CN101216889A - A face image super-resolution method based on fusion of global features and local details - Google Patents
A face image super-resolution method based on fusion of global features and local details Download PDFInfo
- Publication number
- CN101216889A CN101216889A CNA2008100591307A CN200810059130A CN101216889A CN 101216889 A CN101216889 A CN 101216889A CN A2008100591307 A CNA2008100591307 A CN A2008100591307A CN 200810059130 A CN200810059130 A CN 200810059130A CN 101216889 A CN101216889 A CN 101216889A
- Authority
- CN
- China
- Prior art keywords
- resolution
- image
- residual
- sample
- low resolution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000004927 fusion Effects 0.000 title 1
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 28
- 238000013507 mapping Methods 0.000 claims abstract description 20
- 230000000694 effects Effects 0.000 claims abstract description 5
- 239000013598 vector Substances 0.000 claims description 45
- 239000011159 matrix material Substances 0.000 claims description 29
- 238000009499 grossing Methods 0.000 claims description 11
- 238000000513 principal component analysis Methods 0.000 claims description 8
- 238000005070 sampling Methods 0.000 claims description 3
- 230000001815 facial effect Effects 0.000 claims 27
- 230000004304 visual acuity Effects 0.000 claims 11
- 238000005267 amalgamation Methods 0.000 claims 8
- 239000004744 fabric Substances 0.000 claims 4
- HUTDUHSNJYTCAR-UHFFFAOYSA-N ancymidol Chemical compound C1=CC(OC)=CC=C1C(O)(C=1C=NC=NC=1)C1CC1 HUTDUHSNJYTCAR-UHFFFAOYSA-N 0.000 claims 2
- 229910000673 Indium arsenide Inorganic materials 0.000 claims 1
- LTXREWYXXSTFRX-QGZVFWFLSA-N Linagliptin Chemical compound N=1C=2N(C)C(=O)N(CC=3N=C4C=CC=CC4=C(C)N=3)C(=O)C=2N(CC#CC)C=1N1CCC[C@@H](N)C1 LTXREWYXXSTFRX-QGZVFWFLSA-N 0.000 claims 1
- 230000008676 import Effects 0.000 claims 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 6
- 238000012544 monitoring process Methods 0.000 abstract 1
- 230000006870 function Effects 0.000 description 16
- 230000009466 transformation Effects 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 9
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 210000000887 face Anatomy 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 2
- 208000004547 Hallucinations Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000012847 principal component analysis method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Image Processing (AREA)
Abstract
Description
技术领域technical field
本发明涉及数字图像处理,尤其涉及一种融合全局特征与局部细节信息的人脸图像超分辨率方法。The invention relates to digital image processing, in particular to a face image super-resolution method for fusing global features and local detail information.
背景技术Background technique
人脸超分辨率技术是一类特殊的图像超分辨率技术,目前的图像超分辨率技术大体上可以分为两类,即基于重建的图像超分辨率和基于学习的图像超分辨率,一般来说后者比前者更为有效。近年来出现了一些有代表性的基于学习的图像超分辨率技术,这些方法的主要思想是基于一个包含成对高分辨率和低分辨率图像的样本图像库进行图像超分辨率。Freeman等人提出一种基于样本的方法,他们通过马尔可夫网络(Markov Network)学习低分辨率图像和对应高分辨率图像之间的关系,并利用学习到的关系对其它低分辨率图像进行超分辨率,此项工作公布于1999年IEEE国际计算机视觉会议上(IEEE InternationalConference on Computer Vision,(1999)1182~1189)。Hertzmann等人在2001年的ACM图形学会议(ACM SIGGRAPH 2001)上提出一种通用的局部特征转换方法,称为“图像类推”(Image Analogies)。他们采用多尺度自回归(Multi-scaleAuto-regression)方法学习高-低分辨率图像对之间的局部相似性,并以此为依据进行图像超分辨率。这些方法更适合处理一般图像的超分辨率问题,因为他们没有考虑人脸图像的特殊属性。Baker和Kanade在2000年IEEE自动人脸和姿态识别国际会议上公布首次提出“人脸幻想”(Face Hallucination)技术,他们将人脸图像梯度信息的空间分布作为先验知识,并采用贝叶斯推理手段从低分辨率人脸图像得到高分辨率人脸图像。这种方法依赖于十分复杂的概率模型。Ce Liu在2001年IEEE计算机视觉与模式识别国际会议上(IEEE ComputerSociety Conference on Computer Vision and Pattern Recognition.Kauai Marriott,Hawaii(2001)192-198)公布了一种两步人脸幻想方法达到了同样的目的。Wang等人基于特征转换(Eigen-transformation)算法开发了一种高效的人脸超分辨率技术。他们基于主成分分析(PCA),用低分辨率样本人脸图像的线性组合来逼近输入人脸图像并求解组合系数。保留这些组合系数,并将低分辨率人脸图像替换为高分辨率样本人脸图像,即可通过线性组合来合成高分辨率人脸图像。但是这种方法只考虑到全局图像特征,而忽略了局部细节信息,造成合成的图像在局部区域不清晰,缺乏细节特征,这项工作出现在2005年的IEEE汇刊上(IEEE Trans.on Systems,Man,and Cybernetics,Part-C.2005,35(3):425~434)。Face super-resolution technology is a special kind of image super-resolution technology. The current image super-resolution technology can be roughly divided into two categories, namely, image super-resolution based on reconstruction and image super-resolution based on learning. The latter is more effective than the former. In recent years, some representative learning-based image super-resolution techniques have emerged. The main idea of these methods is to perform image super-resolution based on a sample image library containing pairs of high-resolution and low-resolution images. Freeman et al. proposed a sample-based method. They learned the relationship between low-resolution images and corresponding high-resolution images through Markov Networks, and used the learned relationship to process other low-resolution images. Super-resolution, this work was announced at the IEEE International Conference on Computer Vision in 1999 (IEEE International Conference on Computer Vision, (1999) 1182-1189). Hertzmann et al proposed a general local feature conversion method called "Image Analogies" at the 2001 ACM Graphics Conference (ACM SIGGRAPH 2001). They used a multi-scale auto-regression (Multi-scale Auto-regression) method to learn the local similarity between high-low resolution image pairs, and based on this, image super-resolution was performed. These methods are more suitable for super-resolution problems of general images, because they do not consider the special properties of face images. Baker and Kanade announced the first "Face Hallucination" technology at the 2000 IEEE International Conference on Automatic Face and Pose Recognition. They used the spatial distribution of face image gradient information as prior knowledge, and used Bayesian The inference means obtains a high-resolution face image from a low-resolution face image. This approach relies on very complex probabilistic models. Ce Liu announced a two-step face fantasy method at the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai Marriott, Hawaii (2001) 192-198 to achieve the same Purpose. Wang et al. developed an efficient face super-resolution technique based on the Eigen-transformation algorithm. Based on Principal Component Analysis (PCA), they approximate the input face image with a linear combination of low-resolution sample face images and solve for the combination coefficients. By keeping these combination coefficients and replacing low-resolution face images with high-resolution sample face images, high-resolution face images can be synthesized through linear combination. However, this method only considers the global image features, while ignoring the local detail information, causing the synthesized image to be unclear in the local area and lacking detail features. This work appeared in the 2005 IEEE Transactions (IEEE Trans.on Systems , Man, and Cybernetics, Part-C.2005, 35(3): 425-434).
在视频监控应用中,由于视频分辨率不高、人脸距镜头过远等原因,人脸部分的图像分辨率太低,辨识度太差,对人的身份识别造成困难。人脸超分辨率技术能够根据低分辨率的人脸图像合理“推导”出高分辨率人脸图像,增加图像中人脸的辨识度,将在人脸识别以及视频监控领域得到广泛应用。In video surveillance applications, due to the low resolution of the video and the fact that the face is too far away from the lens, the image resolution of the face part is too low and the recognition is too poor, which makes it difficult to identify people. Face super-resolution technology can reasonably "deduce" high-resolution face images based on low-resolution face images, increase the recognition of faces in images, and will be widely used in the fields of face recognition and video surveillance.
