CN101207078A - 具有旁路二极管的反向变质太阳能电池 - Google Patents

具有旁路二极管的反向变质太阳能电池 Download PDF

Info

Publication number
CN101207078A
CN101207078A CNA2007101703339A CN200710170333A CN101207078A CN 101207078 A CN101207078 A CN 101207078A CN A2007101703339 A CNA2007101703339 A CN A2007101703339A CN 200710170333 A CN200710170333 A CN 200710170333A CN 101207078 A CN101207078 A CN 101207078A
Authority
CN
China
Prior art keywords
solar cell
layer
area
battery
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101703339A
Other languages
English (en)
Other versions
CN101207078B (zh
Inventor
保罗·R·夏普斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suoaier Technology Co Ltd
Original Assignee
Oncogen LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oncogen LP filed Critical Oncogen LP
Publication of CN101207078A publication Critical patent/CN101207078A/zh
Application granted granted Critical
Publication of CN101207078B publication Critical patent/CN101207078B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • H01L31/06875Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • H01L31/0443PV modules or arrays of single PV cells including bypass diodes comprising bypass diodes integrated or directly associated with the devices, e.g. bypass diodes integrated or formed in or on the same substrate as the photovoltaic cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明揭示一种形成包括多结太阳能电池的半导体结构的方法,所述多结太阳能电池具有顶部子电池、中间子电池及底部子电池,所述方法包括:提供用于半导体材料的外延生长的第一衬底;在所述衬底上形成第一太阳能子电池,所述第一太阳能子电池具有第一能带隙;在所述第一子电池上形成第二太阳能子电池,所述第二太阳能子电池具有小于所述第一能带隙的第二能带隙;及在所述第二子电池上形成渐变夹层,所述渐变夹层具有大于所述第二能带隙的第三能带隙;形成第三太阳能子电池,所述第三太阳能子电池具有小于所述第二能带隙的第四能带隙以使所述第三子电池相对于所述第二子电池晶格失配。在所述半导体结构中进一步提供旁路二极管,其中所述太阳能电池的第一极性区域与所述旁路二极管的第二极性区域相连接。

