CN101191751A - A torque fiber optic sensor - Google Patents
A torque fiber optic sensor Download PDFInfo
- Publication number
- CN101191751A CN101191751A CNA2007101794713A CN200710179471A CN101191751A CN 101191751 A CN101191751 A CN 101191751A CN A2007101794713 A CNA2007101794713 A CN A2007101794713A CN 200710179471 A CN200710179471 A CN 200710179471A CN 101191751 A CN101191751 A CN 101191751A
- Authority
- CN
- China
- Prior art keywords
- torque
- optical fiber
- fiber
- sensor
- period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 32
- 239000013307 optical fiber Substances 0.000 claims abstract description 29
- 238000005259 measurement Methods 0.000 claims abstract description 15
- 230000008859 change Effects 0.000 claims description 8
- 238000000411 transmission spectrum Methods 0.000 claims description 7
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims 2
- 230000004927 fusion Effects 0.000 claims 2
- 238000005253 cladding Methods 0.000 claims 1
- 230000008018 melting Effects 0.000 claims 1
- 238000002844 melting Methods 0.000 claims 1
- 238000013461 design Methods 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 4
- 238000012360 testing method Methods 0.000 abstract description 4
- 238000001228 spectrum Methods 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000000737 periodic effect Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000009347 mechanical transmission Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004092 self-diagnosis Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Landscapes
- Optical Transform (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
本发明涉及一种新型扭矩光纤传感器的设计,属于测试技术和光纤传感器领域。本发明采用长周期光纤光栅或熔锥光纤作为测量元件,当长周期光纤光栅或熔锥光纤受到扭矩作用时,长周期光纤光栅的周期或熔锥光纤的光强或光谱产生变化,从而测量出扭矩值。该传感器由导引光纤,扭杆(2),(3),长周期光纤光栅或熔锥光纤(5),弹簧(4)构成。其中,两个扭杆(2),(3)由弹簧(4)连接,扭杆(2)和扭杆(3)间能够转动。传感用的长周期光纤光栅或熔锥光纤分别固定在两个扭杆(2),(3)上。另外,在该扭矩传感器的一个扭杆上安装一个磁铁,与旋转机构上安装一块极性相反的磁铁一起,可以构成基于扭矩测量的光纤转速传感器。
The invention relates to the design of a novel torque optical fiber sensor, which belongs to the field of testing technology and optical fiber sensor. The present invention uses long-period fiber grating or fused-taper fiber as the measuring element, when the long-period fiber grating or fused-taper fiber is subjected to torque, the period of the long-period fiber grating or the light intensity or spectrum of the fused-taper fiber changes, thereby measuring torque value. The sensor is composed of guiding optical fiber, torsion rods (2), (3), long-period optical fiber grating or conical optical fiber (5), and spring (4). Wherein, the two torsion bars (2) and (3) are connected by a spring (4), and the torsion bar (2) and the torsion bar (3) can rotate. Long-period fiber gratings or fused cone fibers for sensing are respectively fixed on the two torsion bars (2) and (3). In addition, a magnet is installed on a torsion bar of the torque sensor, together with a magnet with opposite polarity installed on the rotating mechanism, an optical fiber speed sensor based on torque measurement can be formed.
Description
技术领域technical field
本发明属于测试技术和光纤传感器领域,特别涉及了一种新型扭矩光纤传感器的设计以及实现该设计原理的方案。The invention belongs to the field of testing technology and optical fiber sensors, and in particular relates to the design of a novel torque optical fiber sensor and a scheme for realizing the design principle.
背景技术Background technique
在机械传动系统中,扭矩是反映生产设备系统性能的最典型机械量之一,扭矩测量及分析是保证各种生产及辅助设备安全正常运行,节省能源,提高系统效率的重要手段。提高扭矩测量的准确性、扭矩监测和控制的实时性以及扭矩异常分析的可靠性,是减少事故发生、使生产正常进行的重要手段。In the mechanical transmission system, torque is one of the most typical mechanical quantities that reflect the performance of the production equipment system. Torque measurement and analysis are important means to ensure the safe and normal operation of various production and auxiliary equipment, save energy, and improve system efficiency. Improving the accuracy of torque measurement, the real-time performance of torque monitoring and control, and the reliability of torque abnormality analysis is an important means to reduce accidents and make production go on normally.
