6.9Hz, 1H), 4.44 (d, J=6.9Hz, 1H), 4.70 (d, J=15.3Hz, 1H), 5.03 (d, J=15.3Hz, 1H), 6.94 (d, J=9.0Hz, 2H), 7.77 (d, J=9.3Hz, 2H), 10.13 (s, 1H); MS (ESI, m/z, rel.intensity) 324.2 (M-ClO 4); High resolution mass spectrum calculating value C 20H 26N 3O (M-ClO 4): 324.2020; Measured value: 324.2014.
P40 (exo, R=p-nitrophenyl, X=ClO 4)
Figure S2008100331070D00233
(and enantiomorph)
White solid, 1H NMR (300MHz, CDCl 3) δ 0.66 (s, 3H), 0.85 (s, 3H), 1.02 (s, 3H), 1.21-1.27 (m, 2H), 1.58-1.60 (m, 1H), 1.79-1.83 (m, 1H), 2.64 (d, J=4.5Hz, 1H), 4.11 (d, J=6.9Hz, 1H), 4.53 (d, J=6.9Hz, 1H), 4.77 (d, J=15.0Hz, 1H), 5.10 (d, J=15.3Hz, 1H), 8.44 (m, 4H), 10.47 (s, 1H); MS (ESI, m/z, rel.intensity) 355.2 (M-ClO 4); High resolution mass spectrum calculating value C 19H 23N 4O 3(M-ClO 4): 355.4140; Measured value: 355.4145.
Embodiment two
Figure S2008100331070D00241
General experimental implementation: catalyzer (cat), compound a (0.20mmol) and compound b (0.24mmol) are dissolved among the THF (2mL), add alkali, stirring at room.TLC follows the tracks of and reacts completely, removal of solvent under reduced pressure, column chromatography purification (sherwood oil: ethyl acetate=15: 1), get product (white solid).The suitable reverse proportionality of product is by thick product 1H NMR determines that the ee value is measured by chirality HPLC.
P41
Figure S2008100331070D00242
White solid, along reverse proportionality=1.6: 1,43%, 13%ee[Daicel Chiralcel AD-H, hexanes/2-propanol=98/2, v=0.3mL/min -1, λ=230nm, t (minor)=13.64min, t (major)=16.65min]. 1H NMR (300MHz, CDCl 3) δ 0.89 (t, J=7.2Hz, 3H), 1.26 *(t, J=7.2Hz, 3H), 2.75-3.15 (m, 2H), 3.79-3.89 (m, 2H), 4.23-4.31 *(m, 2H), 4.09 (dd, J=4.2,8.1Hz, 1H), 4.50 *(dd, J=4.5,8.4Hz, 1H), 6.90-6.93 *(m, 2H), 7.06-7.19 (m, 3H), 7.31-7.46 (m, 5H), 7.69-7.72 (m, 2H); 13C NMR (75MHz, CDCl 3) δ 13.4 *, 13.9,36.0 *, 36.3,48.9 *, 52.0,61.9 *, 62.8,90.5,90.7,125.6,125.8,127.4,127.7,127.8,128.0,128.2,128.3,128.5,128.7,128.8,134.2,137.4,137.8,138.1,167.8 *, 170.5,174.8,174.9; IR (KBr): ν Max(cm -1)=2926,1783,1774,1450,1232,1178,1058,896,859,754,705,695,539,505; MS (EI, m/z, rel.intensity) 310 (M +, 1), 104 (100); Ultimate analysis calculated value C 19H 18O 4: C, 73.53; H, 5.85; Measured value: C, 73.76; H, 6.21; M.p.132-138 ℃.
Embodiment three
Figure S2008100331070D00251
Catalyst precursor salt is dissolved among the THF (1mL), adds alkali (base), stirring at room 0.5 hour.Add aldehyde ketone substrate (0.1mmol), stirring at room.After TLC followed the tracks of and reacts completely, 0 ℃ added the distilled water cancellation, and ethyl acetate extraction merges organic phase, anhydrous sodium sulfate drying, removal of solvent under reduced pressure, column chromatography purification (sherwood oil: ethyl acetate=10: 1), get target product (white solid).The ee value is measured by chirality HPLC.
P42
Figure S2008100331070D00252
(and enantiomorph)
93% productive rate (yield), 84%ee[Daicel Chiralcel AD-H, hexanes/2-propanol=90/10, v=1.0mL/min -1, λ=230nm, t (minor)=13.64min, t (major)=16.65min]. 1HNMR (300MHz, CDCl 3) δ 4.23 (s, 1H), 4.47 (d, J=11.1Hz, 1H), 4.85 (d, J=11.7Hz, 1H), 6.96 (d, J=8.1Hz, 1H), 7.07 (t, J=7.5Hz, 1H), 7.03-7.36 (m, 3H), 7.44-7.54 (m, 3H), 7.93 (dd, J=1.5,8.1Hz, 1H).
