CN102153557B - Chiral center nitrogen heterocyclic carbine precursor salt with quadrol skeleton, synthetic method and application - Google Patents

Chiral center nitrogen heterocyclic carbine precursor salt with quadrol skeleton, synthetic method and application Download PDF

Info

Publication number
CN102153557B
CN102153557B CN 201110024542 CN201110024542A CN102153557B CN 102153557 B CN102153557 B CN 102153557B CN 201110024542 CN201110024542 CN 201110024542 CN 201110024542 A CN201110024542 A CN 201110024542A CN 102153557 B CN102153557 B CN 102153557B
Authority
CN
China
Prior art keywords
skeleton
quadrol
esi
cdcl
precursor salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201110024542
Other languages
Chinese (zh)
Other versions
CN102153557A (en
Inventor
游书力
贾敏强
李毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Organic Chemistry of CAS
Original Assignee
Shanghai Institute of Organic Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Organic Chemistry of CAS filed Critical Shanghai Institute of Organic Chemistry of CAS
Priority to CN 201110024542 priority Critical patent/CN102153557B/en
Publication of CN102153557A publication Critical patent/CN102153557A/en
Application granted granted Critical
Publication of CN102153557B publication Critical patent/CN102153557B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention provides a chiral center nitrogen heterocyclic carbine precursor salt with a quadrol skeleton, a synthetic method and application. The precursor salt has a structural formula shown in the specifications, and can be prepared from cheap and readily-available chiral substituted diamine as an initial raw material by three-step synthesis, well applied to a polarity inversion reaction of catalytic aldehyde compounds, and used for preparing chiral benzopyrone compounds.