随着科学技术的进步和生产的发展,扭矩测量技术有着广阔的应用前景。同时,对扭矩的监测也提出了越来越高的要求:由静态测试转向动态在线检测;由间接测量转向直接测量;由单功能转向多功能,包括自补偿、自修正、自适应、自诊断、远程设定、状态组合、信息存储和记忆;要求系统微型化、数字化、智能化、虚拟化和网络化;要求扭矩的检测与动力装置的控制相结合,达到转速、扭矩、输出功率的优化配置。With the advancement of science and technology and the development of production, torque measurement technology has broad application prospects. At the same time, the monitoring of torque has also put forward higher and higher requirements: from static test to dynamic online detection; from indirect measurement to direct measurement; from single function to multi-function, including self-compensation, self-correction, self-adaptation, self-diagnosis , remote setting, state combination, information storage and memory; require system miniaturization, digitization, intelligence, virtualization and networking; require the combination of torque detection and power device control to achieve the optimization of speed, torque and output power configuration.
目前的扭矩传感器,主要有应变式,磁电相位式,光电式等几种。他们存在着须专用弹性轴,安装要两只联轴器,结构复杂,弹性轴扭转应变量小,影响灵敏度等缺点。另外,在扭矩传感器的设计中,主要的问题在于敏感元件的制造,选择,安装等。通常所用的扭矩传感器采用压电石英晶片作为测量元件,这种传感器所需压电石英晶片数量多,晶片的高度和接触面的平面度、粗糙度要求相当严格,加工难度大,工艺要求高。The current torque sensors mainly include strain type, magnetoelectric phase type, and photoelectric type. They have the disadvantages of requiring a special elastic shaft, two shaft couplings for installation, complex structure, small torsional strain of the elastic shaft, and affecting the sensitivity. In addition, in the design of the torque sensor, the main problems lie in the manufacture, selection, installation, etc. of the sensitive components. The commonly used torque sensor uses a piezoelectric quartz wafer as the measuring element. This kind of sensor requires a large number of piezoelectric quartz wafers. The height of the wafer and the flatness and roughness of the contact surface are very strict. The processing is difficult and the process requirements are high.
发明内容Contents of the invention
本发明的目的是克服传统测量方法中测试麻烦,复杂,精确度不高的缺陷,发明一种新的光纤扭矩测量方法和新传感器,使测量操作简便,成本低,精度提高,测量范围扩大,并抗电磁干扰。该方法具有高测量精度、优越的全光性、绝缘性、防爆性、抗电磁干扰、耐高温性等特点。适合于高温下及有爆炸危险和有强电磁干扰等恶劣环境下大型机械的传动系统动态特性测量。The purpose of the present invention is to overcome the defects of troublesome, complicated and low-precision testing in the traditional measuring method, and to invent a new optical fiber torque measuring method and a new sensor, so that the measuring operation is simple, the cost is low, the precision is improved, and the measuring range is expanded. And anti-electromagnetic interference. This method has the characteristics of high measurement accuracy, superior all-optical properties, insulation, explosion-proof, anti-electromagnetic interference, and high-temperature resistance. It is suitable for the measurement of the dynamic characteristics of the transmission system of large machinery under high temperature, explosion hazard and strong electromagnetic interference and other harsh environments.
本发明所采用的技术方案如下:The technical scheme adopted in the present invention is as follows:
本发明包含导引光纤、两个扭杆、一段传感光纤和一个弹簧。两个扭杆之间通过弹簧相连接;传感光纤通过两个扭杆的中轴线,并分别固定在两个扭杆的末端。其中,两个扭杆通过弹簧连接。弹簧起到的作用不仅仅是连接作用,它还能实现复位作用,即当两个扭杆之间没有相对转动时,弹簧能保证两个扭杆在初始位置。另外,当施加在扭杆上的扭矩撤去后,弹簧能保证扭杆回到初始位置,实现重复测量。The invention includes guiding optical fiber, two torsion bars, a section of sensing optical fiber and a spring. The two torsion bars are connected by springs; the sensing optical fibers pass through the central axes of the two torsion bars and are respectively fixed at the ends of the two torsion bars. Among them, two torsion bars are connected by springs. The role played by the spring is not only the connection function, but also the reset function, that is, when there is no relative rotation between the two torsion bars, the spring can ensure that the two torsion bars are at the initial position. In addition, when the torque applied to the torsion bar is removed, the spring can ensure that the torsion bar returns to the initial position, realizing repeated measurements.
在该传感器结构中,当扭杆受到力的作用而旋转时,传感光纤也受到扭矩的作用产生扭曲。传感光纤扭曲后其透射光谱的光强或波长变化与扭矩的大小有关。通过测量传感光纤透射光谱的光强或波长变化,就可以得到扭矩值。In this sensor structure, when the torsion bar rotates under the action of force, the sensing fiber is also twisted under the action of torque. The light intensity or wavelength change of the transmission spectrum after the sensing fiber is twisted is related to the magnitude of the torque. By measuring the light intensity or wavelength change of the transmission spectrum of the sensing fiber, the torque value can be obtained.
