CN101215660A - Mn-Cu反铁磁磁致伸缩合金 - Google Patents

Mn-Cu反铁磁磁致伸缩合金 Download PDF

Info

Publication number
CN101215660A
CN101215660A CNA2007101690362A CN200710169036A CN101215660A CN 101215660 A CN101215660 A CN 101215660A CN A2007101690362 A CNA2007101690362 A CN A2007101690362A CN 200710169036 A CN200710169036 A CN 200710169036A CN 101215660 A CN101215660 A CN 101215660A
Authority
CN
China
Prior art keywords
alloy
antiferromagnetic
magnetostriction
ferromagnetic
magnetostrictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007101690362A
Other languages
English (en)
Inventor
彭文屹
覃金
杨湘杰
章爱生
严明明
雷水金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CNA2007101690362A priority Critical patent/CN101215660A/zh
Publication of CN101215660A publication Critical patent/CN101215660A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

一种Mn-Cu反铁磁磁致伸缩合金,其特征在于处于反铁磁状态,合金中Mn含量在30%~100%(重量百分数),可用真空熔炼制备合金;定向凝固、多晶织构及热处理及预压力可提高其磁致伸缩量。本发明Mn-Cu合金系反铁磁磁致伸缩合金,属非铁磁性合金,在多晶状态下的应变可与单晶铁磁性磁致伸缩Fe-Ga合金相媲美(专利公开号02117462.8)。并可通过加入其他合金进一步改善其力学性能和工艺加工性能。

Description

Mn-Cu反铁磁磁致伸缩合金
技术领域
本发明涉及一种Mn-Cu反铁磁磁致伸缩合金。
背景技术
磁致伸缩材料属于智能材料,具有感知和驱动双重功能,即材料自身能感知环境的变化,并作出相应的响应,在航空、航天、机械电子、生物医学、交通、国防及日常生活等领域,有重要的作用。反铁磁材料和铁磁性材料都属于磁有序物质,都具有磁致伸缩效应,但是,相比于铁磁材料,由于反铁磁材料本身的局限性(对外所显示的自发磁化强度为0),对反铁磁材料的研究和应用都十分有限,例如:铁磁性磁致伸缩材料Tb-Dy-Fe、Fe-Ga等都已进入实用阶段。而对反铁磁材料磁致伸缩的研究虽然始于1959年,但所研究的大都为化合物材料,而且反铁磁转变温度都比较低,所用的磁场比较大(>2T)。
Mn-Cu合金是典型的反铁磁合金,其马氏体相变温度与反铁磁相变温度相耦合,具有良好的阻尼性能和机械加工性能,其阻尼性能源自其反铁磁转变而诱发的面心四方(FCT)马氏体孪晶界的牵动,如Sonoston合金等已用于商业用途,而对Mn-Cu合金在反铁磁状态下的磁致伸缩性能,未发现有类似的专利与报道。
发明内容
本发明的目的是提供一种Mn-Cu反铁磁磁致伸缩合金,这种合金处于反铁磁状态,具有预应力效应,并可在多晶、低磁场条件下获得。本发明是这样来实现的,其各组份及其重量百分比为:Mn:30-100%;Cu:0-70%。在此成分范围内,材料为固溶体,具有面心立方(FCC)结构,可发生反铁磁相变或发生反铁磁相变的同时,存在FCC到FCT的马氏体相变。
本发明Mn-Cu反铁磁合金通过固溶处理,并快速冷却,可获得反铁磁FCT马氏体孪晶组织,有利于磁致伸缩效应。在Mn-Cu合金基础上,加入Al、Ni、Fe、稀土等一种或几种合金元素,同样在反铁磁状态下,具有相同的磁致伸缩效应。通过磁场热处理、定向凝固及热机械训练获得多晶织构等方法,可更好的提高其磁诱发应变量。
本发明的技术效果:本发明具有实质性特点和显著进步,本发明Mn-Cu合金系反铁磁磁致伸缩合金,属非铁磁性合金,在多晶状态下的应变可与单晶铁磁性磁致伸缩Fe-Ga相媲美(专利公开号02117462.8)。并可通过加入其他合金进一步改善其力学性能和工艺加工性能。
具体实施方式
实施例1:本发明包含的各组分及其重量百分比为:Mn:54.28;Cu:46.74;测量结果显示:在多晶条件下,在1T磁场下,可获得657ppm的磁诱发负应变。
实施例2:本发明包含的各组分及其重量百分比为:Mn:80.5;Cu:15;Fe:4.5;测量结果显示:在多晶条件下,在1T磁场下,可获得1256ppm的磁诱发负应变。
实施例3:本发明包含的各组分及其重量百分比为:Mn:37.64;Cu:62.36;测量结果显示:在多晶条件下,在0.055T磁场下,可获得73 ppm的磁诱发负应变。