发明内容Contents of the invention
本发明的目的是提供一种融合全局特征与局部细节信息的人脸图像超分辨率方法,包括如下步骤:The object of the present invention is to provide a method for super-resolution of human face images that fuses global features and local detail information, comprising the following steps:
1)根据低分辨率和高分辨率人脸图像的样本数据,采用局部保持映射算法建立转换向量;1) According to the sample data of low-resolution and high-resolution face images, a transformation vector is established using a locality-preserving mapping algorithm;
2)采用局部保持映射算法提取低分辨率样本人脸图像的本征特征;2) Using a local preserving mapping algorithm to extract the intrinsic features of the low-resolution sample face image;
3)采用径向基函数回归在低分辨率人脸图像的本征特征和对应高分辨率人脸图像间建立关联;3) Using radial basis function regression to establish a correlation between the intrinsic features of the low-resolution face image and the corresponding high-resolution face image;
4)将输入的低分辨率人脸图像投影到转换向量上得到本征特征,将此本征特征作为径向基函数的输入,得到全局的高分辨率人脸图像;4) Project the input low-resolution face image onto the transformation vector to obtain intrinsic features, and use this intrinsic feature as the input of the radial basis function to obtain a global high-resolution face image;
5)根据样本图像建立高分辨率和低分辨率样本残差图像块矩阵;5) Establish high-resolution and low-resolution sample residual image block matrices according to the sample image;
6)计算由k个最接近的低分辨率样本残差图像块重建输入的低分辨率残差图像块的权重,然后将低分辨率残差图像块替换为高分辨率样本残差图像块,加权合成高分辨率残差图像块;6) Calculate the weight of the low-resolution residual image block reconstructed from the k nearest low-resolution sample residual image blocks, and then replace the low-resolution residual image block with a high-resolution sample residual image block, Weighted synthesis of high-resolution residual image patches;
7)组合高分辨率残差图像块并用线性平滑算子进行平滑,得到高分辨率的残差人脸图像;7) Combining high-resolution residual image blocks and smoothing with a linear smoothing operator to obtain a high-resolution residual face image;
8)将步骤7)得到的高分辨率的残差人脸图像与步骤4)得到的全局高分辨率人脸图像相加得到最终超分辨率结果。8) Add the high-resolution residual face image obtained in step 7) to the global high-resolution face image obtained in step 4) to obtain the final super-resolution result.
所述的采用局部保持映射算法建立转换向量包括如下步骤:The described establishment of the conversion vector by adopting the local preserving mapping algorithm comprises the following steps:
1)设P是n幅高分辨率样本人脸图像,P=p1,…,pn,维度为m;Q是对应的n幅低分辨率样本人脸图像,Q=q1,…,qn,维度为d,采用主成分分析对低分辨率样本人脸图像Q进行降维,得到特征向量U和特征系数V;1) Let P be n pieces of high-resolution sample face images, P=p 1 ,...,p n , and the dimension is m; Q is the corresponding n pieces of low-resolution sample face images, Q=q 1 ,..., q n , the dimension is d, using principal component analysis to reduce the dimensionality of the low-resolution sample face image Q, and obtain the feature vector U and feature coefficient V;
2)在特征向量U表示的子空间中计算任意两幅人脸图像qi和qj间的距离,并在样本空间中为每幅图像q选择k个最近邻,构造反映数据集局部拓扑结构的邻域图;2) Calculate the distance between any two face images q i and q j in the subspace represented by the eigenvector U, and select k nearest neighbors for each image q in the sample space, and construct a structure that reflects the local topology of the data set Neighborhood map;
3)如果人脸图像qi是人脸图像qj的k个近邻之一或人脸图像qj是人脸图像qi的k个近邻之一,权重设置为Wij=‖qi-qj‖2,否则Wij=0;3) If the face image q i is one of the k neighbors of the face image q j or the face image q j is one of the k neighbors of the face image q i , the weight is set to W ij =‖q i -q j ‖ 2 , otherwise W ij =0;
4)计算转换向量的公式为:QLQTa1=λQDQTa1其中Dii=∑jWji,而L=D-W是拉普拉斯矩阵,设求解得到的特征值为λi(l=1,...L),用
所述的采用局部保持映射算法提取低分辨率样本人脸图像的本征特征:通过公式ytr=ATQ计算样本低分辨率人脸图像的本征特征ytr,其中Q是低分辨率样本人脸图像,A是采用局部保持映射算法建立的转换向量。The described adopting the part-preserving mapping algorithm to extract the eigenfeatures of the low-resolution sample face images: calculate the eigenfeatures ytr of the sample low-resolution face images by the formula ytr = ATQ , wherein Q is the low-resolution The sample face image, A is the transformation vector established by the locality preserving mapping algorithm.
所述的采用径向基函数回归在低分辨率人脸图像的本征特征和对应高分辨率人脸图像间建立关联方法如下:径向基函数的基本形式为
所述的生成全局高分辨率人脸图像包括如下步骤:The described generation global high-resolution face image comprises the steps:
1)将输入的低分辨率人脸图像qin投影到转换向量A上,得到qin在低维流形空间中的坐标yin,yin=ATqin;1) Project the input low-resolution face image q in onto the conversion vector A, and obtain the coordinate y in of q in in the low-dimensional manifold space, y in = AT q in ;
2)将yin作为输入数据,根据k(yi tr,yj tr)计算矩阵K,并根据P=WK计算全局高分辨率人脸图像pout。2) Take y in as input data, calculate the matrix K according to k(y i tr , y j tr ), and calculate the global high-resolution face image p out according to P=WK.
所述的根据样本图像建立高分辨率和低分辨率样本残差图像块矩阵方法如下:设Il是样本低分辨率人脸图像,而Ih是对应的全局高分辨率人脸图像,则低分辨率的残差人脸Rl为Rl=Il-D(Ih),其中D(·)是下采样函数;高分辨率的残差人脸Rh为Rh=Io-Ih,其中Io是原始高分辨率人脸图像,重新令Il为低分辨率样本残差人脸图像,令Ih为高分辨率样本残差人脸图像,将它们划分为相同数目的图像小块,每一对高-低分辨率图像小块均满足一一对应关系;定义Pt l(i,j)为Il中的低分辨率残差小块,中心为vij l,Pt h(i,j)为Ih中的高分辨率残差小块,中心为vij h,将Pt l(i,j)固定为nl×nl大小,nl为奇数,将Pt h(i,j)固定为nh×nh大小,nl和nh之间满足nh=λnl,其中λ是缩放因子;Il中低分辨率小块之间的重叠尺寸设为(nl-1)/2,而Ih中高分辨率小块之间的重叠尺寸设为(odd(nh)-1)/2,其中函数odd(x)的作用是找到不大于x的最大的奇数;一旦确定vij l,Pt l(i,j)即为已知,而且Pt h(i,j)的位置也确定,小块中心点的坐标可计算如下:The described method for establishing high-resolution and low-resolution sample residual image block matrices according to sample images is as follows: Let I l be a sample low-resolution face image, and I h be a corresponding global high-resolution face image, then The low-resolution residual face R l is R l =I l -D(I h ), where D( ) is a downsampling function; the high-resolution residual face R h is R h =I o - I h , where I o is the original high-resolution face image, let I l be the low-resolution sample residual face image again, let I h be the high-resolution sample residual face image, divide them into the same number Each pair of high-low resolution image small blocks satisfies a one-to-one correspondence; define P t l (i, j) as the low-resolution residual small block in I l , and the center is v ij l , P t h (i, j) is the high-resolution residual block in I h , the center is v ij h , and P t l (i, j) is fixed to n l × n l size, n l is an odd number , fix P t h ( i, j) to n h ×n h size, n h = λn l between n l and n h , where λ is the scaling factor; The overlapping size is set to (n l -1)/2, and the overlapping size between high-resolution small blocks in I h is set to (odd(n h )-1)/2, where the function of odd(x) is to find The largest odd number not greater than x; once v ij l is determined, P t l (i, j) is known, and the position of P t h (i, j) is also determined, the coordinates of the center point of the small block can be calculated as follows :
ka和kb为:k a and k b are:
其中mod(·)为取模运算;Among them, mod( ) is a modulo operation;
每幅残差人脸图像就是一个图像小块矩阵,位于矩阵中第i行第j列的图像小块表示为Pt(i,j)。Each residual face image is an image block matrix, and the image block located in row i and column j in the matrix is denoted as P t (i, j).