Description

Multichiral center aza ring carbene precursor salt, synthetic method and purposes with quadrol skeleton
Technical field
The present invention relates to a class chirality aza ring carbene precursor salt, synthetic method and purposes, i.e. a kind of multichiral center aza ring carbene precursor salt, synthetic method and purposes with quadrol skeleton.
Background technology
Recent two decades comes, N-heterocyclic carbine has obtained chemists' extensive concern [(a) D.Enders and T.Balensiefer as organic micromolecule catalyst, Acc.Chem.Res.2004,37,534. (b) D.Enders, O.Niemeier and A.Henseler, Chem.Rev.2007,107,5606. (c) V.Nair, S.Vellalath, B.P.Babu Chem.Soc.Rev.2008,37,2691. (d) E.M.Phillips, A.Chan, K.A.Scheidt, AldrichimicaActa 2009,42, and 55.].In this field, our latest developments a kind of multichiral center aza ring carbene precursor salt, synthetic method and purposes with quadrol skeleton.Set out take the commercial optical purity substituted ethylene diamine that cheaply is easy to get as raw material, can synthesizing series have the multichiral center aza ring carbene precursor salt of quadrol skeleton.Such precursor salt has in the pole reversal reaction of catalysis aldehyde compound preferably to be used.
Along with people to the reaching its maturity of chirality carbone catalyst research, N-heterocyclic carbine is obtained very large development as the organic micromolecule catalyst catalytic asymmetric reaction, some outstanding chirality carbone catalysts occurred successively, wherein, have and the triazole carbone catalyst of ring structure has been obtained huge success [(a) D.Enders, O.Niemeier, T.Balensiefer, Angew.Chem., Int.Ed.2006,45,1463. (b) M.He, J.R.Struble, J.W.Bode, J.Am.Chem.Soc.2006,128,8418. (c) Q.Liu, S.Perreault, and T.Rovis, J.Am.Chem.Soc.2008,130,14066. (d) D.A.DiRocco, K.M.Oberg, D.M.Dalton, and T.Rovis, J.Am.Chem.Soc.2009,131,10872.].But in general, the skeleton structure of N-heterocyclic carbine catalyzer is limited, and seeking the chirality N-heterocyclic carbine catalyzer of Novel framework and making it to be applicable to some reactions or more reactions and can have catalytic activity and the enantioselectivity of getting well is one of focus of chemist research always.
Chirality substituted ethylene diamine skeleton such as cyclohexanediamine, 1,2-diphenyl ethylene diamine skeleton etc. can provide outstanding chiral environment, chiral ligand, prothetic group with substituted ethylene diamine skeleton are deeply systematically studied [(a) E.J.Corey, C.M.Yu, S.S.Kim, J.Am.Chem.Soc.1989,111,5495; (b) H.Doucet, T.Ohkuma, K.Murata, T.Yokozawa, E.Kozawa, A.F.England, T.Ikariya, R.Noyori, Angew.Chem., Int.Ed.1998,37,1703. (c) M.S.Sigman, E.N.Jacobsen, J.Am.Chem.Soc.1998,120,4901.].In view of the substituted ethylene diamine compounds can provide outstanding chiral environment, and two kinds of equal wide material sources of enantiomorph, cheaply be easy to get, the inventor has been developed this type of and has been had multichiral center aza ring carbene precursor salt, synthetic method and the purposes of quadrol skeleton.
Summary of the invention
One of purpose of the present invention provides a kind of multichiral center aza ring carbene precursor salt with quadrol skeleton.
Two of purpose of the present invention provides the synthetic method of this kind aza ring carbene precursor salt.
Three of purpose of the present invention provides the purposes of this kind aza ring carbene precursor salt.
The invention provides a kind of multichiral center aza ring carbene precursor salt with quadrol skeleton, its structural formula is
Figure BSA00000424713200021
Furtherly can for
Figure BSA00000424713200022
Wherein, * represents chiral centre; R wherein 1Be aryl sulfonyl, substituted aryl alkylsulfonyl, C 1~C 16Alkyl sulphonyl, C 1~C 16Fluoro-alkyl alkylsulfonyl, aryl-acyl, substituted aryl acyl group, C 1~C 16Alkyl acyl or C 1~C 16The fluoro-alkyl acyl group; R 2, R 3Be selected from arbitrarily C 1~C 16The aryl of alkyl, aryl or replacement, perhaps R 2With R 2Between can connect into five to octatomic ring; Above-mentioned aryl is phenyl, naphthyl, pyridyl, furyl, thienyl, 9-anthryl or 9-phenanthryl; Substituting group on the described substituted aryl is selected from arbitrarily H, F, Cl, Br, I, C 1~C 16-oxyl, C 1~C 16Alkyl or C 1~C 16Fluoro-alkyl, nitro or amino; X is selected from arbitrarily Cl, Br, I, OTf, BF 4Or ClO 4Described Tf is trifyl.
The synthetic method of compound provided by the invention is to be set out to synthesize by the replacement diamines to make.Its reaction formula is as follows:
Figure BSA00000424713200031
Solvent refers to organic solvent in the top reaction formula.
Further describing of this reaction is: in organic solvent, temperature is 0 ℃~150 ℃, has lactan and the general molecular formula H of chirality substituted ethylene diamine skeleton 2NNHR 3Hydrazine and Mel external cause reagent, orthoformate alkyl ester be raw material, reacted 10 minutes~5 days.
Described lactan and general molecular formula H with quadrol skeleton 2The mol ratio of the hydrazine of NNHR and Mel external cause reagent, orthoformate alkyl ester is followed successively by 1: 0.8~and 5: 1~5: 1~20.The mol ratio of recommendation response is: lactan: general molecular formula H 2The hydrazine of NNHR: Mel external cause reagent: orthoformate alkyl ester=1: 1~2: 1~2: 5~10.
Temperature of reaction is relevant with the time, and when temperature of reaction was relatively lower, the reaction times was just relatively long, and the recommendation response temperature is: 110~140 ℃.
R in the formula 1Be aryl sulfonyl, substituted aryl alkylsulfonyl, C 1~C 16Alkyl sulphonyl, C 1~C 16Fluoro-alkyl alkylsulfonyl, aryl-acyl, substituted aryl acyl group, C 1~C 16Alkyl acyl or C 1~C 16The fluoro-alkyl acyl group; R 2, R 3Can be selected from arbitrarily C as previously mentioned 1~C 16The aryl of alkyl, aryl or replacement, R 2With R 2Between can connect into five to octatomic ring; Above-mentioned aryl is phenyl, naphthyl, pyridyl, furyl, thienyl, 9-anthryl or 9-phenanthryl; Substituting group on the described substituted aryl is selected from arbitrarily H, F, Cl, Br, I, C 1~C 16-oxyl, C 1~C 16Alkyl or C 1~C 16Fluoro-alkyl, nitro or amino; X is selected from arbitrarily Cl, Br, I, OTf, BF 4Or ClO 4Described Tf is trifyl.
Described organic solvent can be chlorobenzene, benzene, tetracol phenixin, tetrahydrofuran (THF) (THF), ether, methylene dichloride, toluene, hexanaphthene, sherwood oil, acetone, pyridine, dioxane or acetonitrile.
The by product that reaction produces can separate smoothly with the method for column chromatography or recrystallization usually.Reaction product is a kind of multichiral center aza ring carbene precursor salt with quadrol skeleton of the present invention.Adopt the inventive method products therefrom-aza ring carbene precursor salt with the process recrystallization, thin-layer chromatography, the methods such as column chromatography are separated.Such as the method with recrystallization, recommending solvent is the mixed solvent of polar solvent and non-polar solvent.Recommend solvent to can be methanol-acetone, methyl alcohol-ethyl acetate, methylene dichloride-normal hexane, Virahol-sherwood oil, ethyl acetate-sherwood oil, ethyl acetate-normal hexane or Virahol-ethyl acetate-mixed solvents such as sherwood oil.With thin-layer chromatography and column chromatography method, used developping agent is the mixed solvent of polar solvent and non-polar solvent.Recommend solvent to can be Virahol-sherwood oil, ethyl acetate-sherwood oil, ethyl acetate-normal hexane or Virahol-ethyl acetate-mixed solvents such as sherwood oil, its volume ratio can be respectively: polar solvent: non-polar solvent=1: 0.1~500.For example: ethyl acetate: sherwood oil=1: 0.1~50, Virahol: sherwood oil=1: 0.1~500.
Multichiral center aza ring carbene precursor salt with quadrol skeleton of the present invention can be applied in the pole reversal reaction of carbene catalyzed aldehyde compound, can effectively prepare the Benzofurantone compound with chirality.