Description

具有旁路二极管的反向变质太阳能电池
技术领域
本发明涉及太阳能电池半导体装置领域,且具体来说涉及包括多结太阳能电池及整体旁路二极管的集成半导体结构。
背景技术
光生伏打电池-也称作太阳能电池-是过去几年中已变得实用的最重要的新能源之一。人们已对太阳能电池的开发作出了相当大的努力。因此,太阳能电池当前正用于许多商业及面向消费者的应用中。虽然在此领域中已取得了显著进步,但对太阳能电池满足更复杂应用需要的要求还跟不上需求的步伐。例如在数据通信中所用的卫星等应用已大大增加了对具有改良的功率及能量转换特性的太阳能电池的需求。
在卫星及其他与空间相关的应用中,卫星功率系统的大小、质量及成本依赖于所使用太阳能电池的功率及能量转换效率。换句话说,有效负载的大小及机载服务的可用性与所提供的功率量成正比。因此,随着有效负载变得越来越复杂,太阳能电池-其充当机载功率系统的功率转换装置-变得越来越重要。
太阳能电池常常制作成竖直的多结结构形式,并设置于水平阵列中,其中将各个单独的太阳能电池串联连接在一起。阵列的形状及结构以及其包含的电池数量部分地取决于所需的输出电压及电流。
当一阵列中的太阳能电池均在接收阳光或被照射时,所述阵列中的每一电池均将承受正向偏压且将携载电流。然而,如果所述电池中的任何一个因被遮蔽或损坏而未受到照射,那些被遮蔽的电池仍处于阵列电路中并可能被迫变成承受反向偏压以携载由被照射的电池所产生的电流。此反向偏压可降级所述太阳能电池且最终可以使所述太阳能电池不能工作。为防止反向偏压,在单多结电池中通常构建与所述太阳能电池并联的二极管结构。
然而,当太阳能电池因卫星的移动而被遮蔽或因电池受损而不在接收阳光时,则会沿电池路径存在电阻。当太阳能电池存在于一阵列中时,来自被照射的电池的电流必须流过被遮蔽的电池。如果不存在二极管,所述电流将强行穿过电池层,从而即使不会毁坏这些电池的电特性也会使这些电池的偏压反向并永久性地降级。
然而,如果电池包含一二极管,就可为电流提供一替代的并联路径,并保护被遮蔽的电池。此种概念所面临的问题一直是难以形成一种相对易于制造并使用极低电压电平来导通并工作的二极管。
旁路二极管的作用是将电流引离被遮蔽或受损的电池。在被遮蔽的电池变成承受反向偏压时,旁路二极管就会变成承受正向偏压。由于太阳能电池与旁路二极管并联,而不是使电流强行穿过被遮蔽的电池,因此二极管会将电流引离被遮蔽的电池并接通电流以保持在下一电池中的连接。
如果电池被遮蔽或因其它原因而不在接收阳光,则为了使电流选择二极管路径,二极管路径的导通电压必须小于沿电池路径的击穿电压。沿电池路径的击穿电压通常将至少等于5伏特(如果不是更高的话)。在一个实施方案中,利用Schottky旁路二极管。Schottky接触需要相当小的电压来“导通”(约600毫伏特)。然而,在具有锗衬底的多结太阳能电池中,为了穿过Ge结,必须使Ge结的偏压反向,从而需要大电压。由于使Ge结的偏压反向需要大约9.4伏特,因此使电流沿二极管路径流动需要将近十伏特。用于使Ge结的偏压反向的十伏特比原本在其他应用中可能使用的电压小十伏特。
从美国专利第6,103,970号、第6,359,210号、第6,600,100号、第6,617,508号、第6,680,432号、第6,864,414号及第7,115,811号已知道旁路二极管结合太阳能电池的使用。
在(例如)美国专利第6,951,819号及M.W.Wanless等人所著的“Lattice MismatchedApproaches for High Performance,III-V Photovoltaic Energy Converters”(第31届IEEE光生伏打专家会议的会议记录,Jan.3-7,2005,IEEE Press,2005)及本受让人于2006年6月2号申请的共同待决的美国专利申请案第11/445,793号中所述的反向变质太阳能电池结构提供了开发具有高能量转换效率的未来商品的重要起点。
在本发明之前,现有技术中所揭示的材料及制造步骤尚未描述基于具有整体旁路二极管的反向变质结构的高能量效率太阳能电池。
发明内容
简单的且概括来说,本发明提供一种通过如下步骤制造太阳能电池的方法:提供第一衬底;在所述衬底上沉积一系列半导体材料层,其包括第一区域及第二区域,在所述第一区域中所述系列层中的至少一个层形成至少一层旁路二极管以当太阳能电池被遮蔽时通过电流,且在所述第二区域中所述系列的半导体材料层形成多结太阳能电池的至少一个电池;在所述第二区域上提供第二衬底;及移除所述第一衬底。
本发明进一步提供一种具有整体旁路二极管的太阳能电池,其包括具有一系列层的半导体主体,所述一系列层包括第一区域及第二区域,所述第一区域包括:第一太阳能子电池,其具有第一能带隙;第二太阳能子电池,其被设置于所述第一子电池之上且具有小于所述第一能带隙的第二能带隙;及第三子电池,其被设置于夹层之上以便所述第三太阳能子电池被相对于所述第二子电池晶格失配且具有小于所述第三能带隙的第四能带隙,所述第二区域包括旁路二极管。
在另一方面,本发明提供一种具有一系列半导体材料层的太阳能电池半导体装置,其包括第一区域及第二区域,在所述第一区域中所述系列的材料层形成多结太阳能电池的至少一个电池,且在所述第二区域中所述相应系列层形成旁路二极管的支持以保护所述电池免于反向偏压,其中在所述第一区域中形成所述至少一个电池的所述系列层与在所述第二区域中形成所述旁路二极管支持的所述系列层是相同的且其中在所述第一区域中每一层具有与所述第二区域中的相应层大致相同的组成及厚度。
所述系列层包括形成两个电隔离部分的不连续横向导电层,所述第一部分在一个区域中与所述太阳能电池的有源区进行电接触,且所述第二部分与所述旁路二极管的有源区进行电接触。
导电层被沉积于所述系列层上;及导体将所述第二部分及所述旁路二极管连接到所述导电层。
附图说明
结合附图参阅下文具体实施方式部分可更好及更全面地了解本发明的这些及其他特征及优点,在图式中:
图1是本发明的太阳能电池在用于在第一衬底上形成所述旁路二极管及太阳能电池中各个层的工艺步骤结束时的放大剖面图;
图2是图1所示太阳能电池在根据本发明的下一工艺步骤之后的剖面图,其包括将替代衬底黏着到所述结构上;
图3是图2所示太阳能电池在根据本发明的下一工艺步骤之后所描绘的剖面图,其包括移除所述原始衬底;
图4是图3的太阳能电池在根据本发明的下一工艺步骤之后的剖面图,其包括蚀刻沟道以便将所述半导体主体形成为两个隔开的区域;