计算由k个最接近的低分辨率样本残差图像块重建输入的低分辨率残差图像块的权重,然后将低分辨率残差图像块替换为高分辨率样本残差图像块,加权合成高分辨率残差图像块包括如下步骤:Calculate the weight of the input low-resolution residual image patch reconstructed from the k nearest low-resolution sample residual image patches, and then replace the low-resolution residual image patch with a high-resolution sample residual image patch, weighted synthesis The high-resolution residual image block includes the following steps:
1)在输入的低分辨率图像上减除下采样后的全局高分辨率人脸图像得到输入的低分辨率残差人脸图像Rin l,将Rin l划分为相互重叠的残差小块Pt in(i,j),i=1,…,r;j=1,…,c,其中r和c分别是图像块矩阵的行数和列数,i和j的初始值均为1;1) Subtract the down-sampled global high-resolution face image from the input low-resolution image to obtain the input low-resolution residual face image R in l , divide R in l into overlapping residual small Block P t in (i, j), i=1,...,r; j=1,...,c, where r and c are the number of rows and columns of the image block matrix respectively, and the initial values of i and j are both 1;
2)如果i>r或j>c,算法终止;2) If i>r or j>c, the algorithm terminates;
否则,对于当前Pt in(i,j),在Pt(m) l(i,j)中基于欧氏距离找到它的k近邻,m=1,…,n,这些k近邻表示为Pt(k) l(i,j),k=1,…,K,K≤n;Otherwise, for the current P t in (i, j), find its k-nearest neighbors in P t(m) l (i, j) based on Euclidean distance, m=1,...,n, these k-nearest neighbors are denoted as P t(k) l (i, j), k=1,..., K, K≤n;
3)为Pt(k) l(i,j)计算权重;这是通过在
4)基于w计算高分辨率的残差图像块
5)如果j<c,则令j=j+1;否则令i=i+1和j=1,转步骤2)。5) If j<c, set j=j+1; otherwise, set i=i+1 and j=1, go to step 2).
所述的生成高分辨率残差人脸图像包括如下步骤:The described generation high-resolution residual face image comprises the steps:
1)将残差图像小块叠加起来得到初始的高分辨率残差人脸图像;1) Superimpose the residual image small blocks to obtain the initial high-resolution residual face image;
2)假设Rh是所有残差图像块的简单叠加,在每个像素位置上定义平滑算子SMO对Rh(x,y)进行平滑,SMO定义为:2) Assuming that R h is a simple superposition of all residual image blocks, a smoothing operator SMO is defined at each pixel position to smooth R h (x, y). SMO is defined as:
其中1≤p≤r,1≤q≤c,r和c分别是图像块矩阵的行数和列数,对于Rh(x,y)的平滑操作是线性运算Rh(x,y)=Rh(x,y)·SMO(x,y)。Where 1≤p≤r, 1≤q≤c, r and c are the number of rows and columns of the image block matrix respectively, and the smoothing operation for R h (x, y) is a linear operation R h (x, y) = R h (x, y) · SMO (x, y).
本发明具有的有益效果:The beneficial effect that the present invention has:
1)局部保持映射算法是线性的,而且象主成分分析一样显式的给出一组转换向量。这表明局部保持映射算法可以通过一个线性投影很容易的处理样本数据集外的数据,在推广性上要好于主成分分析方法。1) The local preservation mapping algorithm is linear, and a set of conversion vectors is given explicitly like principal component analysis. This shows that the locality-preserving mapping algorithm can easily deal with data outside the sample data set through a linear projection, and is better than the principal component analysis method in terms of generalization.
2)本方法将局部保持映射和径向基函数有机结合在一起。局部保持映射捕捉样本图像的最本质特征,径向基函数回归在图像本征特征和原始图像间建立关联。与线性主成分分析相比,该算法合成的全局高分辨率人脸图像更接近真实人脸,而且计算效率很高。2) This method organically combines locality-preserving mapping and radial basis functions. The local preserving mapping captures the most essential features of the sample image, and the radial basis function regression establishes a relationship between the intrinsic features of the image and the original image. Compared with linear principal component analysis, the global high-resolution face image synthesized by this algorithm is closer to the real face, and the calculation efficiency is high.
3)第二阶段寻找kNN时的搜索策略是“位置相关的”,这就意味着当在样本图像块中搜索与特定位置上输入图像块最接近的数据时,只需遍历同一位置上的样本数据即可。这不会造成人脸图像质量的下降,因为出现在同一位置的人脸图像块大致反映人脸同一部位的特征,而kNN也最可能出现在这些样本块中。另外,kNN算法是应用在低分辨率图像块上。这些特点极大降低了kNN搜索的计算复杂度。3) The search strategy for kNN in the second stage is "position-dependent", which means that when searching for the data closest to the input image block at a specific position in the sample image block, only need to traverse the samples at the same position data. This will not cause a decrease in the quality of the face image, because the face image blocks that appear in the same position roughly reflect the features of the same part of the face, and kNN is also most likely to appear in these sample blocks. In addition, the kNN algorithm is applied to low-resolution image blocks. These features greatly reduce the computational complexity of kNN search.