The invention provides a kind of brand-new N-heterocyclic carbine catalyst precursor salt, the simple synthetic method of this compound, mild condition, starting raw material cheaply are easy to get, and are suitable for industrialization.This part is compared with existing N-heterocyclic carbine catalyst precursor salt for the preparation of the Benzofurantone compound with chirality, and speed of reaction, productive rate, enantioselectivity are all good, have higher actual application value, are suitable for a large amount of productions.
Embodiment
To help to understand the present invention by following embodiment, but not limit content of the present invention.
Embodiment 1
(1) (5R, 6R)-5,6-phenylbenzene piperazine-2-ketone synthetic
Wherein, rt represents room temperature; Reflux represents to reflux.
The ethanol solution of the 20mL of ethyl bromoacetate 1.65g (1.1mL, 10mmol) slowly is added drop-wise to (1R, 2R)-1,2-phenylbenzene-1, the 30mL ethanol solution of 2-quadrol (2.12g, 10mmol) and NaOH 0.4g (10mmol) needs three hours approximately.Room temperature reaction two days, 80 degree reflux and spend the night.Removal of solvent under reduced pressure, column chromatography are separated (ethyl acetate/methanol=20/1) and are got product white solid 1.4 grams (5.55mmol, productive rate 54%).
P1 (5R, 6R)-5,6-phenylbenzene piperazine-2-ketone
Figure BSA00000424713200051
(and enantiomorph)
1H?NMR(300MHz,CDCl 3)δ7.11-6.86(m,10H),6.51(s,1H),4.40(d,J=9.0Hz,2H),3.63(m,3H),2.19(brs,1H). 13C?NMR(75MHz,CDCl 3)δ169.7,138.5,138.4,128.26,128.23,128.17,128.09,127.7,127.4,65.8,64.4,50.0.
(2) (5R, 6R)-5,6-phenylbenzene-4-p-toluenesulfonyl piperazine-2-ketone synthetic
Figure BSA00000424713200052
Lactan 1.0g (4mmol) is dissolved in the 20mL pyridine (pyridine) minute three slow Tosyl chloride 0.99g (5.2mmol), reaction solution room temperature reactions 24 hours of adding.The reaction solution extracted with diethyl ether, the hydrochloric acid soln of a mol/L is washed, the organic phase anhydrous sodium sulfate drying.Removal of solvent under reduced pressure, column chromatography are separated (ethyl acetate/petroleum ether=1/1) and are got white solid 1.4g (3.44mmol, productive rate 87%).
P2 (5R, 6R)-5,6-phenylbenzene-4-p-toluenesulfonyl piperazine-2-ketone
Figure BSA00000424713200053
(and enantiomorph)
[α] D 20=+22.4 (c=1.0, CH 2Cl 2). 1H NMR (300MHz, CDCl 3) δ 7.03-7.42 (m, 14H), 5.40 (s, 1H), 4.97 (s, 1H), 3.89 (dd, J=5.6,1.8Hz, 2H), 2.27 (s, 3H). 13C NMR (75MHz, CDCl 3) δ 167.5,143.5,139.8,137.3,135.3,129.4,128.9,128.3,128.1,127.3,127.1,61.3,59.2,45.0,21.5.IR (thin film): v Max(cm -1)=3431,3423,2914,1685,1344,1162,1096,1056,807,762,695,668,572; MS (ESI, m/z, rel.intensity) 407.2 (M+H); HRMS (MALDI) calculated value C 23H 22N 2O 3S (M+H): 407.1429; Measured value: 407.1424.m.p.178-179 ℃.
(3) N-heterocyclic carbine catalyst precursor salt is synthetic:
In the single neck bottle of 50mL, add lactan (0.81g, 2.0mmol), CH 2Cl 2(15mL), trimethoxy tetrafluoride boron salt (0.36g, 2.4mmol), stirring at room one day, TLC follows the tracks of reaction until raw material consumes substantially.Add hydrazine (2.4-12mmol), stirring at room two days, TLC follows the tracks of reaction until upper step raw material consumes substantially.CH is removed in decompression 2Cl 2, add chlorobenzene (20mL), triethyl orthoformate (2.5mL/day, 15mmol), 120 ℃ were refluxed three days.NMR tracks to reaction system without considerable change.Recover room temperature, removal of solvent under reduced pressure, behind the simple column chromatography (ethyl acetate), recrystallization (petrol ether/ethyl acetate) is purified.
P3(R 1=Ts,R 2=R 3=Ph,X=BF 4)
Figure BSA00000424713200061
(and enantiomorph)
White solid.[α] D 20=+121.3 ° of (c=0.20, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 10.05 (s, 1H), 7.79 (d, J=17.7Hz, 2H), (7.47-7.24 m, 13H), 7.15 (d, J=8.1Hz, 2H), (7.02 d, J=7.5Hz, 2H), 6.78 (s, 1H), 5.79 (d, J=1.8Hz, 1H), (5.13 d, J=17.4Hz, 1H), 4.48 (d, J=17.7Hz, 1H), 2.38 (s, 3H); 19F NMR (282MHz, CDCl 3): δ-150,2 ,-150.3; 13C NMR (75MHz, CDCl 3) δ 149.3,144.7,139.7,135.2,134.3,133.0,131.4,130.2,130.0,129.7,129.3,127.22,127.17,126.4,120.7,62.1,61.6,38.0,21.5; IR (thin film): v Max(cm -1)=3064,2918,1595,1455,1353,1162,1055,760,689; MS (ESI, m/z, rel.intensity) 507.1 (M-BF 4); HRMS (ESI) calculated value C 30H 27N 4O 2S (M-BF 4): 507.1849; Measured value: 507.1851.m.p.213-216 ℃.
P4(R 1=Ts,R 2=Ph,R 3=4-OMePh,X=BF 4)
Figure BSA00000424713200062
(and enantiomorph)
Light yellow solid.[α] D 20=+24.3 ° of (c=0.20, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 10.00 (s, 1H), 7.72 (d, J=8.7Hz, 2H), 7.36-6.93 (m, 16H), 6.77 (s, 1H), 5.80 (s, 1H), 5.09 (d, J=17.4Hz, 1H), 4.46 (d, J=17.4Hz, 1H), 3.80 (s, 3H), 2.40 (s, 3H); 19FNMR (282MHz, CDCl 3): δ-150,2 ,-150.3; 13C NMR (75MHz, CDCl 3) δ 161.6,148.9,144.6,138.9,135.4,135.2,133.0,130.0,129.61,129.58,129.3,127.4,127.2,126.3,122.3,115.2,61.9,61.65,55.7,37.9,21.5; IR (thin film): v Max(cm -1)=3059,2918,2842,1597,1520,1454,1352,1260,1162,1057,835,729,699; MS (ESI, m/z, rel.intensity) 537.5 (M-BF 4); HRMS (ESI) calculated value C 31H 29N 4O 3S (M-BF 4): 537.1955; Measured value: 537.1957.m.p.124-126 ℃.
P5(R 1=Ts,R 2=Ph,R 3=2,4,6-(Me) 3Ph,X=BF 4)
Figure BSA00000424713200071
(and enantiomorph)
White solid.[α] D 20=+68.4 ° of (c=0.20, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 9.77 (s, 1H), 7.42-7.31 (m, 10H), 7.19 (d, J=6.3Hz, 2H), 7.04 (d, J=5.7Hz, 2H), (6.98 s, 3H), 5.86 (s, 1H), (5.10 d, J=17.4Hz, 1H), 4.53 (d, J=17.4Hz, 1H), 2.43 (s, 3H), (2.33 s, 3H), 1.96 (s, 6H); 19F NMR (282MHz, CDCl 3): δ-150,1 ,-150.2; 13C NMR (75MHz, CDCl 3) δ 149.7,144.7,144.4,142.6,135.4,135.2,133.2,130.0,129.8,129.69,129.65,129.3,127.2,127.1,126.1,62.3,61.7,38.1,21.6,21.2,17.0; IR (thin film): v Max(cm -1)=3065,2924,2854,1651,1597,1579,1500,1450,1354,1267,1162,1059,930,815,757,730,699; MS (ESI, m/z, rel.intensity) 549.4 (M-BF 4); HRMS (ESI) calculated value C 33H 33N 4O 2S (M-BF 4): 549.2319; Measured value: 549.2315.m.p.221-223 ℃.
P6(R 1=Ts,R 2=Ph,R 3=3,5-(CF 3) 2Ph,X=BF 4)
(and enantiomorph)
White solid.[α] D 20=+31.7 ° of (c=0.20, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 10.15 (s, 1H), 8.41 (s, 2H), (8.00 s, 1H), 7.39-7.10 (m, 14H), (6.59 d, J=3.3Hz, 1H), 5.79 (d, J=3.3Hz, 1H), 5.13 (d, J=17.7Hz, 1H), 4.53 (d, J=17.7Hz, 1H), 2.39 (s, 3H); 19F NMR (282MHz, CDCl 3): δ-63.5 ,-150,1 ,-150.1; 13C NMR (75MHz, CDCl 3) δ 150.4,144.8,141.5,135.8,135.3,134.3,134.1,133.8,133.1,130.1,130.0,129.8,129.5,129.4,127.5,127.2,126.9,121.95,121.92,62.9,61.6,38.1,21.5; IR (thin film): v Max(cm -1)=3068,2922,1596,1538,1455,1367,1281,1144,1074,898,814,756,698; MS (ESI, m/z, rel.intensity) 643.2 (M-BF 4); HRMS (ESI) calculated value C 32H 25F 6N 4O 2S (M-BF 4): 643.1597; Measured value: 643.1597.m.p.162-163 ℃.
P7 (R 1=Ts, R 2=Ph, R 3=9-anthryl, X=BF 4)
Figure BSA00000424713200081
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.01 (s, 1H), 7.75 (d, J=17.7Hz, 2H), (7.43-7.21 m, 17H), 7.12 (d, J=8.1Hz, 2H), (7.00 d, J=7.5Hz, 2H), 6.74 (s, 1H), 5.75 (d, J=1.8Hz, 1H), (5.10 d, J=17.4Hz, 1H), 4.45 (d, J=17.7Hz, 1H), 2.34 (s, 3H); MS (ESI, m/z, rel.intensity) 607.5 (M-BF 4); HRMS (ESI) calculated value C 38H 32N 4O 2S (M-BF 4): 607.2162; Measured value: 607.2160.
P8 (R 1=Ts, R 2=Ph, R 3=9-phenanthryl, X=BF 4)
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.09 (s, 1H), 7.78 (d, J=17.7Hz, 2H), (7.47-7.23 m, 17H), 7.16 (d, J=8.1Hz, 2H), (7.04 d, J=7.5Hz, 2H), 6.78 (s, 1H), 5.79 (d, J=1.8Hz, 1H), (5.13 d, J=17.4Hz, 1H), 4.48 (d, J=17.7Hz, 1H), 2.36 (s, 3H); MS (ESI, m/z, rel.intensity) 607.6 (M-BF 4); HRMS (ESI) calculated value C 38H 31N 4O 2S (M-BF 4): 607.2162; Measured value: 607.2163.
P9(R 1=Ts,R 2=Ph,R 3=4-MePh,X=BF 4)
Figure BSA00000424713200091
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 9.79 (s, 1H), 7.43-7.30 (m, 10H), (7.17 d, J=6.3Hz, 2H), 7.02 (d, J=5.7Hz, 2H), 6.97 (s, 3H), (5.84 s, 1H), 5.11 (d, J=17.4Hz, 1H), 4.52 (d, J=17.4Hz, 1H), (2.43 s, 3H), 2.31 (s, 3H); MS (ESI, m/z, rel.intensity) 521.6 (M-BF 4); HRMS (ESI) calculated value C 31H 29N 4O 2S (M-BF 4): 521.2006; Measured value: 521.2004.
P10(R 1=Ts,R 2=Ph,R 3=4-NO 2Ph,X=BF 4)
Figure BSA00000424713200092
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.05 (s, 1H), 8.24 (d, J=8.7Hz, 2H), 8.10 (d, J=8.5Hz, 2H), (7.76-7.33 m, 14H), 6.87 (s, 1H), (5.89 s, 1H), 5.19 (d, J=17.4Hz, 1H), 4.48 (d, J=17.4Hz, 1H), 2.40 (s, 3H); MS (ESI, m/z, rel.intensity) 552.6 (M-BF 4); HRMS (ESI) calculated value C 30H 26N 5O 4S (M-BF 4): 552.1700; Measured value: 521.1702.
P11 (R 1=Ts, R 2=Ph, R 3=cyclohexyl, X=BF 4)