P43
Figure S2008100331070D00253
(and enantiomorph)
96%yield, 76%ee[Daicel Chiralcel OD-H, hexanes/2-propanol=75/25, v=0.5ml/min -1, λ=230nm, t (major)=16.77min, t (minor)=19.95min]; [α] D 20=+41.7.0 ° of (c=1.45, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 3.85 (s, 3H), 4.30 (s, 1H), 4.48 (d, J=11.7Hz, 1H), 4.99 (d, J=11.7Hz, 1H), 7.02 (m, 2H), 7.30 (m, 3H), 7.50 (m, 3H); 13C NMR (75MHz, CDCl 3) δ 56.1,73.2,74.0,117.2,118.5,119.7,121.6,126.0,128.6,128.7,138.1,148.6,151.3,194.5; IR (KBr): ν Max(cm -1)=3398,3002,2872,1679,1489,1440,1272,11443,1028,973,767,694,636,558,470; MS (EI, m/z, rel.intensity) 270 (M +, 12), 151 (100); Ultimate analysis calculated value C 16H 14O 4: C, 71.10; H, 5.22; Measured value: C, 70.83; H, 5.43.
P44
Figure S2008100331070D00261
(and enantiomorph)
99%yield,87%ee[Daicel?Chiralcel?OD-H,hexanes/2-propanol=90/10,v=0.5ml/min -1,λ=230nm,t(major)=25.88min,t(minor)=28.79min];[α] D 20=-7.0°(c=1.35,CHCl 3). 1H?NMR(300MHz,CDCl 3)δ3.82(s,3H),4.26(s,1H),4.46(d,J=11.4Hz,1H),4.81(d,J=11.7Hz,1H),6.39(d,J=2.1Hz,1H),6.62(dd,J=2.1,8.7Hz,1H),7.31(m,3H),7.47(m,2H),7.86(d,J=8.7Hz,1H); 13C?NMR(75MHz,CDCl 3)δ55.7,72.9,74.2,100.8,110.9,112.8,125.9,128.6,129.3,139.0,163.7,166.8,192.9。
P45
(and enantiomorph)
92%yield, 78%ee[Daicel Chiralcel OD-H, hexanes/2-propanol=98/2, v=0.8ml/min -1, λ=230nm, t (major)=21.15min, t (minor)=24.13min]; [α] D 20=+28.5 ° of (c=1.20, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 2.35 (s, 3H), 4.26 (s, 1H), 4.45 (d, J=11.4Hz, 1H), 4.82 (d, J=11.4Hz, 1H), 6.77 (s, 1H), 6.88 (d, J=7.8Hz, 1H), 7.31 (m, 3H), 7.47 (m, 2H), 7.82 (d, J=8.4Hz, 1H); 13C NMR (75MHz, CDCl 3) δ 22.0,73.2,73.8,116.8,118.0,123.4,126.0,127.4,128.6,128.7,138.7,148.7,161.6,194.1; IR (KBr): ν Max(cm -1)=3396,3057,2879,1678,1619,1450,1349,1261,1263,1100,1041,950,757,699,643,551,495; MS (EI, m/z, rel.intensity) 254 (M +, 2), 135 (100); Ultimate analysis calculated value C 16H 14O 3: C, 75.57; H, 5.55; Measured value: C, 75.59; H, 5.71.
P46
Figure S2008100331070D00271
(and enantiomorph)
95%yield, 93%ee[Daicel Chiralcel AS-H, hexanes/2-propanol=95/5, v=1.0ml/min -1, λ=230nm, t (major)=70.75min, t (minor)=76.28min]; [α] D 20=+288.4 ° of (c=1.25, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 4.21 (s, 1H), 4.59 (d, J=12Hz, 1H), 5.04 (d, J=12Hz, 1H), 7.11 (d, J=9.1Hz, 1H), 7.36 (m, 3H), 7.45 (m, 2H), 8.35 (dd, J=3,9Hz, 1H), 8.82 (d, J=3Hz, 1H); 13C NMR (75MHz, CDCl 3) δ 73.5,73.6,118.8,119.3,124.1,125.9,129.0,129.4,131.0,136.9,142.5,165.0,192.8; IR (KBr): ν Max(cm -1)=3422,1698,1619,15.27,1482,1338,1076,1014,846,752,700,615,551,499; MS (EI, m/z, rel.intensity) 285 (M +, 3), 166 (100); Ultimate analysis calculated value C 15H 11NO 5: C, 63.16; H, 3.89, N, 4.91; Measured value: C, 63.27; H, 4.13, N, 4.91.
P47
Figure S2008100331070D00272
(and enantiomorph)