附图说明Description of drawings
图1是本发明中具有不同参数的局部保持映射算法生成的全局高分辨率人脸示意图;Fig. 1 is a schematic diagram of a global high-resolution human face generated by a local preservation mapping algorithm with different parameters in the present invention;
图2是本发明中高分辨率和低分辨率图像残差小块间的一一对应关系;Fig. 2 is a one-to-one correspondence between high resolution and low resolution image residual small blocks in the present invention;
图3是本发明中相邻的四个残差小块相互重叠情况示意图;Fig. 3 is a schematic diagram of the mutual overlapping of four adjacent residual small blocks in the present invention;
图4是本发明中整幅图像上残差小块相互重叠情况示意图;Fig. 4 is a schematic diagram of the overlapping situation of residual small blocks on the entire image in the present invention;
图5是本发明中全局高分辨率人脸和高分辨率残差人脸图像叠加形成的最终超分辨率效果示意图;Fig. 5 is a schematic diagram of the final super-resolution effect formed by superimposing the global high-resolution face and the high-resolution residual face image in the present invention;
图6(a)是原始低分辨率图像;Figure 6(a) is the original low-resolution image;
图6(b)是根据原始低分辨率图像直接插值得到的高分辨率图像;Figure 6(b) is a high-resolution image obtained by direct interpolation from the original low-resolution image;
图6(c)是采用本发明所述方法得到的高分辨率图像;Fig. 6 (c) is the high-resolution image obtained by adopting the method of the present invention;
图6(d)是真实的高分辨率图像;Figure 6(d) is the real high-resolution image;
图7(a)是在体育场中实际拍摄的低分辨率原始图像;Figure 7(a) is the low-resolution original image actually taken in the stadium;
图7(b)中从左到右依次为低分辨率原始人脸图像、插值得到的高分辨率人脸图像、采用本发明所述方法得到的高分辨率人脸图像;From left to right in Fig. 7 (b) is successively low-resolution original human face image, the high-resolution human face image that interpolation obtains, adopts the high-resolution human face image that method of the present invention obtains;
图8(a)是在实验室中实际拍摄的低分辨率原始图像;Figure 8(a) is the low-resolution original image actually taken in the laboratory;
图8(b)中从左到右依次为低分辨率原始人脸图像、插值得到的高分辨率人脸图像、采用本发明所述方法得到的高分辨率人脸图像;In Fig. 8 (b), from left to right, it is the low-resolution original human face image, the high-resolution human face image obtained by interpolation, and the high-resolution human face image obtained by the method of the present invention;
具体实施方式Detailed ways
融合全局特征与局部细节信息的人脸图像超分辨率方法实施如下:The face image super-resolution method that combines global features and local detail information is implemented as follows:
1)采用局部保持映射算法提取样本低分辨率人脸图像的本征特征。我们在亚洲人脸图像数据库上验证本发明所述方法。PF01数据库中的人脸图像来自56名男性和51名女性共107名志愿者,每人有17幅具有不同外观特征的图像(1幅正面人脸,4幅包含光照变化,8幅包含姿态变化,余下4幅具有表情变化)。在所有的志愿者中,24位男性和8位女性佩戴了眼镜。大部分志愿者的年龄在20到30岁之间。由于本发明的目的是在均匀光照条件下进行正面人脸图像的超分辨率,去除具有光照和姿态变化的人脸图像,构造一个包含321幅图像的新数据集(为每人保留1幅正面图像和2幅具有典型表情变化的图像)。所有样本图像经过了初步配准,保证人的瞳孔大致位于图像的同一位置。在此基础上,进一步手工调整图像分辨率为96×128。设P=p1,…,p60是60幅高分辨率样本人脸图像,维度为12288;Q=q1,…,q60是对应的60幅低分辨率样本人脸图像,维度为768,采用主成分分析对Q进行降维,得到特征向量U和特征系数V;在U表示的子空间中计算任意两幅人脸图像qi和qj间的距离,并在样本空间中为每幅图像q选择30个最近邻,构造反映数据集局部拓扑结构的邻域图;设置权重:如果qi是qj的k个近邻之一或qj是qi的k个近邻之一,权重设置为Wij=‖qi-qj‖2,否则Wij=0;计算转换向量:解如下推广的特征值问题:QLQTa1=λQDQTa1,其中Dii=∑jWji,而L=D-W是拉普拉斯矩阵,设求解得到的特征值为λl(l=1,...L),用
2)采用低分辨率样本图像的本征特征和对应的高分辨率样本图像训练径向基函数。RBF的基本形式为
3)将输入的低分辨率人脸图像投影至转换向量。低分辨率人脸图像的维度是768,共提取了50个转换向量,则转换向量构成一个768×50矩阵,输入的低分辨率人脸图像是一个1×768向量,此向量与转换向量矩阵运算后得到一个1×50的向量,即为输入低分辨率人脸图像的本征特征,上面的运算可表示为yin=ATqin,其中A是转换向量,qin是输入的低分辨率人脸图像,yin是本征特征。3) Project the input low-resolution face image to the transformation vector. The dimension of the low-resolution face image is 768, and a total of 50 transformation vectors are extracted. The transformation vector forms a 768×50 matrix. The input low-resolution face image is a 1×768 vector. This vector and the transformation vector matrix After the operation, a 1×50 vector is obtained, which is the intrinsic feature of the input low-resolution face image. The above operation can be expressed as y in = AT q in , where A is the conversion vector, and q in is the input low-resolution face image. resolution face image, yin is the intrinsic feature.
4)利用径向基函数回归得到全局高分辨率人脸图像。设全局高分辨率人脸图像pout的维度为N,pout可以根据yin和前面获得的W运算得到,公式为pout=yinW,其中W是50×12288矩阵。用k和h分别表示每幅人脸图像在局部保持算法中的近邻数目和转换向量的个数。我们在一个包含75幅图像的样本数据集上测试了该算法,在不同的k和h下合成的全局高分辨率人脸如图1所示。第一行中的图像是真实的高分辨率人脸,对第二、三、四行而言,将邻域大小分别指定为5、15和30。对每一个k,分别计算从10到70个不同数目的转换向量,从而形成一个3×7的人脸矩阵。图1表明当转换向量很少时,不同的k将使得合成的人脸图像有很大差别;而当转换向量个数逐渐增多时,算法将收敛到一个优化的值,在不同k下得到的结果趋于一致。这说明与邻域大小相比,转换向量的个数对于LPH算法而言是更为关键的因素。当k=30,h=70时得到最理想的结果。4) Using radial basis function regression to obtain a global high-resolution face image. Assuming that the dimension of the global high-resolution face image p out is N, p out can be calculated according to y in and the previously obtained W, and the formula is p out = y in W, where W is a 50×12288 matrix. Use k and h to represent the number of neighbors and the number of transformation vectors of each face image in the local preservation algorithm, respectively. We tested the algorithm on a sample dataset of 75 images, and synthesized global high-resolution faces at different k and h are shown in Fig. 1. The images in the first row are real high-resolution faces, and for the second, third, and fourth rows, the neighborhood sizes are specified as 5, 15, and 30, respectively. For each k, different numbers of transformation vectors from 10 to 70 are calculated to form a 3×7 face matrix. Figure 1 shows that when there are few conversion vectors, different k will make the synthesized face images very different; and when the number of conversion vectors gradually increases, the algorithm will converge to an optimized value, and the obtained results under different k The results tend to be consistent. This shows that compared with the size of the neighborhood, the number of transformation vectors is a more critical factor for the LPH algorithm. The best results are obtained when k=30 and h=70.