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 9.65 (s, 1H), 7.43 (d, J=17.1Hz, 2H), 7.23-7.01 (m, 13H), 6.85 (d, J=8.1Hz, 2H), 6.72 (d, J=7.5Hz, 2H), 6.58 (s, 1H), 5.70 (d, J=1.8Hz, 1H), 5.03 (d, J=17.4Hz, 1H), 4.31 (d, J=17.7Hz, 1H), 2.31 (s, 3H), 1.49-1.58 (m, 5H), (1.42-1.45 m, 2H), 1.31-1.34 (m, 2H), 1.23-1.25 (m, 2H); MS (ESI, m/z, rel.intensity) 513.6 (M-BF 4); HRMS (ESI) calculated value C 30H 33N 4O 2S (M-BF 4): 513.2319; Measured value: 513.2318.
P12(R 1=Ts,R 2-R 2=(CH 2) 4,R 3=Ph,X=BF 4)
Figure BSA00000424713200101
(and enantiomorph)
White solid. 1HNMR (300MHz, CDCl 3) δ 10.01 (s, 1H), 7.69 (d, J=17.7Hz, 2H), 7.38-7.23 (m, 5H), 7.13 (d, J=8.1Hz, 2H), 6.76 (s, 1H), (5.72 d, J=1.8Hz, 1H), 5.11 (d, J=17.4Hz, 1H), 4.41 (d, J=17.7Hz, 1H), 2.68-2.74 (m, 1H), (2.56-2.62 m, 2H), 2.41 (s, 3H), 2.26-2.24 (m, 1H), (1.84-1.77 m, 2H), 1.30-1.24 (m, 2H), 1.22-1.14 (m, 2H); MS (ESI, m/z, rel.intensity) 409.2 (M-BF 4); HRMS (ESI) calculated value C 22H 25N 4O 2S (M-BF 4): 406.1693; Measured value: 406.1692.
P13(R 1=Ac,R 2=R 3=Ph,X=BF 4)
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCL 3) δ 10.01 (s, 1H), 7.69 (d, J=17.7Hz, 2H), 7.42-7.21 (m, 11H), 7.13 (d, J=8.1Hz, 2H), 6.75 (s, 1H), (5.74 d, J=1.8Hz, 1H), 5.10 (d, J=17.4Hz, 1H), 4.43 (d, J=17.7Hz, 1H), 2.24 (s, 3H); MS (ESI, m/z, rel.intensity) 395.2 (M-BF 4); HRMS (ESI) calculated value C 25H 23N 4O (M-BF 4): 395.1866; Measured value: 395.1868.
P14(R 1=Ac,R 2=Ph,R 3=4-OMePh,X=BF 4)
Figure BSA00000424713200111
(and enantiomorph)
Light yellow solid. 1H NMR (300MHz, CDCl 3) δ 9.95 (s, 1H), 7.65 (d, J=8.7Hz, 2H), 7.31-6.91 (m, 12H), 6.72 (s, 1H), 5.74 (s, 1H), 5.13 (d, J=17.4Hz, 1H), 4.35 (d, J=17.4Hz, 1H), 3.76 (s, 3H), 2.19 (s, 3H); MS (ESI, m/z, rel.intensity) 425.2 (M-BF 4); HRMS (ESI) calculated value C 25H 23N 4O (M-BF 4): 425.1972; Measured value: 425.1973.
P15(R 1=Ac,R 2=Ph,R 3=2,4,6-(Me) 3Ph,X=BF 4)
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 9.73 (s, 1H), 7.40-7.30 (m, 8H), 7.16 (d, J=6.3Hz, 2H), 7.02 (d, J=5.7Hz, 2H), (6.95 s, 1H), 5.83 (s, 1H), (5.10 d, J=17.4Hz, 1H), 4.53 (d, J=17.4Hz, 1H), 2.38 (s, 3H), (2.27 s, 3H), 1.96 (s, 6H); MS (ESI, m/z, rel.intensity) 437.5 (M-BF 4); HRMS (ESI) calculated value C 28H 29N 4O (M-BF 4): 437.2336; Measured value: 437.2335.
P16(R 1=Ac,R 2=Ph,R 3=3,5-(CF 3) 2Ph,X=BF 4)
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.13 (s, 1H), 8.41 (s, 2H), (8.01 s, 1H), 7.36-7.09 (m, 14H), (6.57 d, J=3.3Hz, 1H), 5.75 (d, J=3.3Hz, 1H), 5.11 (d, J=17.7Hz, 1H), 4.51 (d, J=17.7Hz, 1H), 2.24 (s, 3H); MS (ESI, m/z, rel.intensity) 531.5 (M-BF 4); HRMS (ESI) calculated value C 27H 21F 6N 4O (M-BF 4): 531.1614; Measured value: 531.1615.
P17(R 1=Boc,R 2=Ph,R 3=2,4,6-(Me) 3Ph,X=BF 4)
Figure BSA00000424713200121
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 9.74 (s, 1H), 7.41-7.31 (m, 8H), 7.16 (d, J=6.3Hz, 2H), 7.03 (d, J=5.7Hz, 2H), (6.96 s, 1H), 5.81 (s, 1H), (5.12 d, J=17.4Hz, 1H), 4.54 (d, J=17.4Hz, 1H), 2.37 (s, 3H), (1.98 s, 6H), 1.56 (s, 9H); MS (ESI, m/z, rel.intensity) 495.5M-BF 4); HRMS (ESI) calculated value C 31H 35N 4O 2(M-BF 4): 495.2755; Measured value: 495.2754.
P18 (R 1=trifluoroacetyl group, R 2=Ph, R 3=2,4,6-(Me) 3Ph, X=BF 4)
Figure BSA00000424713200122
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 9.93 (s, 1H), 7.45-7.34 (m, 8H), (7.19 d, J=6.3Hz, 2H), 7.05 (d, J=5.7Hz, 2H), 6.95 (s, 1H), (5.89 s, 1H), 5.15 (d, J=17.4Hz, 1H), 4.57 (d, J=17.4Hz, 1H), (2.38 s, 3H), 1.96 (s, 6H); MS (ESI, m/z, rel.intensity) 491.5 (M-BF 4); HRMS (ESI) calculated value C 28H 29N 4O (M-BF 4): 491.2053; Measured value: 491.2054.
P19 (R 1=trifyl, R 2=Ph, R 3=2,4,6-(Me) 3Ph, X=BF 4)
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 9.85 (s, 1H), 7.44-7.31 (m, 8H), (7.19 d, J=6.3Hz, 2H), 7.08 (d, J=5.7Hz, 2H), 6.99 (s, 1H), (5.86 s, 1H), 5.14 (d, J=17.4Hz, 1H), 4.55 (d, J=17.4Hz, 1H), (2.38 s, 3H), 1.98 (s, 6H); MS (ESI, m/z, rel.intensity) 527.5 (M-BF 4); HRMS (ESI) calculated value C 28H 29N 4O (M-BF 4): 527.1723; Measured value: 527.1724.
P20 (R 1=ten seven fluoro-octane alkylsulfonyls, R 2=Ph, R 3=2,4,6-(Me) 3Ph, X=BF 4)
Figure BSA00000424713200132
(and enantiomorph)
White solid. 1HNMR (300MHz, CDCl 3) δ 9.83 (s, 1H), 7.44-7.31 (m, 8H), (7.18 d, J=6.3Hz, 2H), 7.05 (d, J=5.7Hz, 2H), 6.97 (s, 1H), (5.83 s, 1H), 5.12 (d, J=17.4Hz, 1H), 4.54 (d, J=17.4Hz, 1H), (2.38 s, 3H), 1.98 (s, 6H); MS (ESI, m/z, rel.intensity) 877.5 (M-BF 4); HRMS (ESI) calculated value C 28H 29N 4O (M-BF 4): 877.1500; Measured value: 877.1501.
P21(R 1=Ts,R 2=R 3=Ph,X=Cl)
Figure BSA00000424713200133
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.05 (s, 1H), 7.79 (d, J=17.7Hz, 2H), (7.47-7.24 m, 13H), 7.15 (d, J=8.1Hz, 2H), (7.02 d, J=7.5Hz, 2H), 6.78 (s, 1H), 5.79 (d, J=1.8Hz, 1H), (5.13 d, J=17.4Hz, 1H), 4.48 (d, J=17.7Hz, 1H), 2.38 (s, 3H); 19F NMR (282MHz, CDCl 3): δ-150,2 ,-150.3; MS (ESI, m/z, rel.intensity) 507.1 (M-Cl); HRMS (ESI) calculated value C 30H 27N 4O 2S (M-Cl): 507.1849; Measured value: 507.1850.
P22(R 1=Ts,R 2=Ph,R 3=4-OMePh,X=Cl)
Figure BSA00000424713200141
(and enantiomorph)
Light yellow solid. 1H NMR (300MHz, CDCl 3) δ 10.00 (s, 1H), 7.72 (d, J=8.7Hz, 2H), 7.36-6.93 (m, 16H), 6.77 (s, 1H), 5.80 (s, 1H), 5.09 (d, J=17.4Hz, 1H), 4.46 (d, J=17.4Hz, 1H), 3.80 (s, 3H), 2.40 (s, 3H); MS (ESI, m/z, rel.intensity) 537.5 (M-Cl); HRMS (ESI) calculated value C 31H 29N 4O 3S (M-Cl): 537.1955; Measured value: 537.1957.
P23(R 1=Ts,R 2=Ph,R 3=2,4,6-(Me) 3Ph,X=Cl)
Figure BSA00000424713200142
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 9.77 (s, 1H), 7.42-7.31 (m, 10H), 7.19 (d, J=6.3Hz, 2H), 7.04 (d, J=5.7Hz, 2H), (6.98 s, 3H), 5.86 (s, 1H), (5.10 d, J=17.4Hz, 1H), 4.53 (d, J=17.4Hz, 1H), 2.43 (s, 3H), (2.33 s, 3H), 1.96 (s, 6H); MS (ESI, m/z, rel.intensity) 549.4 (M-Cl); HRMS (ESI) calculated value C 33H 33N 4O 2S (M-Cl): 549.2319; Measured value: 549.2315.
P24(R 1=Ts,R 2=Ph,R 3=3,5-(CF 3) 2Ph,X=Cl)
Figure BSA00000424713200151
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.15 (s, 1H), 8.41 (s, 2H), (8.00 s, 1H), 7.39-7.10 (m, 14H), (6.59 d, J=3.3Hz, 1H), 5.79 (d, J=3.3Hz, 1H), 5.13 (d, J=17.7Hz, 1H), 4.53 (d, J=17.7Hz, 1H), 2.39 (s, 3H); MS (ESI, m/z, rel.intensity) 643.2 (M-Cl); HRMS (ESI) calculated value C 32H 25F 6N 4O 2S (M-Cl): 643.1597; Measured value: 643.1597.
P25 (R 1=Ts, R 2=Ph, R 3=9-anthryl, X=Cl)
Figure BSA00000424713200152
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.01 (s, 1H), 7.75 (d, J=17.7Hz, 2H), (7.43-7.21 m, 17H), 7.12 (d, J=8.1Hz, 2H), (7.00 d, J=7.5Hz, 2H), 6.74 (s, 1H), 5.75 (d, J=1.8Hz, 1H), (5.10 d, J=17.4Hz, 1H), 4.45 (d, J=17.7Hz, 1H), 2.34 (s, 3H); MS (ESI, m/z, rel.intensity) 607.5 (M-Cl); HRMS (ESI) calculated value C 38H 32N 4O 2S (M-Cl): 607.2162; Measured value: 607.2160.
P26 (R=Ph, R 1=Ts, R 2=9-phenanthryl, X=Cl)
Figure BSA00000424713200153
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.09 (s, 1H), 7.78 (d, J=17.7Hz, 2H), (7.47-7.23 m, 17H), 7.16 (d, J=8.1Hz, 2H), (7.04 d, J=7.5Hz, 2H), 6.78 (s, 1H), 5.79 (d, J=1.8Hz, 1H), (5.13 d, J=17.4Hz, 1H), 4.48 (d, J=17.7Hz, 1H), 2.36 (s, 3H); MS (ESI, m/z, rel.intensity) 607.6 (M-Cl); HRMS (ESI) calculated value C 38H 31N 4O 2S (M-Cl): 607.2162; Measured value: 607.2163.
P27(R 1=Ts,R 2=Ph,R 3=4-MePh,X=Cl)
Figure BSA00000424713200161
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 9.79 (s, 1H), 7.43-7.30 (m, 10H), (7.17 d, J=6.3Hz, 2H), 7.02 (d, J=5.7Hz, 2H), 6.97 (s, 3H), (5.84 s, 1H), 5.11 (d, J=17.4Hz, 1H), 4.52 (d, J=17.4Hz, 1H), (2.43 s, 3H), 2.31 (s, 3H); MS (ESI, m/z, rel.intensity) 521.6 (M-Cl); HRMS (ESI) calculated value C 31H 29N 4O 2S M-Cl): 521.2006; Measured value: 521.2004.
P28(R 1=Ts,R 2=Ph,R 3=4-NO 2Ph,X=Cl)
Figure BSA00000424713200162
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.05 (s, 1H), 8.24 (d, J=8.7Hz, 2H), 8.10 (d, J=8.5Hz, 2H), (7.76-7.33 m, 14H), 6.87 (s, 1H), (5.89 s, 1H), 5.19 (d, J=17.4Hz, 1H), 4.48 (d, J=17.4Hz, 1H), 2.40 (s, 3H); MS (ESI, m/z, rel.intensity) 552.6 (M-Cl); HRMS (ESI) calculated value C 30H 26N 5O 4S (M-Cl): 552.1700; Measured value: 521.1702.
P29 (R 1=Ts, R 2=Ph, R 3=cyclohexyl, X=Cl)
Figure BSA00000424713200171
(and enantiomorph)
White solid. 1HNMR (300MHz, CDCl 3) δ 9.65 (s, 1H), 7.43 (d, J=17.1Hz, 2H), 7.23-7.01 (m, 13H), 6.85 (d, J=8.1Hz, 2H), 6.72 (d, J=7.5Hz, 2H), 6.58 (s, 1H), 5.70 (d, J=1.8Hz, 1H), 5.03 (d, J=17.4Hz, 1H), 4.31 (d, J=17.7Hz, 1H), 2.31 (s, 3H), 1.49-1.58 (m, 5H), (1.42-1.45 m, 2H), 1.31-1.34 (m, 2H), 1.23-1.25 (m, 2H); MS (ESI, m/z, rel.intensity) 513.6 (M-Cl); HRMS (ESI) calculated value C 30H 33N 4O 2S (M-Cl): 513.2319; Measured value: 513.2318.