94%yield, 90%ee[Daicel Chiralcel OD-H, hexanes/2-propanol=90/10, v=1.0ml/min -1, λ=230nm, t (major)=9.23min, t (minor)=10.33min]; [α] D 20=+96.2 ° of (c=2.23, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 4.19 (s, 1H), 4.45 (d, J=12Hz, 1H), 4.86 (d, J=11.7Hz, 1H), 6.91 (d, J=9Hz, 1H), 7.31 (m, 3H), 7.44 (m, 3H), 7.88 (s, 1H); 13C NMR (75MHz, CDCl 3) δ 73.4,73.7,119.7,119.9,125.9,127.8,127.5,128.8,130.0,136.6,137.9,159.9; IR (KBr): ν Max(cm -1)=3418,1684,1605,1479,1423,1279,1106,1031,974,827,754,698,618,497; MS (EI, m/z, rel.intensity) 274 (M +, 10), 155 (100); Ultimate analysis calculated value C 15H 11ClO 3: C, 65.58; H, 4.04; Measured value: C, 65.76; H, 4.22.
P48
Figure S2008100331070D00281
(and enantiomorph)
96%yield, 74%ee[Daicel Chiralcel AD-H, hexanes/2-propanol=80/20, v=1.0ml/min -1, λ=230nm, t (major)=36.12min, t (minor)=38.28min]; [α] D 20=+14.2 ° of (c=1.57, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 3.87, (s, 3H), 4.29 (s, 1H), 4.48 (d, J=11.7Hz, 1H), 4.95 (d, J=11.7Hz, 1H), 7.03 (dt, J=7.8,17.5Hz, 2H), 7.26 (d, J=7.2Hz, 2H), 7.40 (d, J=8.4Hz, 2H),, 7.49 (d, J=8.1Hz, 1H); 13CNMR (75MHz, CDCl 3) δ 56.1,72.8,73.9,117.4,118.5,119.4,121.8,127.5,128.9,134.7,136.6,148.6,151.2,194.1; IR (KBr): ν Max(cm -1)=3449,1685,1607,1491,1299,1257,1042,904,839,760,728,625,527,487,404; MS (EI, m/z, rel.intensity) 304 (M +, 14), 151 (100); Ultimate analysis calculated value C 16H 13ClO 4: C, 63.06; H, 4.30; Measured value: C, 63.11; H, 4.46.
P49
(and enantiomorph)
93%yield, 90%ee[Daicel Chiralcel AD-H, hexanes/2-propanol=75/25, v=0.5ml/min -1, λ=230nm, t (minor)=25.54min, t (major)=31.13min]; [α] D 20=+74.3 ° of (c=1.00, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 3.73 (s, 3H), 4.27 (s, 1H), 4.43 (d, J=11.4Hz, 1H), 4.83 (d, J=12Hz, 1H), 6.82 (d, J=7.2Hz, 2H), 6.94 (d, J=8.4Hz, 1H), 7.03 (t, J=7.2Hz, 1H), 7.39 (m, 2H), 7.48 (m, 1H), 7.91 (d, J=7.8Hz, 1H); 13C NMR (75MHz, CDCl 3) δ 55.1,73.0,73.5,114.0,117.9,119.1,121.8,127.4,127.5,130.2,136.6,159.8,161.3,194.6; IR (KBr): ν Max(cm -1)=3429,2968,2839,1687,1608,1516,1479,1261,1017,829,758,602,553,495,410; MS (EI, m/z, rel.intensity) 270 (M +, 2), 135 (100); Ultimate analysis calculated value C 16H 14O 4: C, 71.10; H, 5.22; Measured value: C, 70.75; H, 5.41.
P50
(and enantiomorph)
99%yield, 87%ee[Daicel Chiralcel AD-H, hexanes/2-propanol=90/10, v=1.0ml/min -1, λ=230nm, t (minor)=30.81min, t (major)=35.33min]; [α] D 20=+36.3 ° of (c=1.85, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 3.83 (s, 3H), 4.27 (s, 1H), 4.43 (d, J=11.7Hz, 1H), 4.79 (d, J=11.7Hz, 1H), 6.79 (d, J=8.4Hz, 1H), 6.97 (d, J=11.7Hz, 1H), 7.06 (t, J=8.1Hz, 1H), 7.34 (d, J=8.4Hz, 1H), 7.51 (t, J=6.6Hz, 1H), 7.70 (s, 1H), 7.91 (d, J=7.8Hz, 1H); 13C NMR (75MHz, CDCl 3) δ 56.2,72.6,73.4,111.6,112.0,118.0,118.8,122.1,126.3,127.7,131.2,131.8,136.9,156.1,161.3,194.0; IR (KBr): ν Max(cm -1)=3420,3387,1683,1603,1500,1477,1458,1266,1016,948,817,754,680,625,507; MS (EI, m/z, rel.intensity) 348 (M +, 2), 121 (100); Ultimate analysis calculated value C 16H 13BrO 4: C, 55.04; H, 3.75; Measured value: C, 55.04; H, 4.03.
P51
Figure S2008100331070D00292
(and enantiomorph)
94%yield,2%ee[Daicel?Chiralcel?AD-H,hexanes/2-propanol=98/2,v=1.0ml/min -1,λ=230nm,t(minor)=22.57min,t(major)=27.78min];[α] D 20=+0.2°(c=1.05,CHCl 3). 1H?NMR(300MHz,CDCl 3)δ1.44(s,3H),3.89(s,1H),4.19(d,J=11.1Hz,1H),4.28(d,J=11.4Hz,1H),6.96(d,J=8.1Hz,1H),7.03(t,J=7.5Hz,1H),7.49(t,J=7.8Hz,1H),7.86(d,J=7.8Hz,1H); 13C?NMR(75MHz,CDCl 3)δ22.3,70.6,74.5,117.8,118.1,121.8,127.6,136.5,161.2,196.5。