5)通过对图像进行下采样和差分合成样本残差图像,并进一步将残差图像划分为图像小块。设Il是样本低分辨率人脸图像,而Ih是对应的全局高分辨率人脸图像,则低分辨率的残差人脸Rl为Rl=Il-D(Ih),其中D(·)是下采样函数,将图像从96×128下采样至24×32;高分辨率的残差人脸Rh为Rh=Io-Ih,其中Io是原始高分辨率人脸图像,重新令Il为低分辨率样本残差人脸图像,令Ih为高分辨率样本残差人脸图像,将它们划分为相同数目的图像小块,每一对高-低分辨率图像小块均满足一一对应关系,高分辨率和低分辨率图像小块间的一一对应关系如图2所示;定义Pt l(i,j)为Il中的低分辨率残差小块,中心为vij l,Pt h(i,j)为Ih中的高分辨率残差小块,中心为vij h,将Pt l(i,j)固定为nl×nl大小,nl设为3,将Ph t(i,j)固定为nh×nh大小,nh设为12,nl和nh之间满足nh=λnl,其中λ是缩放因子,这里是4;Il中低分辨率小块之间的重叠尺寸设为(nl-1)/2=1,而Ih中高分辨率小块之间的重叠尺寸设为(odd(nh)-1)/2=5,其中函数odd(x)的作用是找到不大于x的最大的奇数;一旦确定vij l,Pt l(i,j)即为已知,而且Pt h(i,j)的位置也可唯一确定,小块中心点的坐标可计算如下:5) Synthesize the sample residual image by down-sampling and difference of the image, and further divide the residual image into small image blocks. Suppose I l is a sample low-resolution face image, and I h is the corresponding global high-resolution face image, then the low-resolution residual face R l is R l = I l -D(I h ), where D(·) is the downsampling function, which downsamples the image from 96×128 to 24×32; the high-resolution residual face R h is Rh = I o -I h , where I o is the original high-resolution High-rate face image, let I l be the low-resolution sample residual face image again, let I h be the high-resolution sample residual face image, divide them into the same number of small image blocks, each pair of high- The small blocks of the low-resolution image all satisfy the one-to - one correspondence, and the one-to-one correspondence between the small blocks of the high-resolution and low-resolution images is shown in Figure 2; define P t l (i, j) as the low The resolution residual small block, the center is v ij l , P t h (i, j) is the high-resolution residual small block in I h , the center is v ij h , and P t l (i, j) is fixed n l ×n l size, n l is set to 3, Ph t ( i, j) is fixed to n h ×n h size, n h is set to 12, n h = λn is satisfied between n l and n h l , where λ is the scaling factor, here is 4; the overlap size between low-resolution patches in I l is set to (n l -1)/2=1, and the overlap between high-resolution patches in I h The size is set to (odd(n h )-1)/2=5, where the function of odd(x) is to find the largest odd number not greater than x; once v ij l is determined, P t l (i, j) is is known, and the position of P t h (i, j) can also be uniquely determined, the coordinates of the center point of the small block can be calculated as follows:
ka和kb为:k a and k b are:
其中mod(·)为取模运算;Among them, mod( ) is a modulo operation;
6)根据输入的低分辨率图像提取残差图像,将此残差图像划分为小块,并在低分辨率样本图像小块中搜索30个近邻。提取输入图像的残差图像是通过下述方法完成:用第五步中的D(·)对合成的高分辨率全局图像进行下采样,再用输入的低分辨率图像减除下采样后的图像。将每幅残差人脸图像看作一个图像小块矩阵,位于矩阵中第i行第j列的图像小块表示为Pt(i,j),每个小块包含n×n像素,并且每个小块与它上下左右四个相邻小块重叠区域的尺寸为(n-1)/2,相互重叠的图像小块结构如图3所示。设Pt(k) l(i,j)是输入的低分辨率残差小块Pt in(i,j)在样本集合中的30个最近邻,Pt(k) l(i,j)可通过欧式距离直接计算得到。6) Extract the residual image according to the input low-resolution image, divide the residual image into small blocks, and search for 30 neighbors in the small blocks of the low-resolution sample image. Extracting the residual image of the input image is accomplished by downsampling the synthesized high-resolution global image with D( ) in the fifth step, and subtracting the downsampled image. Each residual face image is regarded as an image patch matrix, and the image patch located in row i and column j of the matrix is represented as P t (i, j), each patch contains n×n pixels, and The size of the overlapping area between each small block and its four adjacent small blocks up, down, left, and right is (n-1)/2, and the image small block structure overlapping with each other is shown in FIG. 3 . Let P t(k) l (i, j) be the 30 nearest neighbors of the input low-resolution residual block P t in (i, j) in the sample set, P t(k) l (i, j ) can be directly calculated by Euclidean distance.
7)计算由30个最近邻Pt(k) l(i,j)重建Pt in(i,j)的权重w1,...w30,根据低分辨率残差图像块和高分辨率残差图像块间的一一对应关系将30个最接近的低分辨率残差图像块替换为对应的高分辨率残差图像块,用同样的权重合成对应的高分辨率残差图像块Pt out(i,j)。为Pt(k) l(i,j)计算权重是通过在
8)将相互重叠的高分辨率残差图像块集成在一起,形成整幅的高分辨率残差图像,并采用平滑算子对图像进行平滑,再与全局高分辨率人脸图像叠加形成最终超分辨率效果。8) Integrate the overlapping high-resolution residual image blocks together to form the entire high-resolution residual image, and use a smoothing operator to smooth the image, and then superimpose it with the global high-resolution face image to form the final Super resolution effect.
合成的残差小块彼此重叠,带来了冗余的图像高频特征,这会使合成的人脸看起来比较尖锐。我们根据残差小块结构提出一个线性平滑算子解决这个问题。假设Rh是所有残差图像块的简单叠加,在每个像素位置(x,y)上定义平滑算子SMO对Rh(x,y)进行平滑,SMO定义为:The synthesized residual patches overlap each other, which brings redundant image high-frequency features, which makes the synthesized face look sharper. We propose a linear smoothing operator based on the residual patch structure to solve this problem. Assuming that R h is a simple superposition of all residual image blocks, a smoothing operator SMO is defined at each pixel position (x, y) to smooth R h (x, y). SMO is defined as:
其中1≤p≤r,1≤q≤c,r和c分别是图像块矩阵的行数和列数,显然SMO与Rh具有相同的维度。对于Rh(x,y)的平滑操作是一个简单的线性运算Rh(x,y)=Rh(x,y)·SMO(x,y)。根据此线性平滑算子,对于几个相邻小块重叠的像素位置,平滑后的像素值是这些小块对应像素值的代数平均。相互重叠的残差小块可由图4描述。根据图像块矩阵,Rh中深灰色的区域被4个残差小块同时覆盖,浅灰色区域则被2个残差小块覆盖。where 1 ≤ p ≤ r, 1 ≤ q ≤ c, r and c are the number of rows and columns of the image block matrix respectively, obviously SMO has the same dimension as R h . The smoothing operation for R h (x, y) is a simple linear operation R h (x, y)=R h (x, y)·SMO(x, y). According to this linear smoothing operator, for pixel positions where several adjacent small blocks overlap, the smoothed pixel value is the algebraic average of the corresponding pixel values of these small blocks. The overlapping residual blocks can be described by Fig. 4 . According to the image block matrix, the dark gray area in Rh is covered by 4 residual small blocks at the same time, and the light gray area is covered by 2 residual small blocks.
将平滑后的高分辨率残差人脸与先前得到的全局高分辨率人脸图像叠加即可得到最终的超分辨率结果,如图5所示。The final super-resolution result can be obtained by superimposing the smoothed high-resolution residual face with the previously obtained global high-resolution face image, as shown in Figure 5.
为了验证本发明所述的方法,我们提供了两组超分辨率实例。即分别针对数据库中正面无遮挡的人脸图像和实际拍摄的图像进行超分辨率。To validate the method described in the present invention, we provide two sets of super-resolution examples. That is, super-resolution is performed on the frontal unoccluded face images in the database and the actual captured images.
实施例1Example 1
数据库中正面无遮挡人脸图像的超分辨率实施例:Example of super-resolution of frontal unoccluded face images in the database:
目的是根据一幅中性表情的低分辨率正面人脸图像生成对应的高分辨率人脸。在数据库中107个志愿者中选择75名没有佩戴眼镜的,将他们的正面人脸图像作为实验数据集,其中60幅图像用来合成样本集,15幅图像用做测试数据。首先将60幅96×128的高分辨率人脸图像下采样至24×32,将这60个高-低分辨率人脸图像对作为样本数据。The goal is to generate a corresponding high-resolution face from a low-resolution frontal face image with a neutral expression. Among the 107 volunteers in the database, 75 without glasses were selected, and their frontal face images were used as the experimental data set, of which 60 images were used to synthesize the sample set, and 15 images were used as test data. First, 60 high-resolution face images of 96×128 are down-sampled to 24×32, and these 60 high-low resolution face image pairs are used as sample data.