P30(R 1=Ts,R 2-R 2=(CH 2) 4,R 3=Ph,X=Cl)
Figure BSA00000424713200172
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.01 (s, 1H), 7.69 (d, J=17.7Hz, 2H), 7.38-7.23 (m, 5H), 7.13 (d, J=8.1Hz, 2H), 6.76 (s, 1H), (5.72 d, J=1.8Hz, 1H), 5.11 (d, J=17.4Hz, 1H), 4.41 (d, J=17.7Hz, 1H), 2.68-2.74 (m, 1H), (2.56-2.62 m, 2H), 2.41 (s, 3H), 2.26-2.24 (m, 1H), (1.84-1.77 m, 2H), 1.30-1.24 (m, 2H), 1.22-1.14 (m, 2H); MS (ESI, m/z, rel.intensity) 409.2 (M-Cl); HRMS (ESI) calculated value C 22H 25N 4O 2S (M-Cl): 409.1693; Measured value: 409.1692.
P31(R 1=Ac,R 2=R 3=Ph,X=Cl)
Figure BSA00000424713200173
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.01 (s, 1H), 7.69 (d, J=17.7Hz, 2H), 7.42-7.21 (m, 11H), 7.13 (d, J=8.1Hz, 2H), 6.75 (s, 1H), (5.74 d, J=1.8Hz, 1H), 5.10 (d, J=17.4Hz, 1H), 4.43 (d, J=17.7Hz, 1H), 2.24 (s, 3H); MS (ESI, m/z, rel.intensity) 395.2 (M-Cl); HRMS (ESI) calculated value C 25H 23N 4O (M-Cl): 395.1866; Measured value: 395.1868.
P32(R 1=Ac,R 2=Ph,R 3=4-OMePh,X=Cl)
Figure BSA00000424713200181
(and enantiomorph)
Light yellow solid. 1H NMR (300MHz, CDCl 3) δ 9.95 (s, 1H), 7.65 (d, J=8.7Hz, 2H), 7.31-6.91 (m, 12H), 6.72 (s, 1H), 5.74 (s, 1H), 5.13 (d, J=17.4Hz, 1H), 4.35 (d, J=17.4Hz, 1H), 3.76 (s, 3H), 2.19 (s, 3H); MS (ESI, m/z, rel.intensity) 425.2 (M-Cl); HRMS (ESI) calculated value C 25H 23N 4O (M-Cl): 425.1972; Measured value: 425.1973.
P33(R 1=Ac,R 2=Ph,R 3=2,4,6-(Me) 3Ph,X=Cl)
Figure BSA00000424713200182
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 9.73 (s, 1H), 7.40-7.30 (m, 8H), 7.16 (d, J=6.3Hz, 2H), 7.02 (d, J=5.7Hz, 2H), (6.95 s, 1H), 5.83 (s, 1H), (5.10 d, J=17.4Hz, 1H), 4.53 (d, J=17.4Hz, 1H), 2.38 (s, 3H), (2.27 s, 3H), 1.96 (s, 6H); MS (ESI, m/z, rel.intensity) 437.5 (M-Cl); HRMS (ESI) calculated value C 28H 29N 4O (M-Cl): 437.2336; Measured value: 437.2335.
P34(R 1=Ac,R 2=Ph,R 3=3,5-(CF 3) 2Ph,X=Cl)
Figure BSA00000424713200191
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.13 (s, 1H), 8.41 (s, 2H), (8.01 s, 1H), 7.36-7.09 (m, 14H), (6.57 d, J=3.3Hz, 1H), 5.75 (d, J=3.3Hz, 1H), 5.11 (d, J=17.7Hz, 1H), 4.51 (d, J=17.7Hz, 1H), 2.24 (s, 3H); MS (ESI, m/z, rel.intensity) 531.5 (M-Cl); HRMS (ESI) calculated value C 27H 21F 6N 4O (M-Cl): 531.1614; Measured value: 531.1615.
P35(R 1=Boc,R 2=Ph,R 3=2,4,6-(Me) 3Ph,X=Cl)
Figure BSA00000424713200192
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 9.74 (s, 1H), 7.41-7.31 (m, 8H), 7.16 (d, J=6.3Hz, 2H), 7.03 (d, J=5.7Hz, 2H), (6.96 s, 1H), 5.81 (s, 1H), (5.12 d, J=17.4Hz, 1H), 4.54 (d, J=17.4Hz, 1H), 2.37 (s, 3H), (1.98 s, 6H), 1.56 (s, 9H); MS (ESI, m/z, rel.intensity) 495.5 (M-Cl); HRMS (ESI) calculated value C 31H 35N 4O 2(M-Cl): 495.2755; Measured value: 495.2754.
P36(R 1=Ts,R 2=R 3=Ph,X=ClO 4)
Figure BSA00000424713200193
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.05 (s, 1H), 7.79 (d, J=17.7Hz, 2H), (7.47-7.24 m, 13H), 7.15 (d, J=8.1Hz, 2H), (7.02 d, J=7.5Hz, 2H), 6.78 (s, 1H), 5.79 (d, J=1.8Hz, 1H), (5.13 d, J=17.4Hz, 1H), 4.48 (d, J=17.7Hz, 1H), 2.38 (s, 3H); 19F NMR (282MHz, CDCl3): δ-150,2 ,-150.3; MS (ESI, m/z, rel.intensity) 507.1 (M-ClO 4); HRMS (ESI) calculated value C 30H 27N 4O 2S (M-ClO 4): 507.1849; Measured value: 507.1850.
P37(R 1=Ts,R 2=Ph,R 3=4-OMePh,X=ClO 4)
Figure BSA00000424713200201
(and enantiomorph)
Light yellow solid. 1H NMR (300MHz, CDCl 3) δ 10.00 (s, 1H), 7.72 (d, J=8.7Hz, 2H), 7.36-6.93 (m, 16H), 6.77 (s, 1H), 5.80 (s, 1H), 5.09 (d, J=17.4Hz, 1H), 4.46 (d, J=17.4Hz, 1H), 3.80 (s, 3H), 2.40 (s, 3H); MS (ESI, m/z, rel.intensity) 537.5 (M-ClO 4); HRMS (ESI) calculated value C 31H 29N 4O 3S (M-ClO 4): 537.1955; Measured value: 537.1957.
P38(R 1=Ts,R 2=Ph,R 3=2,4,6-(Me) 3Ph,X=ClO 4)
Figure BSA00000424713200202
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 9.77 (s, 1H), 7.42-7.31 (m, 10H), 7.19 (d, J=6.3Hz, 2H), 7.04 (d, J=5.7Hz, 2H), (6.98 s, 3H), 5.86 (s, 1H), (5.10 d, J=17.4Hz, 1H), 4.53 (d, J=17.4Hz, 1H), 2.43 (s, 3H), (2.33 s, 3H), 1.96 (s, 6H); MS (ESI, m/z, rel.intensity) 549.4 (M-ClO 4); HRMS (ESI) calculated value C 33H 33N 4O 2S (M-ClO 4): 549.2319; Measured value: 549.2315.
P39(R 1=Ts,R 2=Ph,R 3=3,5-(CF 3) 2Ph,X=ClO 4)
Figure BSA00000424713200211
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.15 (s, 1H), 8.41 (s, 2H), (8.00 s, 1H), 7.39-7.10 (m, 14H), (6.59 d, J=3.3Hz, 1H), 5.79 (d, J=3.3Hz, 1H), 5.13 (d, J=17.7Hz, 1H), 4.53 (d, J=17.7Hz, 1H), 2.39 (s, 3H); MS (ESI, m/z, rel.intensity) 643.2 (M-ClO 4); HRMS (ESI) calculated value C 32H 25F 6N 4O 2S (M-ClO 4): 643.1597; Measured value: 643.1597.
P40 (R 1=Ts, R 2=Ph, R 3=9-anthryl, X=ClO 4)
Figure BSA00000424713200212
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.01 (s, 1H), 7.75 (d, J=17.7Hz, 2H), (7.43-7.21 m, 17H), 7.12 (d, J=8.1Hz, 2H), (7.00 d, J=7.5Hz, 2H), 6.74 (s, 1H), 5.75 (d, J=1.8Hz, 1H), (5.10 d, J=17.4Hz, 1H), 4.45 (d, J=17.7Hz, 1H), 2.34 (s, 3H); MS (ESI, m/z, rel.intensity) 607.5 (M-ClO 4); HRMS (ESI) calculated value C 38H 32N 4O 2S (M-ClO 4): 607.2162; Measured value: 607.2160.
P41 (R 1=Ts, R 2=Ph, R 3=9-phenanthryl, X=ClO 4)
Figure BSA00000424713200213
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.09 (s, 1H), 7.78 (d, J=17.7Hz, 2H), (7.47-7.23 m, 17H), 7.16 (d, J=8.1Hz, 2H), (7.04 d, J=7.5Hz, 2H), 6.78 (s, 1H), 5.79 (d, J=1.8Hz, 1H), (5.13 d, J=17.4Hz, 1H), 4.48 (d, J=17.7Hz, 1H), 2.36 (s, 3H); MS (ESI, m/z, rel.intensity) 607.6 (M-ClO 4); HRMS (ESI) calculated value C 38H 31N 4O 2S (M-ClO 4): 607.2162; Measured value: 607.2163.
P42(R 1=Ts,R 2=Ph,R 3=4-MePh,X=ClO 4)
Figure BSA00000424713200221
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 9.79 (s, 1H), 7.43-7.30 (m, 10H), (7.17 d, J=6.3Hz, 2H), 7.02 (d, J=5.7Hz, 2H), 6.97 (s, 3H), (5.84 s, 1H), 5.11 (d, J=17.4Hz, 1H), 4.52 (d, J=17.4Hz, 1H), (2.43 s, 3H), 2.31 (s, 3H); MS (ESI, m/z, rel.intensity) 521.6 (M-ClO 4); HRMS (ESI) calculated value C 31H 29N 4O 2S (M-ClO 4): 521.2006; Measured value: 521.2004.
P43(R 1=Ts,R 2=Ph,R 3=4-NO 2Ph,X=ClO 4)
Figure BSA00000424713200222
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCL 3) δ 10.05 (s, 1H), 8.24 (d, J=8.7Hz, 2H), 8.10 (d, J=8.5Hz, 2H), (7.76-7.33 m, 14H), 6.87 (s, 1H), (5.89 s, 1H), 5.19 (d, J=17.4Hz, 1H), 4.48 (d, J=17.4Hz, 1H), 2.40 (s, 3H); MS (ESI, m/z, rel.intensity) 552.6 (M-ClO 4); HRMS (ESI) calculated value C 30H 26N 5O 4S (M-ClO4): 552.1700; Measured value: 521.1702.
P44 (R 1=Ts, R 2=Ph, R 3=cyclohexyl, X=ClO 4)
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 9.65 (s, 1H), 7.43 (d, J=17.1Hz, 2H), 7.23-7.01 (m, 13H), 6.85 (d, J=8.1Hz, 2H), 6.72 (d, J=7.5Hz, 2H), 6.58 (s, 1H), 5.70 (d, J=1.8Hz, 1H), 5.03 (d, J=17.4Hz, 1H), 4.31 (d, J=17.7Hz, 1H), 2.31 (s, 3H), 1.49-1.58 (m, 5H), (1.42-1.45 m, 2H), 1.31-1.34 (m, 2H), 1.23-1.25 (m, 2H); MS (ESI, m/z, rel.intensity) 513.6 (M-ClO 4); HRMS (ESI) calculated value C 30H 33N 4O 2S (M-ClO 4): 513.2319; Measured value: 513.2318.
P45(R 1=Ts,R 2-R 2=(CH 2) 4,R 3=Ph,X=ClO 4)
Figure BSA00000424713200232
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.01 (s, 1H), 7.69 (d, J=17.7Hz, 2H), 7.38-7.23 (m, 5H), 7.13 (d, J=8.1Hz, 2H), 6.76 (s, 1H), (5.72 d, J=1.8Hz, 1H), 5.11 (d, J=17.4Hz, 1H), 4.41 (d, J=17.7Hz, 1H), 2.68-2.74 (m, 1H), (2.56-2.62 m, 2H), 2.41 (s, 3H), 2.26-2.24 (m, 1H), (1.84-1.77 m, 2H), 1.30-1.24 (m, 2H), 1.22-1.14 (m, 2H); MS (ESI, m/z, rel.intensity) 409.2 (M-ClO 4); HRMS (ESI) calculated value C 22H 25N 4O 2S (M-ClO 4): 406.1693; Measured value: 406.1692.
P46(R 1=Ac,R 2=R 3=Ph,X=ClO 4)
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.01 (s, 1H), 7.69 (d, J=17.7Hz, 2H), 7.42-7.21 (m, 11H), 7.13 (d, J=8.1Hz, 2H), 6.75 (s, 1H), (5.74 d, J=1.8Hz, 1H), 5.10 (d, J=17.4Hz, 1H), 4.43 (d, J=17.7Hz, 1H), 2.24 (s, 3H); MS (ESI, m/z, rel.intensity) 395.2 (M-ClO 4); HRMS (ESI) calculated value C 25H 23N 4O (M-ClO 4): 395.1866; Measured value: 395.1868.
P47(R 1=Ac,R 2=Ph,R 3=4-OMePh,X=ClO 4)
Figure BSA00000424713200241
(and enantiomorph)
Light yellow solid. 1H NMR (300MHz, CDCl 3) δ 9.95 (s, 1H), 7.65 (d, J=8.7Hz, 2H), 7.31-6.91 (m, 12H), 6.72 (s, 1H), 5.74 (s, 1H), 5.13 (d, J=17.4Hz, 1H), 4.35 (d, J=17.4Hz, 1H), 3.76 (s, 3H), 2.19 (s, 3H); MS (ESI, m/z, rel.intensity) 425.2 (M-ClO 4); HRMS (ESI) calculated value C 25H 23N 4O (M-ClO 4): 425.1972; Measured value: 425.1973.
P48(R 1=Ac,R 2=Ph,R 3=2,4,6-(Me) 3Ph,X=ClO 4)
Figure BSA00000424713200242