Claims (9)

1. many chiral centres aza ring carbene precursor salt with camphor skeleton, its general structure is:
Figure S2008100331070C00011
*The expression chiral centre;
Wherein R is selected from C arbitrarily 1~C 16Fused ring aryl, the C of aryl, fused ring aryl or replacement of alkyl, aryl and replacement 5-C 20Heterocyclic radical that contains N, O or S or heteroaryl; Substituting group on described aryl or the fused ring aryl is selected from H, F, Cl, Br, I, C arbitrarily 1~C 16-oxyl, C 1~C 16Alkyl, thiazolinyl, alkynyl, C 3-C 18Cycloalkyl or amino; Described fused ring aryl is naphthyl, phenanthryl or anthryl;
X is selected from Cl, Br, I, OTf, BF arbitrarily 4Or ClO 4Described Tf is a trifyl.
2. a kind of many chiral centres aza ring carbene precursor salt as claimed in claim 1 with camphor skeleton, its structural molecule general formula is:
Figure S2008100331070C00012
Wherein R, X are according to claim 1.
3. a kind of many chiral centres aza ring carbene precursor salt as claimed in claim 1 with camphor skeleton, its general structure is:
Figure S2008100331070C00013
Wherein R, X are according to claim 1.
4. synthetic method that has many chiral centres aza ring carbene precursor salt of camphor skeleton according to claim 1 is characterized in that in organic solvent and 0 ℃ to 150 ℃ that lactan, molecular formula with camphor skeleton are H 2The hydrazine of NNHR, Mel external cause reagent and orthoformate alkyl ester reacted 10 minutes~5 days, described lactan, molecular formula H with camphor skeleton 2The mol ratio of the hydrazine of NNHR, Mel external cause reagent and orthoformate alkyl ester is followed successively by 1: 0.8~5: 1~5: 1~20;
Described lactan with camphor skeleton has following structural formula:
5. as a kind of synthetic method as described in the claim 4, it is characterized in that described lactan: molecular formula H with camphor skeleton with many chiral centres aza ring carbene precursor salt of camphor skeleton 2The hydrazine of NNHR: Mel external cause reagent: orthoformate alkyl ester=1: 1~2: 1~2: 5~10.
6. as a kind of synthetic method as described in the claim 4, it is characterized in that described temperature of reaction is 120~140 ℃ with many chiral centres aza ring carbene precursor salt of camphor skeleton.
7. as a kind of synthetic method as described in the claim 4, it is characterized in that described organic solvent is chlorobenzene, benzene, tetracol phenixin, sherwood oil, tetrahydrofuran (THF), dimethyl formamide, ether, methylene dichloride, trichloromethane, toluene, dimethylbenzene, hexanaphthene, normal hexane, normal heptane, dioxane or acetonitrile with many chiral centres aza ring carbene precursor salt of camphor skeleton.
8. as a kind of synthetic method as described in the claim 4, it is characterized in that products therefrom purifies through the method for recrystallization or column chromatography with many chiral centres aza ring carbene precursor salt of camphor skeleton.
9. the purposes with many chiral centres aza ring carbene precursor salt of camphor skeleton as claimed in claim 1 is characterized in that the high isoflavonoid compound that has the gamma-butyrolactone compounds of chirality or have chirality as preparation.
CN2008100331070A 2008-01-25 2008-01-25 Chiral center aza ring carbene precursor salt with camphor framework, synthesizing method and uses thereof Expired - Fee Related CN101220039B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100331070A CN101220039B (en) 2008-01-25 2008-01-25 Chiral center aza ring carbene precursor salt with camphor framework, synthesizing method and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100331070A CN101220039B (en) 2008-01-25 2008-01-25 Chiral center aza ring carbene precursor salt with camphor framework, synthesizing method and uses thereof