本发明与现有技术相比,具有以下优点:Compared with the prior art, the present invention has the following advantages:
1.采用全光纤结构,能有效防止电磁干扰,并可以用在危险的工作环境中;1. It adopts all-fiber structure, which can effectively prevent electromagnetic interference and can be used in dangerous working environments;
2.测量元件采用长周期光纤光栅或熔融拉锥光纤,利用传感光纤扭曲后其透射光谱的光强或波长变化来测量扭矩,可以实现高精度测量;2. The measurement element adopts long-period fiber grating or fused tapered fiber, and the torque is measured by using the light intensity or wavelength change of the transmission spectrum after the sensing fiber is twisted, which can realize high-precision measurement;
3.该方案结构简单,容易安装,较普通的扭矩传感器,能具有更低的成本;3. The scheme is simple in structure, easy to install, and can have lower cost than ordinary torque sensors;
4.该方案能够实现分布式测量,而这是传统的传感器所不具备的。4. The scheme can realize distributed measurement, which is not available in traditional sensors.
附图说明Description of drawings
图1为本发明的结构原理示意图;Fig. 1 is the structural principle schematic diagram of the present invention;
图2为转速扭矩测量实施例示意图;Fig. 2 is a schematic diagram of an embodiment of rotational speed torque measurement;
图中:1-光纤,2、3-扭杆,4-弹簧,5-长周期光纤光栅或熔锥光纤,6、7-永久磁铁,8-被测旋转体,9-光源,10-探测器。In the figure: 1-optical fiber, 2, 3-torsion bar, 4-spring, 5-long-period fiber grating or fused cone fiber, 6, 7-permanent magnet, 8-rotating body to be tested, 9-light source, 10-detection device.
具体实施方式Detailed ways
下面结合附图与具体实施方式对本发明作进一步详细描述:Below in conjunction with accompanying drawing and specific embodiment the present invention is described in further detail:
实施例Example
本发明的一种新型扭矩光纤传感器包括导引光纤1,两个扭杆2、3,长周期光纤光栅或熔锥光纤5,弹簧4。扭杆2与扭杆3通过弹簧4连接,传感光纤通过两个扭杆的中轴线,并分别固定在两个扭杆的末端。其中,两个扭杆通过弹簧连接。弹簧起到的作用不仅仅是连接作用,它还能实现复位作用,即当两个扭杆之间没有相对转动时,弹簧能保证两个扭杆处在初始位置。见图1。,A novel torque fiber optic sensor of the present invention includes a guide fiber 1, two
在图2所示的实施例中,光源9发出的光进入光纤1后,通过传感光纤5,被光探测器10接收。在扭杆3的端部安装有一块永久磁铁6,在被测旋转体8的外侧也安装一块极性相反的永久磁铁7。当旋转体8未转动时,永久磁铁6与7之间没有相对位移,因此扭杆3位置也没有改变。在这种情况下传感光纤5没有受到扭矩作用,因此探测器10接收到透射光谱没有变化;In the embodiment shown in FIG. 2 , the light emitted by the
当物体8转动时,同时带动磁铁7,对磁铁6产生周期性的吸引力,从而带动扭杆3周期性地转动。扭杆3周期性的转动,产生周期性的扭矩变化,从而传感光纤5受到周期性的扭矩作用。这种周期性的扭矩作用使得通过传感光纤的光强或波长受到调制。通过光探测器10可以接收到经过扭矩变化调制的光谱。通过测量传感光纤5透射光谱变化的周期,就可以测量出转速。When the
由图1,图2可以看出,采用此传感器结构,光纤的光路是完全密封的,具有高灵敏度、抗电磁干扰、耐腐蚀、防爆及不干扰被测现场等特点,更适合在强电磁干扰、腐蚀性介质及污染等恶劣环境下进行测量;另外,相比传统的扭矩传感器,采用长周期光纤光栅或熔锥光纤作为测量元件可以达到更高的精度和范围,且结构简单,成本低。It can be seen from Figure 1 and Figure 2 that with this sensor structure, the optical path of the optical fiber is completely sealed, and has the characteristics of high sensitivity, anti-electromagnetic interference, corrosion resistance, explosion-proof and no interference with the measured site, and is more suitable for strong electromagnetic interference. , corrosive media and pollution and other harsh environments; in addition, compared with traditional torque sensors, using long-period fiber gratings or fused tapered optical fibers as measuring elements can achieve higher accuracy and range, and has a simple structure and low cost.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710179471A CN100587433C (en) | 2007-12-13 | 2007-12-13 | A torque fiber optic sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710179471A CN100587433C (en) | 2007-12-13 | 2007-12-13 | A torque fiber optic sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101191751A true CN101191751A (en) | 2008-06-04 |
CN100587433C CN100587433C (en) | 2010-02-03 |
Family
ID=39486886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200710179471A Expired - Fee Related CN100587433C (en) | 2007-12-13 | 2007-12-13 | A torque fiber optic sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100587433C (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101833014A (en) * | 2010-03-30 | 2010-09-15 | 山东省科学院激光研究所 | Fiber Bragg grating type wind farm wind velocity long-range detector |
CN103472253A (en) * | 2013-08-16 | 2013-12-25 | 云南电力试验研究院(集团)有限公司电力研究院 | Wind speed sensor based on optical fiber Bragg raster |
CN105784219A (en) * | 2015-12-17 | 2016-07-20 | 北京希卓信息技术有限公司 | Torque sensor and testing system thereof |
CN106525099A (en) * | 2016-10-28 | 2017-03-22 | 北京信息科技大学 | Non-contact type optical fiber grating angular measurement sensor |
CN106595484A (en) * | 2016-12-20 | 2017-04-26 | 太原理工大学 | High-precision measuring equipment based on external coupling grating resonant cavity |
CN107314808A (en) * | 2017-08-14 | 2017-11-03 | 武汉理工大学 | A kind of two-dimension vibration sensor based on twisted fiber grating |
CN107576429A (en) * | 2017-08-14 | 2018-01-12 | 武汉理工大学 | A kind of torque sensor device based on fiber grating |
CN108151933A (en) * | 2016-12-02 | 2018-06-12 | 湖南天能电机制造有限公司 | A kind of flexible connected torque rotary speed sensor device |
CN109470403A (en) * | 2018-12-14 | 2019-03-15 | 北京航空航天大学 | A calibration method of force/torque sensor based on fiber grating |
CN110057480A (en) * | 2019-05-21 | 2019-07-26 | 衢州学院 | A kind of the fiber grating torque sensor and its installation method of forked type conjugated structure |
CN110779640A (en) * | 2019-11-21 | 2020-02-11 | 中国科学院合肥物质科学研究院 | Shaft torque measuring system and method based on Malus law |
CN111427116A (en) * | 2020-04-30 | 2020-07-17 | 暨南大学 | Method and system for multi-wavelength fiber mode switching based on few-mode phase-shift grating |
CN113939437A (en) * | 2019-06-06 | 2022-01-14 | 克诺尔商用车制动系统有限公司 | Wheel revolution sensor for a commercial vehicle |
-
2007
- 2007-12-13 CN CN200710179471A patent/CN100587433C/en not_active Expired - Fee Related
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101833014A (en) * | 2010-03-30 | 2010-09-15 | 山东省科学院激光研究所 | Fiber Bragg grating type wind farm wind velocity long-range detector |
CN103472253A (en) * | 2013-08-16 | 2013-12-25 | 云南电力试验研究院(集团)有限公司电力研究院 | Wind speed sensor based on optical fiber Bragg raster |
CN105784219A (en) * | 2015-12-17 | 2016-07-20 | 北京希卓信息技术有限公司 | Torque sensor and testing system thereof |
CN105784219B (en) * | 2015-12-17 | 2018-08-28 | 北京希卓信息技术有限公司 | A kind of torque sensor and its test system |
CN106525099A (en) * | 2016-10-28 | 2017-03-22 | 北京信息科技大学 | Non-contact type optical fiber grating angular measurement sensor |
CN106525099B (en) * | 2016-10-28 | 2018-12-07 | 北京信息科技大学 | A kind of Non-contact optical fiber grating angle sensor and test method |
CN108151933A (en) * | 2016-12-02 | 2018-06-12 | 湖南天能电机制造有限公司 | A kind of flexible connected torque rotary speed sensor device |
CN106595484B (en) * | 2016-12-20 | 2018-11-23 | 太原理工大学 | A kind of high precision measuring device based on external coupling grating resonant cavity |
CN106595484A (en) * | 2016-12-20 | 2017-04-26 | 太原理工大学 | High-precision measuring equipment based on external coupling grating resonant cavity |
CN107314808A (en) * | 2017-08-14 | 2017-11-03 | 武汉理工大学 | A kind of two-dimension vibration sensor based on twisted fiber grating |
CN107576429A (en) * | 2017-08-14 | 2018-01-12 | 武汉理工大学 | A kind of torque sensor device based on fiber grating |
CN109470403A (en) * | 2018-12-14 | 2019-03-15 | 北京航空航天大学 | A calibration method of force/torque sensor based on fiber grating |
CN109470403B (en) * | 2018-12-14 | 2020-07-28 | 北京航空航天大学 | A calibration method of force/torque sensor based on fiber grating |
CN110057480A (en) * | 2019-05-21 | 2019-07-26 | 衢州学院 | A kind of the fiber grating torque sensor and its installation method of forked type conjugated structure |
CN110057480B (en) * | 2019-05-21 | 2024-02-06 | 衢州学院 | Fiber bragg grating torque sensor with fork-shaped conjugated structure and installation method thereof |