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 9.73 (s, 1H), 7.40-7.30 (m, 8H), 7.16 (d, J=6.3Hz, 2H), 7.02 (d, J=5.7Hz, 2H), (6.95 s, 1H), 5.83 (s, 1H), (5.10 d, J=17.4Hz, 1H), 4.53 (d, J=17.4Hz, 1H), 2.38 (s, 3H), (2.27 s, 3H), 1.96 (s, 6H); MS (ESI, m/z, rel.intensity) 437.5 (M-ClO 4); HRMS (ESI) calculated value C 28H 29N 4O (M-ClO 4): 437.2336; Measured value: 437.2335.
P49(R 1=Ac,R 2=Ph,R 3=3,5-(CF 3) 2Ph,X=ClO 4)
(and enantiomorph)
White solid. 1H NMR (300MHz, CDCl 3) δ 10.13 (s, 1H), 8.41 (s, 2H), (8.01 s, 1H), 7.36-7.09 (m, 14H), (6.57 d, J=3.3Hz, 1H), 5.75 (d, J=3.3Hz, 1H), 5.11 (d, J=17.7Hz, 1H), 4.51 (d, J=17.7Hz, 1H), 2.24 (s, 3H); MS (ESI, m/z, rel.intensity) 531.5 (M-ClO 4); HRMS (ESI) calculated value C 27H 21F 6N 4O (M-ClO 4): 531.1614; Measured value: 531.1615.
P50(R 1=Boc,R 2=Ph,R 3=2,4,6-(Me) 3Ph,X=ClO 4)
Figure BSA00000424713200252
(and enantiomorph)
White solid. 1HNMR (300MHz, CDCl 3) δ 9.74 (s, 1H), 7.41-7.31 (m, 8H), 7.16 (d, J=6.3Hz, 2H), 7.03 (d, J=5.7Hz, 2H), (6.96 s, 1H), 5.81 (s, 1H), (5.12 d, J=17.4Hz, 1H), 4.54 (d, J=17.4Hz, 1H), 2.37 (s, 3H), (1.98 s, 6H), 1.56 (s, 9H); MS (ESI, m/z, rel.intensity) 495.5 (M-ClO 4); HRMS (ESI) calculated value C 31H 35N 4O 2(M-ClO 4): 495.2755; Measured value: 495.2754.
Embodiment 2
The application of N-heterocyclic carbine in the synthesis of chiral chromone compound
Figure BSA00000424713200253
Wherein, base represents alkali, and solvent refers to organic solvent.
General experimental implementation: catalyst precursor is dissolved in the dimethylbenzene, adds alkali, stirring at room 0.5 hour.Add substrate 0.1mmol, room temperature reaction.After TLC followed the tracks of and reacts completely, 0 ℃ added the distilled water cancellation, and ethyl acetate extraction merges organic phase, anhydrous sodium sulfate drying, and removal of solvent under reduced pressure, column chromatography is purified, and (sherwood oil: ethyl acetate) get product, the ee value is measured by chirality HPLC.
Colorless oil, 95%yield (productive rate), 93%ee[chiral column AD-H, normal hexane/Virahol=97/3, v=0.7mLmin -1, λ=254nm, t (major)=23.1min, t (minor)=34.9min]; [α] D 20=-6.8 (c=1.0, CH 2Cl 2). 1H NMR (300MHz, CDCl 3) δ 7.89 (dd, J=1.8,7.8Hz, 1H), 7.51-7.45 (m, 1H), (7.05-6.96 m, 2H), 4.60 (dd, J=5.4,11.1Hz, 1H), 4.30 (t, J=11.7Hz, 1H), 4.19 (q, J=7.2Hz, 2H), 3.39-3.29 (m, 1H), 2.94 (dd, J=4.8,17.1Hz, 1H), 2.42 (dd, J=8.1,17.1Hz, 1H), 1.28 (t, J=7.2Hz, 3H).
Figure BSA00000424713200262
Colorless oil, 98%yield, 95%ee[chiral column AD-H, normal hexane/Virahol=95/5, v=1.0mLmin -1, λ=254nm, t (major)=13.4min, t (minor)=20.8min]; [α] D 20=-20.5 (c=1.0, CH 2Cl 2). 1H NMR (300MHz, CDCl 3) δ 7.67 (s, J=1H), 7.28 (d, J=8.1Hz, 1H), (6.87 d, J=8.4Hz, 1H), 4.57 (dd, J=5.1,11.1Hz, 1H), 4.17-4.26 (m, 3H), 3.35-3.25 (m, 1H), 2.92 (dd, J=4.8,16.8Hz, 1H), (2.41 dd, J=8.7,17.1Hz, 1H), 2.30 (s, 3H), 1.28 (t, J=7.2Hz, 3H).
Figure BSA00000424713200263
Yellow oil, 95%yield, 88%ee[chiral column AD-H, normal hexane/Virahol=95/5, v=1.0mLmin -1, λ=254nm, t (major)=19.9min, t (minor)=28.6min]; [α] D 20=-24.2 (c=1.0, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 7.31 (d, J=3.0Hz, 1H), 7.08 (dd, 3.3,9.0Hz, 1H), 6.91 (d, J=9.0Hz, 1H), 4.56 (dd, J=5.1,11.1Hz, 1H), 4.30-4.16 (m, 3H), (3.77 s, 3H), 3.36-3.26 (m, 1H), 2.90 (dd, J=4.5,16.8Hz, 1H), 2.43 (dd, J=8.1,17.1Hz, 1H), 1.27 (t, J=7.2Hz, 3H).
Figure BSA00000424713200271
Yellow oil, 87%yield, 97%ee[chiral column AD-H, normal hexane/Virahol=95/5, v=1.0mLmin -1, λ=254nm, t (major)=21.4min, t (minor)=27.5min]; [α] D 20=-10.8 (c=1.0, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 7.82 (d, J=8.7Hz, 1H), 6.59 (dd, J=2.4,8.7Hz, 1H), 6.41 (d, J=2.4Hz, 1H), 4.59 (dd, J=5.4,11.1Hz, 1H), 4.28 (t, J=11.4Hz, 1H), 4.19 (q, J=7.2Hz, 2H), 3.83 (s, 3H), 3.31-3.24 (m, 1H), (2.94 dd, J=4.8,17.1Hz, 1H), 2.39 (dd, J=8.4,16.8Hz, 1H), 1.29 (t, J=7.2Hz, 3H).
Figure BSA00000424713200272
Yellow oil, 56%yield, 95%ee[chiral column AD-H, normal hexane/Virahol=90/10, v=1.0mLmin -1, λ=254nm, t (major)=18.9min, t (minor)=20.7min]; [α] D 20=+9.5 (c=1.0, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 7.74 (d, J=9.0Hz, 1H), 6.34 (dd, J=2.4,9.0Hz, 1H), 6.04 (d, J=2.4Hz, 1H), 4.52 (dd, J=5.1,11.1Hz, 1H), 4.26-4.14 (m, 3H), 3.38 (q, J=7.2Hz, 4H), 3.23-3.15 (m, 1H), 2.95 (dd, J=4.8,17.1Hz, 1H), 2.35 (dd, J=8.7,16.8Hz, 1H), 1.28 (t, J=7.2Hz, 3H), 1.20 (t, J=7.2Hz, 6H).
Figure BSA00000424713200273
Yellow oil, 98%yield, 80%ee[chiral column AD-H, normal hexane/Virahol=97/3, v=0.7mLmin -1, λ=254nm, t (major)=17.9min, t (minor)=24.0min]; [α] D 20=-11.2 (c=1.0, CH 2Cl 2). 1H NMR (300MHz, CDCl 3) δ 7.74 (d, J=7.5Hz, 1H), 7.34 (d, J=7.2Hz, 1H), (6.92 t, J=7.5Hz, 1H), 4.64 (dd, J=5.4,10.8Hz, 1H), 4.29 (t, J=12.0Hz, 1H), 4.19 (q, J=7.2Hz, 2H), 3.35-3.28 (m, 1H), 2.94 (dd, J=4.5,17.1Hz, 1H), 2.40 (dd, J=8.1,16.8Hz, 1H), (2.24 s, 3H), 1.29 (t, J=7.2Hz, 3H).
Yellow oil, 98%yield, 81%ee[chiral column AD-H, normal hexane/Virahol=90/10, v=1.0mLmin -1, λ=254nm, t (major)=16.2min, t (minor)=22.1min]; [α] D 20=-26.1 (c=1.0, CH 2Cl 2). 1H NMR (300MHz, CDCl 3) δ 7.47 (dd, J=1.5,7.8Hz, 1H), 7.04 (dd, J=1.5,7.8Hz, 1H), 6.95 (t, J=8.1Hz, 1H), 4.69 (dd, J=5.4,11.4Hz, 1H), 4.35 (t, J=11.1Hz, 1H), (4.16 q, J=7.2Hz, 2H), 3.89 (s, 3H), 3.38-3.28 (m, 1H), 2.91 (dd, J=4.8,17.1Hz, 1H), 2.45 (dd, J=8.7,16.8Hz, 1H), 1.28 (t, J=7.2Hz, 3H).
Yellow oil, 98%yield, 78%ee[chiral column AD-H, normal hexane/Virahol=95/5, v=1.0mLmin -1, λ=254nm, t (major)=14.8min, t (minor)=21.6min]; [α] D 20=-13.7 (c=1.1, CHCl 3). 1H NMR (300MHz, CDCl 3) δ 7.83 (d, J=2.7Hz, 1H), 7.39-7.43 (m, 1H), 6.94 (d, J=9.0Hz, 1H), 4.61 (dd, J=5.4,11.4Hz, 1H), 4.30 (t, J=11.7Hz, 1H), 4.19 (q, J=7.2Hz, 2H), 3.36-3.26 (m, 1H), 2.92 (dd, J=4.8,17.1Hz, 1H), 2.43 (dd, J=8.1,17.4Hz, 1H), 1.28 (t, J=7.2Hz, 3H).
Figure BSA00000424713200283
Yellow oil, 93%yield, 78%ee[chiral column OD-H, normal hexane/Virahol=97/3, v=0.5mLmin -1, λ=254nm, t (minor)=29.1min, t (major)=32.1min]; [α] D 20=-12.9 (c=1.0, CHCl 3). 1H NMR (400MHz, CDCl 3) δ 7.98 (d, J=2.1Hz, 1H), 7.54 (dd, J=2.7,9.0Hz, 1H), 6.88 (d, J=8.7Hz, 1H), 4.60 (dd, J=5.4,11.1Hz, 1H), 4.29 (t, J=11.4Hz, 1H), 4.18 (q, J=7.2Hz, 2H), 3.36-3.26 (m, 1H), 2.91 (dd, J=4.5,17.1Hz, 1H), 2.43 (dd, J=8.1,17.1Hz, 1H), 1.26 (t, J=7.2Hz, 3H).
Yellow oil, 70%yield, 89%ee[chiral column AD-H, normal hexane/Virahol=97/3, v=0.7mLmin -1, λ=254nm, t (major)=21.0min, t (minor)=25.6min]; [α] D 20=-62.2 (c=1.0, CH 2Cl 2). 1H NMR (300MHz, CDCl 3) δ 8.09 (d, J=8.1Hz, 1H), 7.37 (t, J=7.2Hz, 1H), 7.26 (d, J=6.6Hz, 1H), 7.20 (t, J=7.5Hz, 1H), 4.19 (q, J=7.2Hz, 2H), (3.37-3.34 m, 2H), 3.13-3.10 (m, 1H), 2.98 (dd, J=5.1,16.8Hz, 1H), 2.60 (dd, J=6.9,16.8Hz, 1H), 1.29 (t, J=7.2Hz, 3H). 13C NMR (75MHz, CDCl 3) δ 194.5,171.6,141.7,133.2,130.3,129.6,127.3,124.9,60.8,44.4,34.3,30.8,14.1.IR (thin film): v Max(cm -1)=2980,1732,1681,1588,1437,1177,1028,765,737; MS (EI, m/z, rel.intensity) 250 (M +, 5), 163 (100); HRMS (EI) calculated value C 13H 14O 3S (M +): 250.0664. measured value: 250.0662.
Figure BSA00000424713200292
White solid, 90%yield, 0%ee[chiral column AD-H, normal hexane/Virahol=70/30, v=1.0mLmin -1, λ=254nnm, t (major)=12.7min, t (minor)=20.3min]. 1H NMR (300MHz, CDCl 3) δ 8.78 (d, J=2.7Hz, 1H), 8.34 (dd, J=2.7,9.0Hz, 1H), 7.13 (d, J=9.0Hz, 1H), 4.76 (dd, J=5.4,11.4Hz, 1H), 4.44 (t, J=11.7Hz, 1H), 4.20 (q, J=7.2Hz, 1H), 3.45-3.35 (m, 1H), 2.96 (dd, J=4.8,17.1Hz, 1H), 2.51 (dd, J=7.5,17.1Hz, 1H), 1.30 (t, J=7.2Hz, 1H). 13C NMR (75MHz, CDCl 3) δ 190.6,170.8,165.6,142.1,130.3,123.9,120.0,119.2,70.6,61.2,42.1,29.8,14.1.IR (thin film): v Max(cm -1)=2986,1731,1692,1439,1339,1012,856,750,622; MS (EI, m/z, rel.intensity) 279 (M +, 1), 192 (100); HRMS (EI) calculated value C 13H 13NO 6(M +): 279.0743. measured value: 279.0745; M.p.86-88 ℃.
Yellow oil, 59%yield, 0%ee[chiral column OB-H, normal hexane/Virahol=90/10, v=1.0mLmin -1, λ=254nmm, t (minor)=21.3min, t (major)=37.9min]. 1H NMR (300MHz, CDCl 3) δ 7.69 (d, J=7.5Hz, 1H), 7.62 (t, J=7.5Hz, 1H), 7.15-7.08 (m, 2H), 4.89 (dd, J=3.9,7.5Hz, 1H), 4.18-4.11 (m, 2H), 3.09 (dd, J=3.6,17.1Hz, 1H), 2.83 (dd, J=7.5,16.8Hz, 1H), 1.20 (t, J=7.2Hz, 3H). 13C NMR (75MHz, CDCl 3) δ 200.4,172.4,169.3,138.0,124.2,122.1,120.9,113.5,81.0,61.2,36.0,13.9.IR (thin film): v Max(cm -1)=2983,2935,1724,1615,1464,1327,1191,1026,891,760; MS (EI, m/z, rel.intensity) 220 (M +, 28), 147 (100); HRMS (EI) calculated value C 12H 12O 4(M +): 220.0736. measured value: 220.0739.