Publications (2)

Publication Number Publication Date
CN101220039A true CN101220039A (en) 2008-07-16
CN101220039B CN101220039B (en) 2010-06-09

Family

ID=39630144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100331070A Expired - Fee Related CN101220039B (en) 2008-01-25 2008-01-25 Chiral center aza ring carbene precursor salt with camphor framework, synthesizing method and uses thereof

Country Status (1)

Country Link
CN (1) CN101220039B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153557A (en) * 2011-01-21 2011-08-17 中国科学院上海有机化学研究所 Chiral center nitrogen heterocyclic carbine precursor salt with quadrol skeleton, synthetic method and application
CN102757416A (en) * 2012-07-11 2012-10-31 浙江大学 Method for synthesizing 3-arylcoumarin by using N-heterocyclic carbene as catalyst
CN104774174A (en) * 2015-03-31 2015-07-15 淮海工学院 Asymmetric synthesis method of S-carbinoxamine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4230466A1 (en) * 1992-09-11 1994-03-17 Basf Ag Process for the catalytic production of condensation products of formaldehyde

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153557A (en) * 2011-01-21 2011-08-17 中国科学院上海有机化学研究所 Chiral center nitrogen heterocyclic carbine precursor salt with quadrol skeleton, synthetic method and application
CN102757416A (en) * 2012-07-11 2012-10-31 浙江大学 Method for synthesizing 3-arylcoumarin by using N-heterocyclic carbene as catalyst
CN102757416B (en) * 2012-07-11 2014-07-09 浙江大学 Method for synthesizing 3-arylcoumarin by using N-heterocyclic carbene as catalyst
CN104774174A (en) * 2015-03-31 2015-07-15 淮海工学院 Asymmetric synthesis method of S-carbinoxamine
CN104774174B (en) * 2015-03-31 2017-10-27 淮海工学院 A kind of method of asymmetric syntheses S carbinoxamines