Claims (6)

1.一种Mn-Cu反铁磁磁致伸缩合金,其特征是各组份及其重量百分比为:Mn:30-100%;Cu:0-70%,定向凝固、多晶织构、热处理及预压力可提高其磁致伸缩量。
2.根据权利要求1所述的Mn-Cu反铁磁磁致伸缩合金,其特征是处于反铁磁状态,对外不显示磁性。
3.根据权利要求1所述的Mn-Cu反铁磁磁致伸缩合金,其特征是无需经过固溶和淬火获得面心四方的马氏体孪晶。
4.根据权利要求1所述的Mn-Cu反铁磁磁致伸缩合金,其特征是合金具有明显的预压应力效应,在预压应力下的磁致伸缩量大大提高。
5.根据权利要求1所述的Mn-Cu反铁磁磁致伸缩合金,其特征是可用真空熔炼制备合金,热处理可提高其磁致伸缩量。
6.根据权利要求1所述的Mn-Cu反铁磁磁致伸缩合金,其特征是可在低磁场及交变磁场下,获得磁致伸缩效应。
CNA2007101690362A 2007-12-26 2007-12-26 Mn-Cu反铁磁磁致伸缩合金 Pending CN101215660A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2007101690362A CN101215660A (zh) 2007-12-26 2007-12-26 Mn-Cu反铁磁磁致伸缩合金

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2007101690362A CN101215660A (zh) 2007-12-26 2007-12-26 Mn-Cu反铁磁磁致伸缩合金

Publications (1)

Publication Number Publication Date
CN101215660A true CN101215660A (zh) 2008-07-09

Family

ID=39622167

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101690362A Pending CN101215660A (zh) 2007-12-26 2007-12-26 Mn-Cu反铁磁磁致伸缩合金

Country Status (1)

Country Link
CN (1) CN101215660A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154600A (zh) * 2011-05-25 2011-08-17 重庆大学 一种提高中锰锰铜合金阻尼稳定性的热处理方法
CN106086557A (zh) * 2016-06-08 2016-11-09 南昌大学 一种Mn‑Cu‑Al热敏阻尼合金材料及其制备方法
CN106916995A (zh) * 2015-12-24 2017-07-04 北京有色金属研究总院 一种高阻尼性能Cu-Mn-X系阻尼金属材料及其制备方法
CN107012417A (zh) * 2017-06-06 2017-08-04 东北大学 一种高强度高阻尼MnCu基合金的制备方法
RU2639751C1 (ru) * 2016-07-20 2017-12-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) Способ термообработки листов из сплавов системы Mn-Cu

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154600A (zh) * 2011-05-25 2011-08-17 重庆大学 一种提高中锰锰铜合金阻尼稳定性的热处理方法
CN102154600B (zh) * 2011-05-25 2012-08-01 重庆大学 一种提高中锰锰铜合金阻尼稳定性的热处理方法
CN106916995A (zh) * 2015-12-24 2017-07-04 北京有色金属研究总院 一种高阻尼性能Cu-Mn-X系阻尼金属材料及其制备方法
CN106916995B (zh) * 2015-12-24 2019-04-23 北京有色金属研究总院 一种高阻尼性能Cu-Mn-X系阻尼金属材料及其制备方法
CN106086557A (zh) * 2016-06-08 2016-11-09 南昌大学 一种Mn‑Cu‑Al热敏阻尼合金材料及其制备方法
CN106086557B (zh) * 2016-06-08 2019-12-20 南昌大学 一种Mn-Cu-Al热敏阻尼合金材料及其制备方法
RU2639751C1 (ru) * 2016-07-20 2017-12-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) Способ термообработки листов из сплавов системы Mn-Cu
CN107012417A (zh) * 2017-06-06 2017-08-04 东北大学 一种高强度高阻尼MnCu基合金的制备方法
CN107012417B (zh) * 2017-06-06 2018-06-19 东北大学 一种高强度高阻尼MnCu基合金的制备方法

Similar Documents

Publication Publication Date Title
Li et al. Large elastocaloric effect driven by stress-induced two-step structural transformation in a directionally solidified Ni55Mn18Ga27 alloy
Liu et al. Martensitic transformation and giant magneto-functional properties in all-d-metal Ni-Co-Mn-Ti alloy ribbons
Ullakko et al. Large magnetic‐field‐induced strains in Ni2MnGa single crystals
Li et al. Martensitic transformation and magnetization of Ni–Fe–Ga ferromagnetic shape memory alloys
Xu et al. Kinetic arrest of martensitic transformation in NiCoMnAl metamagnetic shape memory alloy
Liu et al. Magnetic-field-induced metamagnetic reverse martensitic transformation and magnetocaloric effect in all-d-metal Ni36. 0Co14. 0Mn35. 7Ti14. 3 alloy ribbons
Cao et al. Enhanced elastocaloric effect and mechanical properties of Fe-doped Ni–Mn–Al ferromagnetic shape memory alloys
Liu Optimizing and fabricating magnetocaloric materials
Xu et al. Kinetic arrest of martensitic transformation in Ni33. 0Co13. 4Mn39. 7Ga13. 9 metamagnetic shape memory alloy
CN101974707A (zh) 铁磁形状记忆合金巨磁热和磁电阻效应材料及应用
CN101215660A (zh) Mn-Cu反铁磁磁致伸缩合金
Bai et al. Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni-Mn-In-Co alloy
Wu et al. Room temperature metamagnetic transformation of a tough dual-phase Ni–Mn–Sn–Fe ferromagnetic shape memory alloy
Kakeshita et al. Magneto-mechanical evaluation for twinning plane movement driven by magnetic field in ferromagnetic shape memory alloys
Sakon et al. Magnetic field-induced transition in Co-doped Ni41Co9Mn31. 5Ga18. 5 Heusler alloy
Guan et al. Extraordinary mechanical properties and successive caloric effects with ultrahigh cyclic stability in directionally solidified Ni36. 6Co12. 8Mn34. 7Ti15. 9 alloy
Lu et al. Microstructure, magnetic properties and enhanced thermal conductivity in La (Fe, Co, Si) 13/Nb magnetocaloric composites
Xuan et al. The effect of Co on elastocaloric and mechanical properties of Ni-Co-Mn-Al alloys
Zhang et al. Giant room-temperature inverse and conventional magnetocaloric effects in Ni–Mn–In alloys
Ma et al. Elastocaloric effect and magnetic properties of Ni50Mn31. 5Ti18Cu0. 5 shape memory alloy
Guo et al. Influence of minor addition of Cr on the magnetocaloric effect in Fe-based metallic ribbons
Wang et al. Effect of Cu and B Co-doping on magnetocaloric effect, phase transition, and mechanical properties of Mn1. 05Fe0. 9P0. 5-xSi0. 5Cu0. 10Bx alloys
Zhang et al. Large magnetocaloric effect in rapidly quenched Mn50− x Co x Ni40In10 nanomaterials
CN108620582A (zh) 一种磁性记忆合金与铜的复合材料及制备方法
Chen et al. Microstructure evolution and accelerated magnetocaloric phase formation of LaFe13. 1Co0. 7Si1. 4 alloy by forging deformation at room temperature

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080709