图5是图4的太阳能电池在根据本发明的下一工艺步骤之后的剖面图,其中移除左侧区域中的某些层且在右侧区域中形成台阶。
图6是图5的太阳能电池在根据本发明的下一工艺步骤之后的另一剖面图,其中介电层被形成于所述右侧区域上;
图7是图6的太阳能电池在根据本发明的下一工艺步骤之后的另一剖面图,其中所述介电层的一部分被移除;
图8是图7的太阳能电池在根据本发明的下一工艺步骤之后的剖面图,其中沉积导电层;
图9是图8的太阳能电池在根据本发明的下一工艺步骤之后的剖面图,其中沉积接触层;及
图10是根据本发明的太阳能电池及旁路二极管的电路图。
具体实施方式
图1绘示在衬底上形成三个子电池A、B及C之后的根据本发明的多结太阳能电池。更具体来说,图中显示衬底101,其可为砷化镓(GaAs)、锗(Ge)、或其他适宜的材料。然后,将形成二极管的一系列层沉积于所述衬垫上。举例而言,沉积p+GaAs二极管射极层101、内GaAs层102及n型GaAs103,继之以n+类型GaInP2的蚀刻停止层104然后,在层104上沉积n++GaAs的接触层105,并在所述接触层上沉积n+AlInP2的窗口层106。然后,在窗口层106上沉积由n+射极层107及一p型基极层108组成的子电池A。
应注意,多结太阳能电池结构可由周期表中所列的III族至V族元素的服从晶格常数及能带隙要求的任何适当组合形成,其中所述III族包括硼(B)、铝(Al)、镓(Ga)、铟(In)、及铊(T)。所述IV族包括碳(C)、硅(Si)、锗(Ge)、及锡(Sn)。所述V族包括氮(N)、磷(P)、砷(As)、锑(Sb)、及铋(Bi)。
在所述较佳实施例中,衬底100为砷化镓,射极层107由GaInP2构成,且所述基极层由p型GaInP2构成。公式中圆括号的使用是标准术语以指示铝的量可从0到30%变化。
在基极层108的顶部上沉积一用于降低再结合损失的p+型AlGaInP的背面场(“BSF”)层109。
BSF层109自基极/BSF界面附近的区域驱动少数载流子,以使再结合损失效应最小化。换句话说,BSF层109会减少太阳能子电池A背侧处的再结合损失且由此减少基极中的再结合。
在BSF层109的顶部上沉积一系列重掺杂的p型及n型GaAs层110,所述p型及n型GaAs层110形成一作为一将电池A连接至电池B的电路元件的隧道二极管。
在隧道二极管层110的顶部上沉积n+InAlP2窗口层111。子电池B中所用的窗口层111也用于减少再结合损失。窗口层111还改善下伏结的电池表面的钝化。所属领域的技术人员应了解,可在所述电池结构中添加或删除附加层,此并不背离本发明的范围。
在窗口层111的顶部上沉积电池B的各个层:射极层112及p型基极层113。这些层较佳分别由GaInP2及GaAs(或In0.015GaAs)构成,尽管也可使用任何其他符合晶格常数及能带隙要求的适宜材料。
在电池B的顶部上沉积p+GaInP2BSF层114,其与BSF层109起相同的作用。将类似于层110的p++/n++GaAs隧道二极管115沉积于BSF层114上,从而再次形成连接电池B及C的电路元件。将缓冲层116(较佳地为GalnP)在隧道二极管115上沉积到约1.0微米的厚度。将变质缓冲层117沉积于缓冲层116上,其较佳地是其晶格常数单调变化的在组成上台阶渐变的GaInP系列层以实现晶格常数从电池B到子电池C的过渡。层117的能带隙是值稍大于中间电池B的能带隙的1.5ev常数。
如Wanless等人的论文中所建议,在一个实施例中,所述台阶含有9个组成渐变台阶,其中每一台阶层具有0.25微米的厚度。
在变质缓冲层117的顶部上沉积另一n+GalnAs窗口层118。窗口层118还改善下伏结的电池表面的钝化。也可提供附加层,此并不背离本发明的范围。
在窗口层118的顶部上沉积子电池C的各个层:n+型射极层119及p型基极层120。在所述较佳实施例中,所述射极层由GaInAs构成且所述基极层由能带隙约为1.0ev的p型GaInAs构成,然而也可使用任何其他具有适宜的晶格常数及能带隙要求的半导体材料。
在子电池C的基极层120的顶部上沉积较佳地由GaInAsP构成的背面场(BSF)层120。
在BSF层121的顶部上沉积较佳地由p+型InGaAs形成的p+接触层122。
图2为图1的太阳能电池在根据本发明的下一工艺步骤之后的剖面图,其中在p+半导体接触层122上沉积一金属接触层123。所述金属较佳为一系列Ti/Au/Ag/Au层。然后,在金属层123上沉积粘合层124。所述粘合剂较佳为GenTak330(由GeneralChemical公司配送)。使用粘合层124将替代衬底125(较佳为蓝宝石)粘附到所述结构。在所述较佳实施例中,所述替代衬底约为40密耳厚,且穿制有直径约为1mm、间隔4mm的孔以有助于所述衬底的后续移除。
图3显示在替代衬底125位于底部的情况下的图2的结构。通过其中移除衬底的一系列研磨及/或蚀刻步骤移除原始衬底100。蚀刻剂的选择取决于所使用的衬底。
然而,图4描绘其中沟道150接着被蚀刻到层123从而将所述半导体主体分成两个区域151及152的下一工艺步骤。然后,沟道150被蚀刻到层123,从而将所述半导体主体分成两个区域151及152。
图5是图4的太阳能电池在根据本发明的下一工艺步骤之后的剖面图,其中移除左侧区域151中的层101到104,且在右侧区域152中于层104与105之间形成台阶。可通过熟知的光刻技术实施所述处理。
图6是图5的太阳能电池在根据本发明的下一工艺步骤之后的另一剖面图,其中在右侧区域152上形成介电层200。可通过熟知的掩蔽、沉积及光致抗蚀剂剥离技术实施所述工艺步骤。
图7是图6的太阳能电池在根据本发明的下一工艺步骤之后的剖面图,其中移除介电层200的一部分以便暴露窗口层106以及层101的台阶部分。
图8是图7的太阳能电池在根据本发明的下一工艺步骤之后的剖面图,其中沉积导电层201以电连接窗口层106及金属层123。
图9是图8的太阳能电池在根据本发明的下一工艺步骤之后的剖面图,其中在左侧及右侧区域151及152上分别地沉积接触层202及203。
图10是根据本发明的太阳能电池及旁路二极管的电路图。如图9中所示以相同顺序布置电池A、B、C,其中层105位于所述半导体结构的顶部上从而形成所述太阳能电池的端子且电连接到层203(所述旁路二极管的端子)。(图9中未显示此连接)。
同样地,在所述太阳能电池的背侧上,层123形成端子且通过导体201连接到所述旁路二极管的端子。