Also Published As

Publication number Publication date
CN101220039B (en) 2010-06-09

Similar Documents

Publication Publication Date Title
Wang et al. Modular access to azepines by directed carbonylative C–C bond activation of aminocyclopropanes
Lo et al. Applications of planar-chiral heterocycles in enantioselective catalysis: Cu (I)/bisazaferrocene-catalyzed asymmetric ring expansion of oxetanes to tetrahydrofurans
Takizawa et al. Facile synthesis of α-methylidene-γ-butyrolactones: intramolecular Rauhut–Currier reaction promoted by chiral acid–base organocatalysts
Nakamura et al. Organocatalytic enantioselective hydrophosphonylation of sulfonylimines having a heteroarenesulfonyl group as a novel stereocontroller
Evans et al. Asymmetric dihydroxylation of vinyl sulfones: routes to enantioenriched α-hydroxyaldehydes and the enantioselective syntheses of furan-2 (5H)-ones
CN102153557B (en) Chiral center nitrogen heterocyclic carbine precursor salt with quadrol skeleton, synthetic method and application
CN110078605B (en) Method for synthesizing optically active trifluoromethyl compound by asymmetric conjugate addition reaction of organic boric acid and alpha, beta-unsaturated ketone
Wardrop et al. π-Face selective azaspirocyclization of ω-(methoxyphenyl)-N-methoxyalkylamides
Chatterjee et al. Solvent-free transesterification in a ball-mill over alumina surface
Hayashi et al. The stereoselective synthesis of α-substituted β-amino secondary alcohols based on the proline-mediated, asymmetric, three-component Mannich reaction and its application to the formal total synthesis of nikkomycins B and Bx
Han et al. Rhodium-catalyzed asymmetric addition of arylboronic acids to γ-phthalimido-substituted-α, β-unsaturated carboxylic acid esters: An approach to γ-amino acids
Ghosh et al. Bis (oxazoline) derived cationic aqua complexes: highly effective catalysts for enantioselective Diels–Alder reactions
Albrecht et al. Enantioselective Organocatalytic Approach to α-Methylene-δ-lactones and δ-Lactams
Pucheault et al. Efficient access to chiral β-arylamides via asymmetric 1, 4-additions of potassium trifluoro (organo) borates
Yadav et al. Montmorillonite clay catalyzed alkylation of pyrroles and indoles with cyclic hemi-acetals
CN101220039B (en) Chiral center aza ring carbene precursor salt with camphor framework, synthesizing method and uses thereof
Qian et al. Yb (OiPr) 3, A highly efficient catalyst for the nitro-mannich reaction
Chen et al. Preparation and application of chiral spiro nitrogen-containing ligands for cobalt-catalyzed asymmetric Michael addition
Satoh et al. A novel method for the asymmetric synthesis of 4, 4-disubstituted 2-cyclopentenones from optically active 1-chlorovinyl p-tolyl sulfoxides and its application to the asymmetric total synthesis of (+)-α-cuparenone
Wang et al. Sulfated zirconia (SO4/ZrO2) as a reusable solid acid catalyst for the Mannich-type reaction between ketene silyl acetals and aldimines
Yan et al. Synthesis of chiral tetronic acid derivatives via organocatalytic conjugate addition of ethyl 4-chloro-3-oxobutanoate to nitroalkenes
Bhat et al. Annulation reactions of allenyl esters: an approach to bicyclic diones and medium-sized rings
Hudlicky et al. Yeast-mediated Resolution of. beta.-keto Esters of Prochiral Alcohols
Kano et al. Design of new polyamine-based chiral phase-transfer catalysts for the enantioselective synthesis of phenylalanine
Dai et al. Study on enantiomerically pure 2-substituted N, N-dialkyl-1-naphthamides: resolution, absolute stereochemistry, and application to desymmetrization of cyclic meso anhydrides

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100609

Termination date: 20150125

EXPY Termination of patent right or utility model