CN113939437A (en) * | 2019-06-06 | 2022-01-14 | 克诺尔商用车制动系统有限公司 | Wheel revolution sensor for a commercial vehicle |
CN113939437B (en) * | 2019-06-06 | 2023-09-22 | 克诺尔商用车制动系统有限公司 | Wheel revolution sensor for commercial vehicle |
US11988684B2 (en) | 2019-06-06 | 2024-05-21 | Knorr-Bremse Systeme Fuer Nutzfahrzeuge Gmbh | Wheel speed sensor for a utility vehicle |
CN110779640A (en) * | 2019-11-21 | 2020-02-11 | 中国科学院合肥物质科学研究院 | Shaft torque measuring system and method based on Malus law |
CN110779640B (en) * | 2019-11-21 | 2021-09-28 | 中国科学院合肥物质科学研究院 | Shaft torque measuring system and method based on Malus law |
CN111427116A (en) * | 2020-04-30 | 2020-07-17 | 暨南大学 | Method and system for multi-wavelength fiber mode switching based on few-mode phase-shift grating |
Also Published As
Publication number | Publication date |
---|---|
CN100587433C (en) | 2010-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101191751A (en) | A torque fiber optic sensor | |
CN102829893B (en) | Method for simultaneously measuring temperature and stress of fiber bragg gratings (obtained by corrosion) with different diameters | |
CN205940607U (en) | Temperature and refracting index sensor based on multimode fiber intermode interference and FBG | |
CN104198098B (en) | Torque measurement sensor based on photoelectric code disk signal phase difference and measuring method | |
CN205655942U (en) | Meet an emergency and optical fiber sensor of temperature simultaneous measurement | |
CN203287311U (en) | Double-cone fine-core single mode fiber based transmission-type optical fiber humidity sensor | |
CN201892569U (en) | High-sensitivity and low-frequency vibrating sensor based on MMF-TFBG optical fiber structure | |
CN103017687B (en) | Orthogonal polarization fiber bragg grating vector torsion sensing device and detection method thereof | |
CN108254708B (en) | Fiber optic fluorescence all-optical magnetic field sensor and system | |
CN207501987U (en) | Magnetic field and temperature dual sampling device based on fiber grating | |
CN205861241U (en) | A kind of based on spherical structure with the fibre optic temperature sensor of hollow optic fibre | |
CN104316106A (en) | Optical fiber sensor based on Mach-Zehnder interference and fiber bragg grating | |
CN105758567A (en) | Fiber interference type pressure sensor based on 3*3 coupler | |
CN104154883B (en) | A kind of obliquity measurement sensor based on inclined optical fiber grating fused biconical taper structure | |
CN105387968B (en) | Fibre cladding surface Bragg grating temperature self-compensating pressure transducers | |
CN208238813U (en) | Screw type optic fibre turning sensor | |
CN106225910A (en) | Runner vibration measurement method based on fiber grating and device | |
CN108680275A (en) | Optical-fiber probe type temperature and strain gauge based on single dislocation welding | |
CN106382894A (en) | Fiber grating multidirectional sensor | |
CN103134776A (en) | Liquid refractive index absolute measurement sensor based on D-type polarization maintaining optical fibre | |
CN102095892B (en) | Fiber bragg grating acceleration transducer based on fabrication structure | |
CN201464078U (en) | Single sleeve pipe etch-type fiber Bragg grating temperature and enhanced sensibility sensor | |
CN202075306U (en) | FBG (fiber bragg grating) acceleration transducer based on tapered structure | |
CN205748774U (en) | High-temperature resistant optical fiber grating pressure sensor | |
CN108645444A (en) | The temperature and strain gauge of optical-fiber probe type based on single spherical welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100203 Termination date: 20131213 |