在局部保持映射算法中转换向量的数目比邻域大小更为关键,这里将邻域大小固定为30,同时将转换向量的个数设定为50。在残差小块合成算法的kNN搜索中,近邻小块的数目同样设定为30。进行残差块合成时,将高-低分辨率的样本残差图像分别划分成同样数目的残差小块,低分辨率小块尺寸为3×3,高分辨率小块尺寸为12×12。在这组实验中,使用50个转换向量就能得到很理想的全局人脸图像。残差人脸图像蕴涵了图像高频信息,用来补偿全局人脸的细节特征,最终的结果不仅清晰而且很接近真实的图像,超分辨率结果如图6所示。图6中,(a)为输入的低分辨率人脸图像,(b)为通过简单双三次插值获得的超分辨率结果,(c)为通过本发明所述方法得到的超分辨率结果,(d)为真实的高分辨率人脸图像。In the local preserving mapping algorithm, the number of transformation vectors is more critical than the size of the neighborhood. Here, the size of the neighborhood is fixed at 30, and the number of transformation vectors is set at 50. In the kNN search of the residual small block synthesis algorithm, the number of neighboring small blocks is also set to 30. When performing residual block synthesis, the high-low resolution sample residual image is divided into the same number of residual small blocks, the size of the low-resolution small block is 3×3, and the size of the high-resolution small block is 12×12 . In this set of experiments, an ideal global face image can be obtained using 50 transformation vectors. The residual face image contains high-frequency information of the image, which is used to compensate the detailed features of the global face. The final result is not only clear but also very close to the real image. The super-resolution result is shown in Figure 6. In Fig. 6, (a) is the low-resolution face image of input, (b) is the super-resolution result obtained by simple bicubic interpolation, (c) is the super-resolution result obtained by the method of the present invention, (d) is a real high-resolution face image.
实施例2Example 2
实际拍摄图像的超分辨率实施例:Super-resolution example of an actual captured image:
为进一步验证本发明所述方法的效果,我们在实拍图像上进行超分辨率。依然采用实例1中所述的60个高-低分辨率人脸图像对作为样本数据,局部保持映射算法中的转换向量个数为50,邻域大小为30。进行图像残差块合成时,低分辨率小块尺寸为3×3,高分辨率小块尺寸为12×12,近邻小块的数目同样设定为30。In order to further verify the effect of the method described in the present invention, we perform super-resolution on real-shot images. Still using the 60 high-low resolution face image pairs described in Example 1 as sample data, the number of transformation vectors in the local preserving mapping algorithm is 50, and the neighborhood size is 30. When compositing image residual blocks, the size of low-resolution small blocks is 3×3, the size of high-resolution small blocks is 12×12, and the number of adjacent small blocks is also set to 30.
图7(a)是一幅在体育场中用手机拍摄的低分辨率人脸图像,在此图像上手工提取人脸区域并用不同的方法进行超分辨率,结果如图7(b)所示。图7(b)中的三幅图像从左到右分别为原始低分辨率图像、三次B样条插值的结果、用本发明所述方法得到的结果。Figure 7(a) is a low-resolution face image taken with a mobile phone in a stadium. The face area is manually extracted from this image and super-resolution is performed with different methods. The result is shown in Figure 7(b). From left to right, the three images in Fig. 7(b) are the original low-resolution image, the result of cubic B-spline interpolation, and the result obtained by the method of the present invention.
图8(a)是一幅在室内随意拍摄的图像,其中的人脸区域非常小。采用以上两种方法的超分辨率结果如图8(b)所示,图8(b)中的三幅图像从左到右分别为原始低分辨率图像、三次B样条插值的结果、用本发明所述方法得到的结果。Figure 8(a) is an image randomly captured indoors, where the face area is very small. The super-resolution results of the above two methods are shown in Fig. 8(b). The three images in Fig. 8(b) from left to right are the original low-resolution image, the result of cubic B-spline interpolation, and The results obtained by the method of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100591307A CN101216889A (en) | 2008-01-14 | 2008-01-14 | A face image super-resolution method based on fusion of global features and local details |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100591307A CN101216889A (en) | 2008-01-14 | 2008-01-14 | A face image super-resolution method based on fusion of global features and local details |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101216889A true CN101216889A (en) | 2008-07-09 |
Family
ID=39623320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008100591307A Pending CN101216889A (en) | 2008-01-14 | 2008-01-14 | A face image super-resolution method based on fusion of global features and local details |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101216889A (en) |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101799919A (en) * | 2010-04-08 | 2010-08-11 | 西安交通大学 | Front face image super-resolution rebuilding method based on PCA alignment |
CN102110303A (en) * | 2011-03-10 | 2011-06-29 | 西安电子科技大学 | Method for compounding face fake portrait\fake photo based on support vector return |
CN102298703A (en) * | 2011-04-20 | 2011-12-28 | 中科院成都信息技术有限公司 | Classification method based on projection residual errors |
CN102298775A (en) * | 2010-06-24 | 2011-12-28 | 财团法人工业技术研究院 | Sample-based face super-resolution method and system |
CN102306374A (en) * | 2011-08-30 | 2012-01-04 | 西安交通大学 | Method for rebuilding super-resolution human face image by position block nonlinear mapping |
CN101739676B (en) * | 2009-12-04 | 2012-02-22 | 清华大学 | A method of making ultra-low resolution human face simulation image |
CN101515328B (en) * | 2008-12-18 | 2012-05-09 | 东华大学 | A Locality Preserving Projection Method for Discriminating Statistically Uncorrelated |
CN101719266B (en) * | 2009-12-25 | 2012-05-23 | 西安交通大学 | Affine transformation-based frontal face image super-resolution reconstruction method |
CN101609503B (en) * | 2009-07-16 | 2012-07-25 | 复旦大学 | Face super-resolution image processing method based on double-manifold alignment |
CN102693416A (en) * | 2012-05-09 | 2012-09-26 | 浙江捷尚视觉科技有限公司 | Highly noise-resistant single face automatic super-resolution method |
CN102693419A (en) * | 2012-05-24 | 2012-09-26 | 武汉大学 | Super-resolution face recognition method based on multi-manifold discrimination and analysis |
CN102867191A (en) * | 2012-09-04 | 2013-01-09 | 广东群兴玩具股份有限公司 | Dimension reducing method based on manifold sub-space study |
CN102880878A (en) * | 2011-07-15 | 2013-01-16 | 富士通株式会社 | Single-image-based super-resolution analytical method and system |
US8488913B2 (en) | 2010-06-14 | 2013-07-16 | Industrial Technology Research Institute | Method and system for example-based face hallucination |
CN103236041A (en) * | 2013-04-25 | 2013-08-07 | 北京交通大学 | Image super resolution reconstruction method on basis of Contourlet transformation |
CN103489174A (en) * | 2013-10-08 | 2014-01-01 | 武汉大学 | Human face super-resolution method based on residual keeping |
CN103514432A (en) * | 2012-06-25 | 2014-01-15 | 诺基亚公司 | Method, device and computer program product for extracting facial features |
CN103824272A (en) * | 2014-03-03 | 2014-05-28 | 武汉大学 | Face super-resolution reconstruction method based on K-neighboring re-recognition |
CN104318219A (en) * | 2014-10-31 | 2015-01-28 | 上海交通大学 | Face recognition method based on combination of local features and global features |
CN104471589A (en) * | 2012-07-11 | 2015-03-25 | 皇家飞利浦有限公司 | Patient Interface Identification System |
CN104966090A (en) * | 2015-07-21 | 2015-10-07 | 公安部第三研究所 | Visual word generation and evaluation system and method for realizing image comprehension |
CN106204451A (en) * | 2016-07-08 | 2016-12-07 | 西安电子科技大学 | Image Super-resolution Reconstruction Method Based on Constrained Fixed Neighborhood Embedding |
CN107111786A (en) * | 2014-11-13 | 2017-08-29 | 瑞穗情报综研株式会社 | System, method and program for information of forecasting |
WO2017161710A1 (en) * | 2016-03-21 | 2017-09-28 | 京东方科技集团股份有限公司 | Resolving method and system based on deep learning |