Claims (10)

1.一种制造太阳能电池的方法,其包括:
提供第一衬底;
在所述衬底上沉积一系列半导体材料层,其包括第一区域及与所述第一区域隔开的第二区域,在所述第一区域中所述系列层形成旁路二极管以当所述太阳能电池被遮蔽时使电流通过,在所述第二区域中所述系列半导体材料层形成多结太阳能电池的至少一个电池;
在所述系列层上提供第二衬底;及
移除所述第一衬底。
2.如权利要求1所述的制造太阳能电池的方法,其中所述沉积步骤包含:
形成具有第一能带隙的第一太阳能子电池;
在所述第一子电池上形成第二太阳能子电池,所述第二太阳能子电池具有小于所述第一能带隙的第二能带隙;及
在所述渐变夹层上形成第三太阳能子电池,所述第三太阳能子电池具有小于所述第二能带隙的第四能带隙。
3.如权利要求1所述的制造太阳能电池的方法,其中所述第一衬底由GaAs构成。
4.如权利要求2所述的制造太阳能电池的方法,其中所述第一太阳能子电池由InGa(Al)P2射极区域及InGa(Al)P2基极区域构成,所述第二太阳能子电池由InGaP2射极区域及GaAs基极区域构成,且所述第三太阳能电池由n型GaInAs射极及p型GaInAs基极构成。
5.如权利要求2所述的制造太阳能电池的方法,其中所述渐变夹层由具有单调递增晶格常数的多层InGaAlAs构成。
6.如权利要求2所述的制造太阳能电池的方法,其进一步包括在所述第三太阳能子电池上沉积接触层。
7.如权利要求1所述的制造太阳能电池的方法,其中在形成所述多结太阳能电池的所述系列层生长之后随后生长形成所述旁路二极管的所述系列层。
8.如权利要求1所述的制造太阳能电池的方法,其进一步包括沉积金属层以连接所述太阳能电池的第一极性区域与所述旁路二极管的第二极性区域。
9.一种太阳能电池半导体装置,其包括:
一系列半导体材料层,其包括第一区域及第二区域,在所述第一区域中所述系列材料层形成多结太阳能电池的至少一个电池,且在所述第二区域中所述对应系列层形成对旁路二极管的支持以保护所述电池免于反向偏压,其中在所述第一区域中形成所述至少一个电池的所述系列层与在所述第二区域中形成对所述旁路二极管的所述支持的所述系列层是相同的,且其中所述第一区域中的每一层与所述第二区域中的所述对应层具有大致相同的组成及厚度;
所述系列层包括不连续横向导电层,其用于在一个区域中与所述太阳能电池的有源区进行第一电接触及在所述第二区域中与所述旁路二极管的有源区进行第二电接触;
沉积于所述系列层上的导电层;及
将所述第二电接触连接到所述导电层的导体。
10.如权利要求9所述的装置,其中所述多结太阳能电池包括InGa(Al)P2顶部电池、GaInP2/GaAs中间电池及GaInAs底部电池。
CN2007101703339A 2006-12-21 2007-11-12 具有旁路二极管的反向变质太阳能电池 Active CN101207078B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/614,332 2006-12-21
US11/614,332 US20080149173A1 (en) 2006-12-21 2006-12-21 Inverted metamorphic solar cell with bypass diode

Publications (2)

Publication Number Publication Date
CN101207078A true CN101207078A (zh) 2008-06-25
CN101207078B CN101207078B (zh) 2013-04-10

Family

ID=39271267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101703339A Active CN101207078B (zh) 2006-12-21 2007-11-12 具有旁路二极管的反向变质太阳能电池

Country Status (4)

Country Link
US (2) US20080149173A1 (zh)
EP (1) EP1936703A3 (zh)
JP (1) JP2008160138A (zh)
CN (1) CN101207078B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393115A (zh) * 2014-11-18 2015-03-04 上海空间电源研究所 一种多结砷化镓太阳电池一次腐蚀工艺方法
CN101740647B (zh) * 2008-11-14 2015-12-09 索埃尔科技公司 具有两个变质层的四结倒置变质多结太阳能电池

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9117966B2 (en) 2007-09-24 2015-08-25 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with two metamorphic layers and homojunction top cell
US10170656B2 (en) 2009-03-10 2019-01-01 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with a single metamorphic layer
US20090078309A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Barrier Layers In Inverted Metamorphic Multijunction Solar Cells
US20100229913A1 (en) * 2009-01-29 2010-09-16 Emcore Solar Power, Inc. Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells
US10381501B2 (en) 2006-06-02 2019-08-13 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with multiple metamorphic layers
US20090078310A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells
US20100229926A1 (en) 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer
US9634172B1 (en) 2007-09-24 2017-04-25 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with multiple metamorphic layers
US20100203730A1 (en) * 2009-02-09 2010-08-12 Emcore Solar Power, Inc. Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells
WO2008039461A2 (en) * 2006-09-27 2008-04-03 Thinsilicon Corp. Back contact device for photovoltaic cells and method of manufacturing a back contact
US20110041898A1 (en) * 2009-08-19 2011-02-24 Emcore Solar Power, Inc. Back Metal Layers in Inverted Metamorphic Multijunction Solar Cells
US20100093127A1 (en) * 2006-12-27 2010-04-15 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cell Mounted on Metallized Flexible Film
WO2008150769A2 (en) * 2007-05-31 2008-12-11 Thinsilicon Corporation Photovoltaic device and method of manufacturing photovoltaic devices
US10381505B2 (en) 2007-09-24 2019-08-13 Solaero Technologies Corp. Inverted metamorphic multijunction solar cells including metamorphic layers
US8895342B2 (en) 2007-09-24 2014-11-25 Emcore Solar Power, Inc. Heterojunction subcells in inverted metamorphic multijunction solar cells
US20100233838A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Mounting of Solar Cells on a Flexible Substrate
US20090155952A1 (en) * 2007-12-13 2009-06-18 Emcore Corporation Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells
US20100012175A1 (en) 2008-07-16 2010-01-21 Emcore Solar Power, Inc. Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells
US20090272430A1 (en) * 2008-04-30 2009-11-05 Emcore Solar Power, Inc. Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells
US20090272438A1 (en) * 2008-05-05 2009-11-05 Emcore Corporation Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell
US20100012174A1 (en) * 2008-07-16 2010-01-21 Emcore Corporation High band gap contact layer in inverted metamorphic multijunction solar cells
US9287438B1 (en) * 2008-07-16 2016-03-15 Solaero Technologies Corp. Method for forming ohmic N-contacts at low temperature in inverted metamorphic multijunction solar cells with contaminant isolation
US8263853B2 (en) * 2008-08-07 2012-09-11 Emcore Solar Power, Inc. Wafer level interconnection of inverted metamorphic multijunction solar cells
US7741146B2 (en) 2008-08-12 2010-06-22 Emcore Solar Power, Inc. Demounting of inverted metamorphic multijunction solar cells
US8330036B1 (en) * 2008-08-29 2012-12-11 Seoijin Park Method of fabrication and structure for multi-junction solar cell formed upon separable substrate
US20100078064A1 (en) * 2008-09-29 2010-04-01 Thinsilicion Corporation Monolithically-integrated solar module
US8236600B2 (en) * 2008-11-10 2012-08-07 Emcore Solar Power, Inc. Joining method for preparing an inverted metamorphic multijunction solar cell
US20100122764A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells
US10541349B1 (en) 2008-12-17 2020-01-21 Solaero Technologies Corp. Methods of forming inverted multijunction solar cells with distributed Bragg reflector
US9018521B1 (en) 2008-12-17 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell
US20110284054A1 (en) * 2009-01-28 2011-11-24 Alliance For Sustainable Energy, Llc Spectral splitting for multi-bandgap photovoltaic energy conversion
US7960201B2 (en) * 2009-01-29 2011-06-14 Emcore Solar Power, Inc. String interconnection and fabrication of inverted metamorphic multijunction solar cells
US8778199B2 (en) 2009-02-09 2014-07-15 Emoore Solar Power, Inc. Epitaxial lift off in inverted metamorphic multijunction solar cells
US20100206365A1 (en) * 2009-02-19 2010-08-19 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers
US20100229933A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with a Supporting Coating
US9018519B1 (en) 2009-03-10 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cells having a permanent supporting substrate
US20100282288A1 (en) * 2009-05-06 2010-11-11 Emcore Solar Power, Inc. Solar Cell Interconnection on a Flexible Substrate
US20100282314A1 (en) * 2009-05-06 2010-11-11 Thinsilicion Corporation Photovoltaic cells and methods to enhance light trapping in semiconductor layer stacks
US20110114156A1 (en) * 2009-06-10 2011-05-19 Thinsilicon Corporation Photovoltaic modules having a built-in bypass diode and methods for manufacturing photovoltaic modules having a built-in bypass diode
EP2368276A4 (en) * 2009-06-10 2013-07-03 Thinsilicon Corp PV MODULE AND METHOD FOR MANUFACTURING A PV MODULE WITH MULTIPLE SEMICONDUCTOR LAYERING PLATES
US20100319764A1 (en) * 2009-06-23 2010-12-23 Solar Junction Corp. Functional Integration Of Dilute Nitrides Into High Efficiency III-V Solar Cells
US8263856B2 (en) * 2009-08-07 2012-09-11 Emcore Solar Power, Inc. Inverted metamorphic multijunction solar cells with back contacts
US20110114163A1 (en) * 2009-11-18 2011-05-19 Solar Junction Corporation Multijunction solar cells formed on n-doped substrates
US9837563B2 (en) * 2009-12-17 2017-12-05 Epir Technologies, Inc. MBE growth technique for group II-VI inverted multijunction solar cells
US20110232730A1 (en) * 2010-03-29 2011-09-29 Solar Junction Corp. Lattice matchable alloy for solar cells
US8187907B1 (en) 2010-05-07 2012-05-29 Emcore Solar Power, Inc. Solder structures for fabrication of inverted metamorphic multijunction solar cells
US8878048B2 (en) 2010-05-17 2014-11-04 The Boeing Company Solar cell structure including a silicon carrier containing a by-pass diode
CN101976689B (zh) * 2010-08-23 2012-05-23 北京工业大学 一种五结半导体太阳能光伏电池芯片
US9214580B2 (en) 2010-10-28 2015-12-15 Solar Junction Corporation Multi-junction solar cell with dilute nitride sub-cell having graded doping
US8962991B2 (en) 2011-02-25 2015-02-24 Solar Junction Corporation Pseudomorphic window layer for multijunction solar cells
US8766087B2 (en) 2011-05-10 2014-07-01 Solar Junction Corporation Window structure for solar cell
US20120305059A1 (en) * 2011-06-06 2012-12-06 Alta Devices, Inc. Photon recycling in an optoelectronic device
DE102011115340A1 (de) * 2011-10-07 2013-04-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Halbleiterbauelement im Mehrschichtaufbau und hieraus gebildetes Modul
WO2013074530A2 (en) 2011-11-15 2013-05-23 Solar Junction Corporation High efficiency multijunction solar cells
US9153724B2 (en) 2012-04-09 2015-10-06 Solar Junction Corporation Reverse heterojunctions for solar cells
US8884157B2 (en) * 2012-05-11 2014-11-11 Epistar Corporation Method for manufacturing optoelectronic devices
US9287431B2 (en) 2012-12-10 2016-03-15 Alliance For Sustainable Energy, Llc Superstrate sub-cell voltage-matched multijunction solar cells
US10153388B1 (en) 2013-03-15 2018-12-11 Solaero Technologies Corp. Emissivity coating for space solar cell arrays
US10553738B2 (en) * 2013-08-21 2020-02-04 Sunpower Corporation Interconnection of solar cells in a solar cell module
TWI656651B (zh) 2014-02-05 2019-04-11 美商太陽光電公司 單片多接面換能器
DE102015002513A1 (de) * 2015-03-02 2016-09-08 Azur Space Solar Power Gmbh Solarzellenvorrichtung
US10256359B2 (en) 2015-10-19 2019-04-09 Solaero Technologies Corp. Lattice matched multijunction solar cell assemblies for space applications
US10403778B2 (en) * 2015-10-19 2019-09-03 Solaero Technologies Corp. Multijunction solar cell assembly for space applications
US10270000B2 (en) 2015-10-19 2019-04-23 Solaero Technologies Corp. Multijunction metamorphic solar cell assembly for space applications
US9985161B2 (en) 2016-08-26 2018-05-29 Solaero Technologies Corp. Multijunction metamorphic solar cell for space applications
US20170110613A1 (en) 2015-10-19 2017-04-20 Solar Junction Corporation High efficiency multijunction photovoltaic cells
US9935209B2 (en) * 2016-01-28 2018-04-03 Solaero Technologies Corp. Multijunction metamorphic solar cell for space applications
US10361330B2 (en) 2015-10-19 2019-07-23 Solaero Technologies Corp. Multijunction solar cell assemblies for space applications
US10263134B1 (en) 2016-05-25 2019-04-16 Solaero Technologies Corp. Multijunction solar cells having an indirect high band gap semiconductor emitter layer in the upper solar subcell
US10636926B1 (en) 2016-12-12 2020-04-28 Solaero Technologies Corp. Distributed BRAGG reflector structures in multijunction solar cells
US10930808B2 (en) 2017-07-06 2021-02-23 Array Photonics, Inc. Hybrid MOCVD/MBE epitaxial growth of high-efficiency lattice-matched multijunction solar cells
EP3669402A1 (en) 2017-09-27 2020-06-24 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having a dilute nitride layer
US20190181289A1 (en) 2017-12-11 2019-06-13 Solaero Technologies Corp. Multijunction solar cells
WO2020185528A1 (en) 2019-03-11 2020-09-17 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions
KR20210146937A (ko) * 2019-04-09 2021-12-06 신에쯔 한도타이 가부시키가이샤 전자 디바이스의 제조 방법
CN110534601A (zh) * 2019-08-14 2019-12-03 上海空间电源研究所 一种带防护集成旁路二极管的太阳电池及其制作方法
FR3130452A1 (fr) 2021-12-10 2023-06-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Module photovoltaïque à diode de dérivation imprimée intégrée

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993533A (en) * 1975-04-09 1976-11-23 Carnegie-Mellon University Method for making semiconductors for solar cells
US6278054B1 (en) * 1998-05-28 2001-08-21 Tecstar Power Systems, Inc. Solar cell having an integral monolithically grown bypass diode
US6103970A (en) * 1998-08-20 2000-08-15 Tecstar Power Systems, Inc. Solar cell having a front-mounted bypass diode
US6864414B2 (en) * 2001-10-24 2005-03-08 Emcore Corporation Apparatus and method for integral bypass diode in solar cells
US6680432B2 (en) * 2001-10-24 2004-01-20 Emcore Corporation Apparatus and method for optimizing the efficiency of a bypass diode in multijunction solar cells
US6690041B2 (en) * 2002-05-14 2004-02-10 Global Solar Energy, Inc. Monolithically integrated diodes in thin-film photovoltaic devices
US8067687B2 (en) * 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US6951819B2 (en) * 2002-12-05 2005-10-04 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
DE102004023856B4 (de) * 2004-05-12 2006-07-13 Rwe Space Solar Power Gmbh Solarzelle mit integrierter Schutzdiode und zusätzlich auf dieser angeordneten Tunneldiode
US8227689B2 (en) * 2004-06-15 2012-07-24 The Boeing Company Solar cells having a transparent composition-graded buffer layer
US7659474B2 (en) * 2005-05-04 2010-02-09 The Boeing Company Solar cell array with isotype-heterojunction diode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740647B (zh) * 2008-11-14 2015-12-09 索埃尔科技公司 具有两个变质层的四结倒置变质多结太阳能电池
CN104393115A (zh) * 2014-11-18 2015-03-04 上海空间电源研究所 一种多结砷化镓太阳电池一次腐蚀工艺方法
CN104393115B (zh) * 2014-11-18 2016-07-27 上海空间电源研究所 一种多结砷化镓太阳电池一次腐蚀工艺方法

Also Published As

Publication number Publication date
JP2008160138A (ja) 2008-07-10
EP1936703A2 (en) 2008-06-25
US20080149173A1 (en) 2008-06-26
US20100236615A1 (en) 2010-09-23
CN101207078B (zh) 2013-04-10
EP1936703A3 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
CN101207078B (zh) 具有旁路二极管的反向变质太阳能电池
CN101083290B (zh) 多结太阳能电池及其形成方法
US7592538B2 (en) Method of fabricating a multijunction solar cell with a bypass diode having an intrinsic layer
EP1440480B1 (en) An apparatus and method for integral bypass diode in solar cells
EP1788628B1 (en) Via structures in solar cells with bypass diode
EP1775778B2 (en) Reliable interconnection of solar cells including integral bypass diode
CN101399296B (zh) 具有刚性支撑的薄倒置变质多结太阳能电池
CN101237007B (zh) 具有用于背侧接点的通孔的倒置变形太阳能电池
CN101740647A (zh) 具有两个变质层的四结倒置变质多结太阳能电池
JP2003505862A (ja) モノリシックバイパスダイオードおよび太陽電池ストリング装置
CN101459204A (zh) 反项变质多结太阳能电池中的指数掺杂层
JP2013511845A (ja) nドープ基板に形成された多接合太陽電池
WO2003054926A2 (en) An apparatus and method for integral bypass diode in solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: EMCORE SOLAR POWER INC.

Free format text: FORMER OWNER: ONCOGEN (US) 3005 FIRST AVENUE, SEATTLE, WASHINGTON, DC. 98121. U.S.A.

Effective date: 20141201

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20141201

Address after: New Mexico, USA

Patentee after: Emcore Solar Power, Inc.

Address before: New Jersey, USA

Patentee before: Onco

ASS Succession or assignment of patent right

Owner name: SOLE TECHNOLOGY, INC.

Free format text: FORMER OWNER: EMCORE SOLAR POWER INC.

Effective date: 20150309

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150309

Address after: New Mexico, USA

Patentee after: SUOAIER TECHNOLOGY CO., LTD.

Address before: New Mexico, USA

Patentee before: Emcore Solar Power, Inc.