Claims (8)

1. multichiral center aza ring carbene precursor salt with quadrol skeleton, its general structure is:
* represent chiral centre;
Wherein, R 1Be aryl sulfonyl, substituted aryl alkylsulfonyl, C 1~C 16Alkyl sulphonyl, C 1~C 16Fluoro-alkyl alkylsulfonyl, aryl-acyl, substituted aryl acyl group, C 1~C 16Alkyl acyl or C 1~C 16The fluoro-alkyl acyl group;
R 2Be selected from arbitrarily phenyl or R 2With R 2Between can connect into five to octatomic ring;
R 3Be selected from arbitrarily the aryl of aryl or replacement;
Above-mentioned aryl is phenyl, naphthyl, 9-anthryl, 9-phenanthryl; Substituting group on the described substituted aryl is selected from arbitrarily F, Cl, Br, I, C 1~C 16-oxyl, C 1~C 16Alkyl or C 1~C 16Fluoro-alkyl, nitro or amino;
X is selected from arbitrarily Cl, Br, I, OTf, BF 4Or ClO 4Described Tf is trifyl.
2. multichiral center aza ring carbene precursor salt with quadrol skeleton, its general structure is:
Figure FSB00000985962500012
3. a kind of multichiral center aza ring carbene precursor salt with quadrol skeleton as claimed in claim 1, its structural molecule general formula is:
R wherein 1, R 2, R 3, X and * as claimed in claim 1.
4. synthetic method that has as claimed in claim 1 the multichiral center aza ring carbene precursor salt of quadrol skeleton is characterized in that in organic solvent and 0 ℃ to 150 ℃ that lactan, molecular formula with quadrol skeleton are H 2NNHR 3Hydrazine, Mel external cause reagent and orthoformate alkyl ester reaction 10 minutes~5 days, described lactan, molecular formula H with quadrol skeleton 2NNHR 3The mol ratio of hydrazine, Mel external cause reagent and orthoformate alkyl ester be followed successively by 1: 0.8~5: 1~5: 1~20;
Described Mel external cause reagent is trimethoxy tetrafluoride boron salt
Described lactan with quadrol skeleton has following structural formula:
Figure FSB00000985962500021
R wherein 1, R 2, R 3, X and * as claimed in claim 1.
5. a kind of synthetic method with multichiral center aza ring carbene precursor salt of quadrol skeleton as claimed in claim 4 is characterized in that described lactan with quadrol skeleton: molecular formula H 2NNHR 3Hydrazine: Mel external cause reagent: the mol ratio of orthoformate alkyl ester is followed successively by 1: 1~2: 1~2: 5~10;
Described Mel external cause reagent is trimethoxy tetrafluoride boron salt.
6. a kind of synthetic method with multichiral center aza ring carbene precursor salt of quadrol skeleton as claimed in claim 4 is characterized in that described organic solvent is chlorobenzene, benzene, tetracol phenixin, sherwood oil, tetrahydrofuran (THF), dimethyl formamide, ether, methylene dichloride, trichloromethane, toluene, dimethylbenzene, hexanaphthene, normal hexane, normal heptane, dioxane or acetonitrile.
7. a kind of synthetic method with multichiral center aza ring carbene precursor salt of quadrol skeleton as claimed in claim 4 is characterized in that products therefrom is through the Methods For Purification of recrystallization or column chromatography.
8. the purposes with multichiral center aza ring carbene precursor salt of quadrol skeleton as claimed in claim 1 or 2 is characterized in that the Benzofurantone compound that has chirality as preparation.
CN 201110024542 2011-01-21 2011-01-21 Chiral center nitrogen heterocyclic carbine precursor salt with quadrol skeleton, synthetic method and application Active CN102153557B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110024542 CN102153557B (en) 2011-01-21 2011-01-21 Chiral center nitrogen heterocyclic carbine precursor salt with quadrol skeleton, synthetic method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110024542 CN102153557B (en) 2011-01-21 2011-01-21 Chiral center nitrogen heterocyclic carbine precursor salt with quadrol skeleton, synthetic method and application