CN107590775A (en) * | 2017-09-21 | 2018-01-16 | 大连理工大学 | A kind of image super-resolution amplification method using regression tree field |
CN107644455A (en) * | 2017-10-12 | 2018-01-30 | 北京旷视科技有限公司 | Face image synthesis method and apparatus |
CN107845127A (en) * | 2017-12-02 | 2018-03-27 | 天津浩宝丰科技有限公司 | A kind of human face cartoon animation image design method |
CN107886568A (en) * | 2017-12-09 | 2018-04-06 | 东方梦幻文化产业投资有限公司 | A kind of method and system that human face expression is rebuild using 3D Avatar |
CN108200334A (en) * | 2017-12-28 | 2018-06-22 | 广东欧珀移动通信有限公司 | Image shooting method and device, storage medium and electronic equipment |
CN108446601A (en) * | 2018-02-27 | 2018-08-24 | 东南大学 | A kind of face identification method based on sound Fusion Features |
CN108765291A (en) * | 2018-05-29 | 2018-11-06 | 天津大学 | Super resolution ratio reconstruction method based on dense neural network and two-parameter loss function |
CN108846817A (en) * | 2018-06-22 | 2018-11-20 | Oppo(重庆)智能科技有限公司 | Image processing method, device and mobile terminal |
CN110210336A (en) * | 2019-05-16 | 2019-09-06 | 赣南师范大学 | A kind of low resolution single sample face recognition method |
WO2019174522A1 (en) * | 2018-03-16 | 2019-09-19 | 华为技术有限公司 | Image generating method and device |
CN110503606A (en) * | 2019-08-29 | 2019-11-26 | 广州大学 | A method to improve the clarity of human face |
CN110580482A (en) * | 2017-11-30 | 2019-12-17 | 腾讯科技(深圳)有限公司 | Image classification model training, image classification, personalized recommendation method and device |
CN110910310A (en) * | 2019-10-25 | 2020-03-24 | 南京大学 | Face image reconstruction method based on identity information |
CN111260558A (en) * | 2020-01-22 | 2020-06-09 | 武汉大学 | Image super-resolution network model with variable magnification |
CN111931692A (en) * | 2020-08-31 | 2020-11-13 | 青岛聚看云科技有限公司 | Display device and image recognition method |
CN112150615A (en) * | 2020-09-24 | 2020-12-29 | 四川川大智胜软件股份有限公司 | Face image generation method and device based on three-dimensional face model and storage medium |
CN112581362A (en) * | 2019-09-27 | 2021-03-30 | 美敦力公司 | Image processing method and device for adjusting image details |
WO2022006693A1 (en) * | 2020-07-06 | 2022-01-13 | Polycom Communications Technology (Beijing) Co. Ltd. | Videoconferencing systems with facial image rectification |
US11308636B2 (en) | 2018-04-28 | 2022-04-19 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method, apparatus, and computer-readable storage medium for obtaining a target image |
CN117952833A (en) * | 2023-10-30 | 2024-04-30 | 中国科学院长春光学精密机械与物理研究所 | Hyperspectral image super-resolution reconstruction system and method based on three-branch network |
-
2008
- 2008-01-14 CN CNA2008100591307A patent/CN101216889A/en active Pending
Cited By (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101515328B (en) * | 2008-12-18 | 2012-05-09 | 东华大学 | A Locality Preserving Projection Method for Discriminating Statistically Uncorrelated |
CN101609503B (en) * | 2009-07-16 | 2012-07-25 | 复旦大学 | Face super-resolution image processing method based on double-manifold alignment |
CN101739676B (en) * | 2009-12-04 | 2012-02-22 | 清华大学 | A method of making ultra-low resolution human face simulation image |
CN101719266B (en) * | 2009-12-25 | 2012-05-23 | 西安交通大学 | Affine transformation-based frontal face image super-resolution reconstruction method |
CN101799919A (en) * | 2010-04-08 | 2010-08-11 | 西安交通大学 | Front face image super-resolution rebuilding method based on PCA alignment |
US8488913B2 (en) | 2010-06-14 | 2013-07-16 | Industrial Technology Research Institute | Method and system for example-based face hallucination |
CN102298775A (en) * | 2010-06-24 | 2011-12-28 | 财团法人工业技术研究院 | Sample-based face super-resolution method and system |
CN102110303B (en) * | 2011-03-10 | 2012-07-04 | 西安电子科技大学 | Method for compounding face fake portrait\fake photo based on support vector return |
CN102110303A (en) * | 2011-03-10 | 2011-06-29 | 西安电子科技大学 | Method for compounding face fake portrait\fake photo based on support vector return |
CN102298703A (en) * | 2011-04-20 | 2011-12-28 | 中科院成都信息技术有限公司 | Classification method based on projection residual errors |
CN102298703B (en) * | 2011-04-20 | 2015-06-17 | 中科院成都信息技术股份有限公司 | Classification method based on projection residual errors |
CN102880878A (en) * | 2011-07-15 | 2013-01-16 | 富士通株式会社 | Single-image-based super-resolution analytical method and system |
CN102880878B (en) * | 2011-07-15 | 2015-05-06 | 富士通株式会社 | Single-image-based super-resolution analytical method and system |
CN102306374A (en) * | 2011-08-30 | 2012-01-04 | 西安交通大学 | Method for rebuilding super-resolution human face image by position block nonlinear mapping |
CN102306374B (en) * | 2011-08-30 | 2013-02-06 | 西安交通大学 | A Face Image Super-resolution Reconstruction Method Based on Nonlinear Mapping of Position Blocks |
CN102693416A (en) * | 2012-05-09 | 2012-09-26 | 浙江捷尚视觉科技有限公司 | Highly noise-resistant single face automatic super-resolution method |
CN102693416B (en) * | 2012-05-09 | 2014-03-12 | 浙江捷尚视觉科技有限公司 | Highly noise-resistant single face automatic super-resolution method |
CN102693419B (en) * | 2012-05-24 | 2014-02-26 | 武汉大学 | Face recognition method based on multi-manifold discriminant analysis super-resolution |
CN102693419A (en) * | 2012-05-24 | 2012-09-26 | 武汉大学 | Super-resolution face recognition method based on multi-manifold discrimination and analysis |
CN103514432A (en) * | 2012-06-25 | 2014-01-15 | 诺基亚公司 | Method, device and computer program product for extracting facial features |
US9710698B2 (en) | 2012-06-25 | 2017-07-18 | Nokia Technologies Oy | Method, apparatus and computer program product for human-face features extraction |
CN104471589A (en) * | 2012-07-11 | 2015-03-25 | 皇家飞利浦有限公司 | Patient Interface Identification System |
CN102867191A (en) * | 2012-09-04 | 2013-01-09 | 广东群兴玩具股份有限公司 | Dimension reducing method based on manifold sub-space study |
CN103236041B (en) * | 2013-04-25 | 2015-11-18 | 北京交通大学 | A kind of image super-resolution rebuilding method based on contourlet transformation |
CN103236041A (en) * | 2013-04-25 | 2013-08-07 | 北京交通大学 | Image super resolution reconstruction method on basis of Contourlet transformation |
CN103489174A (en) * | 2013-10-08 | 2014-01-01 | 武汉大学 | Human face super-resolution method based on residual keeping |
CN103824272B (en) * | 2014-03-03 | 2016-08-17 | 武汉大学 | The face super-resolution reconstruction method heavily identified based on k nearest neighbor |
CN103824272A (en) * | 2014-03-03 | 2014-05-28 | 武汉大学 | Face super-resolution reconstruction method based on K-neighboring re-recognition |
CN104318219A (en) * | 2014-10-31 | 2015-01-28 | 上海交通大学 | Face recognition method based on combination of local features and global features |
CN104318219B (en) * | 2014-10-31 | 2017-10-31 | 上海交通大学 | Face recognition method based on combination of local features and global features |
CN107111786A (en) * | 2014-11-13 | 2017-08-29 | 瑞穗情报综研株式会社 | System, method and program for information of forecasting |
CN107111786B (en) * | 2014-11-13 | 2021-02-12 | 瑞穗情报综研株式会社 | System, method, and computer program product for predicting information |
CN104966090A (en) * | 2015-07-21 | 2015-10-07 | 公安部第三研究所 | Visual word generation and evaluation system and method for realizing image comprehension |
CN104966090B (en) * | 2015-07-21 | 2018-08-14 | 公安部第三研究所 | Realize the system and method that the vision word towards image understanding is generated and evaluated |
WO2017161710A1 (en) * | 2016-03-21 | 2017-09-28 | 京东方科技集团股份有限公司 | Resolving method and system based on deep learning |
US10769758B2 (en) | 2016-03-21 | 2020-09-08 | Boe Technology Group Co., Ltd. | Resolving method and system based on deep learning |
CN106204451A (en) * | 2016-07-08 | 2016-12-07 | 西安电子科技大学 | Image Super-resolution Reconstruction Method Based on Constrained Fixed Neighborhood Embedding |
CN106204451B (en) * | 2016-07-08 | 2019-04-23 | 西安电子科技大学 | Image Super-Resolution Reconstruction Based on Constrained Fixed Neighbor Embedding |
CN107590775A (en) * | 2017-09-21 | 2018-01-16 | 大连理工大学 | A kind of image super-resolution amplification method using regression tree field |
CN107590775B (en) * | 2017-09-21 | 2020-04-07 | 大连理工大学 | Image super-resolution amplification method using regression tree field |
CN107644455B (en) * | 2017-10-12 | 2022-02-22 | 北京旷视科技有限公司 | Face image synthesis method and device |
CN107644455A (en) * | 2017-10-12 | 2018-01-30 | 北京旷视科技有限公司 | Face image synthesis method and apparatus |
CN110580482B (en) * | 2017-11-30 | 2022-04-08 | 腾讯科技(深圳)有限公司 | Image classification model training, image classification and personalized recommendation method and device |
CN110580482A (en) * | 2017-11-30 | 2019-12-17 | 腾讯科技(深圳)有限公司 | Image classification model training, image classification, personalized recommendation method and device |
CN107845127A (en) * | 2017-12-02 | 2018-03-27 | 天津浩宝丰科技有限公司 | A kind of human face cartoon animation image design method |
CN107886568A (en) * | 2017-12-09 | 2018-04-06 | 东方梦幻文化产业投资有限公司 | A kind of method and system that human face expression is rebuild using 3D Avatar |
CN107886568B (en) * | 2017-12-09 | 2020-03-03 | 东方梦幻文化产业投资有限公司 | Method and system for reconstructing facial expression by using 3D Avatar |
CN108200334A (en) * | 2017-12-28 | 2018-06-22 | 广东欧珀移动通信有限公司 | Image shooting method and device, storage medium and electronic equipment |
CN108446601A (en) * | 2018-02-27 | 2018-08-24 | 东南大学 | A kind of face identification method based on sound Fusion Features |
CN108446601B (en) * | 2018-02-27 | 2021-07-13 | 东南大学 | A face recognition method based on dynamic and static feature fusion |
CN110276720A (en) * | 2018-03-16 | 2019-09-24 | 华为技术有限公司 | An image generation method and device |
CN110276720B (en) * | 2018-03-16 | 2021-02-12 | 华为技术有限公司 | Image generation method and device |
WO2019174522A1 (en) * | 2018-03-16 | 2019-09-19 | 华为技术有限公司 | Image generating method and device |
US11308636B2 (en) | 2018-04-28 | 2022-04-19 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method, apparatus, and computer-readable storage medium for obtaining a target image |
CN108765291A (en) * | 2018-05-29 | 2018-11-06 | 天津大学 | Super resolution ratio reconstruction method based on dense neural network and two-parameter loss function |
CN108846817A (en) * | 2018-06-22 | 2018-11-20 | Oppo(重庆)智能科技有限公司 | Image processing method, device and mobile terminal |
CN108846817B (en) * | 2018-06-22 | 2021-01-12 | Oppo(重庆)智能科技有限公司 | Image processing method and device and mobile terminal |
CN110210336B (en) * | 2019-05-16 | 2021-03-16 | 赣南师范大学 | Low-resolution single-sample face recognition method |
CN110210336A (en) * | 2019-05-16 | 2019-09-06 | 赣南师范大学 | A kind of low resolution single sample face recognition method |
CN110503606B (en) * | 2019-08-29 | 2023-06-20 | 广州大学 | A method to improve the sharpness of human face |
CN110503606A (en) * | 2019-08-29 | 2019-11-26 | 广州大学 | A method to improve the clarity of human face |
CN112581362A (en) * | 2019-09-27 | 2021-03-30 | 美敦力公司 | Image processing method and device for adjusting image details |
CN110910310B (en) * | 2019-10-25 | 2021-04-30 | 南京大学 | A face image reconstruction method based on identity information |
CN110910310A (en) * | 2019-10-25 | 2020-03-24 | 南京大学 | Face image reconstruction method based on identity information |
CN111260558A (en) * | 2020-01-22 | 2020-06-09 | 武汉大学 | Image super-resolution network model with variable magnification |
WO2022006693A1 (en) * | 2020-07-06 | 2022-01-13 | Polycom Communications Technology (Beijing) Co. Ltd. | Videoconferencing systems with facial image rectification |
CN111931692A (en) * | 2020-08-31 | 2020-11-13 | 青岛聚看云科技有限公司 | Display device and image recognition method |
CN112150615A (en) * | 2020-09-24 | 2020-12-29 | 四川川大智胜软件股份有限公司 | Face image generation method and device based on three-dimensional face model and storage medium |
CN117952833A (en) * | 2023-10-30 | 2024-04-30 | 中国科学院长春光学精密机械与物理研究所 | Hyperspectral image super-resolution reconstruction system and method based on three-branch network |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101216889A (en) | A face image super-resolution method based on fusion of global features and local details | |
CN110570353B (en) | Densely connected generative adversarial network single image super-resolution reconstruction method | |
Shi et al. | Exploiting multi-scale parallel self-attention and local variation via dual-branch transformer-CNN structure for face super-resolution | |
Sheng et al. | Cross-view recurrence-based self-supervised super-resolution of light field | |
CN107154023B (en) | Based on the face super-resolution reconstruction method for generating confrontation network and sub-pix convolution | |
Wang et al. | Learning super-resolution jointly from external and internal examples | |
CN101976435B (en) | Combination learning super-resolution method based on dual constraint | |
CN110706157A (en) | A face super-resolution reconstruction method based on identity prior generative adversarial network | |
CN114429555B (en) | Coarse-to-fine image dense matching method, system, device and storage medium | |
Cheng et al. | Zero-shot image super-resolution with depth guided internal degradation learning | |
CN102402784B (en) | Human face image super-resolution method based on nearest feature line manifold learning | |
CN113610905B (en) | Deep learning remote sensing image registration method based on sub-image matching and its application | |
Qu et al. | Lfacon: Introducing anglewise attention to no-reference quality assessment in light field space | |
Chen et al. | Robust face image super-resolution via joint learning of subdivided contextual model | |
CN115841420A (en) | Polarization image super-resolution reconstruction method based on deep learning | |
Jin et al. | Light field super-resolution via attention-guided fusion of hybrid lenses | |
CN110490796A (en) | A kind of human face super-resolution processing method and system of the fusion of low-and high-frequency ingredient | |
Wang et al. | Dclnet: Dual closed-loop networks for face super-resolution | |
CN112598604A (en) | Blind face restoration method and system | |
CN117576483A (en) | Multi-source data fusion feature classification method based on multi-scale convolutional autoencoder | |
CN103034974B (en) | The face image super-resolution reconstruction method of sparse coding is driven based on support set | |
CN118261797A (en) | Light field image super-resolution model based on fused neural network and training method thereof | |
Ma et al. | Position-based face hallucination method | |
Zhou et al. | Modality-aware feature integration for pan-sharpening | |
Li et al. | Survey on deep face restoration: From non-blind to blind and beyond |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20080709 |