Publications (2)

Publication Number Publication Date
CN102153557A CN102153557A (en) 2011-08-17
CN102153557B true CN102153557B (en) 2013-03-20

Family

ID=44435267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110024542 Active CN102153557B (en) 2011-01-21 2011-01-21 Chiral center nitrogen heterocyclic carbine precursor salt with quadrol skeleton, synthetic method and application

Country Status (1)

Country Link
CN (1) CN102153557B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JO2998B1 (en) 2010-06-04 2016-09-05 Amgen Inc Piperidinone derivatives as mdm2 inhibitors for the treatment of cancer
JP6093770B2 (en) * 2011-09-27 2017-03-08 アムジエン・インコーポレーテツド Heterocyclic compounds as MDM2 inhibitors for the treatment of cancer
US11407721B2 (en) 2013-02-19 2022-08-09 Amgen Inc. CIS-morpholinone and other compounds as MDM2 inhibitors for the treatment of cancer
CA2902856C (en) 2013-02-28 2021-02-16 Amgen Inc. A benzoic acid derivative mdm2 inhibitor for the treatment of cancer
CA2906538C (en) 2013-03-14 2021-02-02 Ana Gonzalez Buenrostro Heteroaryl acid morpholinone compounds as mdm2 inhibitors for the treatment of cancer
JOP20200296A1 (en) 2013-06-10 2017-06-16 Amgen Inc Processes of Making and Crystalline Forms of a MDM2 Inhibitor
CN104558014B (en) * 2015-02-03 2017-04-19 中国科学院上海有机化学研究所 Chiral N-heterocyclic carbene precursor salt with 3,4-dihydroisoquinoline skeleton, synthetic method and application
CN108570030A (en) * 2018-03-16 2018-09-25 西北大学 A kind of preparation method of the double chromone derivatives of natural products

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1372844T3 (en) * 2001-03-23 2011-04-18 California Inst Of Techn High-active metal carbene metathesis catalysts prepared using a thermally activated n-heterocyclic carbene precursor
CN101066945B (en) * 2007-05-25 2010-05-19 中国科学院上海有机化学研究所 Process of synthesizing 3-substituted lactan compound
CN101125817B (en) * 2007-08-03 2011-09-14 中国科学院上海有机化学研究所 Method for synthesizing aldehyde substituted small ring amines compounds with high enantioselectivity and 3-substituted lactams compounds with optical activity
CN101220039B (en) * 2008-01-25 2010-06-09 中国科学院上海有机化学研究所 Chiral center aza ring carbene precursor salt with camphor framework, synthesizing method and uses thereof

Also Published As

Publication number Publication date
CN102153557A (en) 2011-08-17

Similar Documents

Publication Publication Date Title
CN102153557B (en) Chiral center nitrogen heterocyclic carbine precursor salt with quadrol skeleton, synthetic method and application
CN114437103B (en) Method for synthesizing chiral tetrahydrobenzoxepin compound through gold-catalyzed asymmetric cycloaddition reaction
CN102690239B (en) Synthesis method of 1, 5-benzodiazepine derivative
CN104844601A (en) Method for synthesizing optical activity spiro-oxindole tetrahydroquinoline derivative
Trulli et al. Chiral trans-carboxylic trifluoromethyl 2-imidazolines by a Ag2O-catalyzed Mannich-type reaction
CN102336698A (en) Method for synthesizing chiral indoline through palladium-catalyzed asymmetric hydrogenation
CN115093369B (en) Synthesis method of 3, 4-dihydro-isoquinoline-1-ketone compound
CN109293700A (en) Chiral diphosphine ligand, preparation method, intermediate and application
CN113072481B (en) Indolo-cyclobutane skeleton compound, synthesis method and application
CN113045530B (en) Method for preparing naphthopyran compounds by ruthenium catalysis
CN101220039B (en) Chiral center aza ring carbene precursor salt with camphor framework, synthesizing method and uses thereof
CN110143962B (en) Novel method for synthesizing benzimidazole [1,2-a ] quinoline derivative
CN116199713A (en) Chiral alpha-aminophosphonic acid derivative and preparation method thereof
CN112500419A (en) Epoxy fused 2-methylene pyrrolidine compound and preparation method thereof
CN101643456B (en) Synthesis method of symmetric 1, 3, 4-oxadiazole
CN101343263A (en) Method for synthesis of 5-nitryl-4, 5-dihydrofuran derivant
CN104558014A (en) Chiral N-heterocyclic carbene precursor salt with 3,4-dihydroisoquinoline skeleton, synthetic method and application
CN112824411B (en) Bridged ring isoindolinone derivatives, and preparation method and application thereof
CN110256349B (en) Polysubstituted pyrazoles and process for their preparation
CN113429249B (en) Method for synthesizing chiral 4-hydroxy amino acid derivative
CN108610330A (en) A kind of double tetrazole compounds of chloro-pyridine base bridging and its synthesis and application
CN101220058A (en) Chirality and non-chirality PCN pincerlike palladium compound, synthesizing method and uses
CN111808045B (en) Method for synthesizing chiral seven-element cyclic sulfonamide through organic catalysis
KR101140134B1 (en) Novel 3-arylbutenolide derivatives and its preparation method
KR101815001B1 (en) 4-Substituted-5-membered-ring-sulfamidate-5-phosphonate compounds and Method for the stereoselective preparation thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant