CN101191248B - Method for preparing titanium dioxide nano tube array on titanium-substrate material surface - Google Patents
Method for preparing titanium dioxide nano tube array on titanium-substrate material surface Download PDFInfo
- Publication number
- CN101191248B CN101191248B CN2006100223861A CN200610022386A CN101191248B CN 101191248 B CN101191248 B CN 101191248B CN 2006100223861 A CN2006100223861 A CN 2006100223861A CN 200610022386 A CN200610022386 A CN 200610022386A CN 101191248 B CN101191248 B CN 101191248B
- Authority
- CN
- China
- Prior art keywords
- titanium
- titanium dioxide
- nanotube array
- base material
- array layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 104
- 239000002071 nanotube Substances 0.000 title claims abstract description 55
- 239000004408 titanium dioxide Substances 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000000463 material Substances 0.000 title claims abstract description 18
- 239000000758 substrate Substances 0.000 title claims abstract description 18
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000010936 titanium Substances 0.000 claims abstract description 52
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 51
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims abstract description 36
- 238000010438 heat treatment Methods 0.000 claims abstract description 29
- 230000003647 oxidation Effects 0.000 claims abstract description 21
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 21
- 239000003792 electrolyte Substances 0.000 claims abstract description 18
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 15
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000002253 acid Substances 0.000 claims abstract description 4
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 claims description 12
- 235000019837 monoammonium phosphate Nutrition 0.000 claims description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 10
- 239000012153 distilled water Substances 0.000 claims description 10
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 5
- 239000011259 mixed solution Substances 0.000 claims description 5
- 229910017604 nitric acid Inorganic materials 0.000 claims description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 4
- 238000007743 anodising Methods 0.000 claims description 3
- 238000005868 electrolysis reaction Methods 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- 238000005260 corrosion Methods 0.000 abstract description 6
- 230000007797 corrosion Effects 0.000 abstract description 6
- 238000003491 array Methods 0.000 abstract description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract 1
- 238000003756 stirring Methods 0.000 description 10
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- 238000007146 photocatalysis Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- -1 apply a voltage Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011538 cleaning material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Catalysts (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开了一种在钛基底材料表面制备二氧化钛纳米管阵列层的方法,钛基材经表面预处理后在含HF酸的电解液中进行电化学阳极氧化处理,混合电解液组成为:磷酸二氢铵1~3mol/L,氢氟酸0.2~0.4mol/L,得到具有非晶态二氧化钛纳米管表面构造;后继热处理条件是空气气氛下,升温速度为3℃/min,450℃保温3小时,然后随炉冷至室温得到锐钛矿型二氧化钛纳米管阵列层。本发明方法的电解液体系可在相对长的时间范围内控制氧化与腐蚀达到平衡,从而可较好地实现对二氧化钛纳米管形貌的控制。本发明方法操作简便,成本低,制备的二氧化钛纳米管阵列定向规则排布,非晶态二氧化钛纳米管在垂直于基底方向产生,管径达80~100nm,壁厚18~21nm,管长为0.7~2.0μm,比表面积大。The invention discloses a method for preparing a titanium dioxide nanotube array layer on the surface of a titanium base material. The titanium base material is subjected to electrochemical anodic oxidation treatment in an electrolyte solution containing HF acid after surface pretreatment, and the mixed electrolyte solution is composed of phosphoric acid Ammonium dihydrogen is 1-3mol/L, hydrofluoric acid is 0.2-0.4mol/L, and the surface structure of amorphous titanium dioxide nanotubes is obtained; the subsequent heat treatment conditions are in an air atmosphere, the heating rate is 3°C/min, and the temperature is kept at 450°C for 3 hours, and then cooled to room temperature with the furnace to obtain anatase titanium dioxide nanotube array layer. The electrolyte system of the method of the invention can control the oxidation and corrosion to reach a balance within a relatively long time range, thereby better controlling the morphology of the titanium dioxide nanotubes. The method of the invention is easy to operate and low in cost, and the prepared titanium dioxide nanotube arrays are oriented and regularly arranged, and the amorphous titanium dioxide nanotubes are produced in a direction perpendicular to the substrate, with a tube diameter of 80-100 nm, a wall thickness of 18-21 nm, and a tube length of 0.7 ~2.0μm, large specific surface area.
Description
技术领域technical field
本发明属于纳米材料领域,具体地说涉及一种在纯钛或钛合金表面制备二氧化钛纳米管阵列层的方法。The invention belongs to the field of nanometer materials, in particular to a method for preparing a titanium dioxide nanotube array layer on the surface of pure titanium or titanium alloy.
背景技术Background technique
钛及钛合金质轻、强度高,耐腐蚀性好,已被广泛应用于航空航天、机械制造、生物医用材料等领域。但使用的时候,常常需要对其进行表面改性,目的是为了得到性能更优越的表面,如通过激光融覆TiN、TiC来提高其硬度及耐磨性能;通过沉积涂层的方法提高钛表面的耐腐蚀性,耐高温及耐磨性;通过表面纳米化改变钛表面的微观结构,提高力学性能等。Titanium and titanium alloys are light in weight, high in strength and good in corrosion resistance, and have been widely used in aerospace, machinery manufacturing, biomedical materials and other fields. However, when it is used, it is often necessary to modify its surface. The purpose is to obtain a surface with better performance, such as laser melting TiN and TiC to improve its hardness and wear resistance; to improve the titanium surface by depositing a coating. Excellent corrosion resistance, high temperature resistance and wear resistance; the microstructure of titanium surface can be changed by surface nanometerization, and the mechanical properties can be improved.
二氧化钛是一种重要的无机功能材料。纳米二氧化钛具有细小的晶体尺寸及独特的纳米尺寸效应、湿敏、气敏、介电效应、光电转换、光致变色及优越的光催化、良好的生物相容性及耐腐蚀等性能,因此在传感器、介电材料、光催化、太阳能电池、自清洁材料及生物材料等领域广泛使用。因此,在钛及钛合金表面制备一层纳米二氧化钛,能够更好地改进其功能特性。Titanium dioxide is an important inorganic functional material. Nano-titanium dioxide has small crystal size and unique nano-size effect, humidity sensitivity, gas sensitivity, dielectric effect, photoelectric conversion, photochromic and superior photocatalysis, good biocompatibility and corrosion resistance. It is widely used in the fields of sensors, dielectric materials, photocatalysis, solar cells, self-cleaning materials and biological materials. Therefore, preparing a layer of nano-titanium dioxide on the surface of titanium and titanium alloys can better improve their functional properties.
二氧化钛纳米管是纳米二氧化钛的一种存在形式。在钛及钛合金表面制备纳米管阵列的方法有模板法和阳极氧化法。在模板法中,首先要制备出多孔有序的氧化铝模板或高分子模板,然后通过溶胶-凝胶法或电化学沉积法制备出二氧化钛纳米管,这种方法的主要缺点是工艺复杂和制备的二氧化钛纳米管形态依赖于模板。阳极氧化法相对较为简单,可直接在钛表面形成纳米管阵列。但目前报道的方法中,通常存在电解液成本较高,工艺操作不便的缺点。中国专利申请200510125502.8采用单质的HF酸作电解液,体系单一,pH值降低快,氧化与腐蚀达到平衡的时间短,难以增加纳米管的长度和控制纳米管形貌。Titanium dioxide nanotubes are a form of nanoscale titanium dioxide. The methods for preparing nanotube arrays on the surface of titanium and titanium alloys include template method and anodic oxidation method. In the template method, a porous and ordered alumina template or a polymer template must first be prepared, and then titania nanotubes are prepared by a sol-gel method or an electrochemical deposition method. The main disadvantage of this method is that the process is complicated and the preparation The morphology of titania nanotubes is dependent on the template. The anodic oxidation method is relatively simple and can directly form nanotube arrays on the titanium surface. However, the currently reported methods usually have the disadvantages of high electrolyte cost and inconvenient process operation. Chinese patent application 200510125502.8 uses simple HF acid as the electrolyte, which has a single system, rapid pH drop, short time for oxidation and corrosion to reach equilibrium, and it is difficult to increase the length of nanotubes and control the shape of nanotubes.
发明内容Contents of the invention
本发明的基本构思是以钛或钛合金为阳极,钛、铂或石墨为阴极,选择在适当的电解液中,加以电压,钛能够通过氧化在表面形成二氧化钛膜,通过电化学腐蚀可以获得纳米管的形态,然后通过热处理使表面纳米二氧化钛结晶。具体可描述为:The basic idea of the present invention is to use titanium or titanium alloy as the anode, titanium, platinum or graphite as the cathode, select in an appropriate electrolyte, apply a voltage, titanium can form a titanium dioxide film on the surface through oxidation, and obtain nano The morphology of the tube is then crystallized by heat treatment to crystallize the surface nano-TiO2. Specifically, it can be described as:
在钛基底材料表面制备二氧化钛纳米管阵列层的方法,钛基材经表面预处理后在含HF酸的电解液中进行电化学阳极氧化处理,经所述电化学阳极氧化处理后的钛基材再经热处理,得到锐钛矿型二氧化钛纳米管阵列,采用如下的步骤获得二氧化钛纳米管阵列层:A method for preparing a titanium dioxide nanotube array layer on the surface of a titanium base material, the titanium base material is subjected to electrochemical anodic oxidation treatment in an electrolyte solution containing HF acid after surface pretreatment, and the titanium base material after the electrochemical anodic oxidation treatment After heat treatment, the anatase titanium dioxide nanotube array is obtained, and the following steps are used to obtain the titanium dioxide nanotube array layer:
1)、钛基材经逐级表面打磨后依次在丙酮,蒸馏水中超声清洗;清洗后的钛基材在含6.0mol/L硝酸和1~3mol/L氢氟酸混合溶液中酸蚀至无气泡产生,然后用蒸馏水冲洗基材表面,快速吹干后在空气中室温干燥得到刻蚀后钛基材;1) After the titanium substrate is polished step by step, it is cleaned in acetone and distilled water in sequence; the cleaned titanium substrate is acid-etched in a mixed solution containing 6.0mol/L nitric acid and 1-3mol/L hydrofluoric acid to no Bubbles are generated, then rinse the surface of the substrate with distilled water, dry it quickly and then dry it in air at room temperature to obtain the etched titanium substrate;
2)、由1)得到的刻蚀后钛基材放入如下成分的混合电解液中:磷酸二氢铵1~3mol/L,氢氟酸0.2~0.4mol/L;进行恒压阳极氧化,具体电解参数为:电压20V,电极间距为2~5cm,电解槽温度保持在室温;3)、对2)得到的具有非晶态二氧化钛纳米管表面构造的制品进行热处理:空气气氛下,升温速度为3℃/min,450℃保温3小时,然后随炉冷至室温;最后在纯钛基底表面制备锐钛矿型二氧化钛纳米管阵列层。2) Put the etched titanium substrate obtained from 1) into a mixed electrolyte solution with the following components: ammonium dihydrogen phosphate 1-3 mol/L, hydrofluoric acid 0.2-0.4 mol/L; carry out constant-voltage anodic oxidation, The specific electrolysis parameters are: voltage 20V, electrode spacing 2-5cm, electrolytic cell temperature kept at room temperature; 3), heat treatment of the product with the surface structure of amorphous titanium dioxide nanotubes obtained in 2): under air atmosphere, the heating rate 3°C/min, 450°C for 3 hours, and then cooled to room temperature with the furnace; finally, an anatase titanium dioxide nanotube array layer was prepared on the surface of the pure titanium substrate.
本发明方法的电解液体系可在相对长的时间范围内控制氧化与腐蚀达到平衡,从而可较好地实现对二氧化钛纳米管形貌的控制。本发明方法操作简便,成本低,制备的二氧化钛纳米管阵列定向规则排布,非晶态二氧化钛纳米管在垂直于基底方向产生,管径达80~100nm,壁厚18~21nm,管长为0.7~2.0μm,比表面积大。The electrolyte system of the method of the invention can control the oxidation and corrosion to reach a balance within a relatively long time range, thereby better controlling the morphology of the titanium dioxide nanotubes. The method of the invention is easy to operate and low in cost, and the prepared titanium dioxide nanotube arrays are oriented and regularly arranged, and the amorphous titanium dioxide nanotubes are produced in a direction perpendicular to the substrate, with a tube diameter of 80-100 nm, a wall thickness of 18-21 nm, and a tube length of 0.7 ~2.0μm, large specific surface area.
具体实施方式Detailed ways
本发明的一种在纯钛或钛合金表面制备二氧化钛纳米管阵列涂层的方法,其步骤如下:1)将纯钛(一般杂质成分含量不大于0.5%)或钛合金切割成片,依次用280#,400#,及1000#的耐水碳化硅砂纸打磨,然后依次在丙酮,蒸馏水中超声清洗;2)在含6.0mol/L硝酸和微量氢氟酸混合溶液中酸蚀至无气泡产生,然后用蒸馏水冲洗样品表面,再用电吹风将刻蚀后样品快速吹干,在空气中放置至少1小时后才能进行阳极氧化;3)配制混合电解液,具体成分包括:磷酸二氢铵1~3mol/L,氢氟酸0.2~0.4mol/L;还可加入适量的无机或有机添加剂;4)电解电压20V,电极间距为2~5cm,电解槽温度保持在室温,进行阳极氧化处理,在处理过程中电解液应保持不断搅拌;5)在空气气氛下进行热处理,升温速度为3℃/min,从室温升至450℃保温一段时间,然后随炉冷至室温。A method for preparing a titanium dioxide nanotube array coating on the surface of pure titanium or titanium alloy according to the present invention, the steps are as follows: 1) cutting pure titanium (general impurity component content is not more than 0.5%) or titanium alloy into pieces, followed by 280#, 400#, and 1000# water-resistant silicon carbide sandpaper, and then ultrasonically cleaned in acetone and distilled water; 2) acid-etched in a mixed solution containing 6.0mol/L nitric acid and a small amount of hydrofluoric acid until no bubbles are generated, Then rinse the surface of the sample with distilled water, then quickly dry the etched sample with a hair dryer, and place it in the air for at least 1 hour before anodizing; 3) Prepare a mixed electrolyte, the specific components include: ammonium dihydrogen phosphate 1~ 3mol/L, hydrofluoric acid 0.2-0.4mol/L; appropriate amount of inorganic or organic additives can also be added; 4) electrolysis voltage 20V, electrode distance 2-5cm, electrolytic cell temperature kept at room temperature, anodic oxidation treatment, During the treatment process, the electrolyte should be kept stirring continuously; 5) heat treatment is carried out in air atmosphere, the heating rate is 3 ℃/min, from room temperature to 450 ℃ for a period of time, and then cooled to room temperature with the furnace.
下面结合实施例对本发明作进一步的描述。The present invention will be further described below in conjunction with embodiment.
实施例1:Example 1:
在直径为15mm,厚度为1.5mm的纯钛片上制备薄的二氧化钛纳米管阵列层。A thin titanium dioxide nanotube array layer was prepared on a pure titanium sheet with a diameter of 15 mm and a thickness of 1.5 mm.
(1)将直径为15mm,厚度1.5mm的薄钛片,依次用280#,600#,1000#的耐水碳化硅砂纸打磨,然后依次在丙酮,蒸馏水中超声清洗10min;(1) Polish a thin titanium sheet with a diameter of 15mm and a thickness of 1.5mm with 280#, 600#, and 1000# water-resistant silicon carbide sandpaper in sequence, and then ultrasonically clean it in acetone and distilled water for 10 minutes;
(2)在含6.0mol/L硝酸和1mol/L氢氟酸混合溶液中酸蚀至无气泡产生,然后用蒸馏水冲洗样品表面,再将刻蚀后样品快速吹干,在空气中放置至少1小时后进行(4)操作。(2) Etch in a mixed solution containing 6.0 mol/L nitric acid and 1 mol/L hydrofluoric acid until no bubbles are generated, then rinse the surface of the sample with distilled water, then quickly dry the sample after etching, and place it in the air for at least 1 Carry out (4) operation after hours.
(3)配制100mL混合电解液,包括浓度为1mol/L的磷酸二氢铵和0.4mol/L的氢氟酸。(3) Prepare 100 mL of mixed electrolyte solution, including ammonium dihydrogen phosphate with a concentration of 1 mol/L and hydrofluoric acid with a concentration of 0.4 mol/L.
(4)电压20V,电极间距为4cm,电解槽温度保持在室温,阳极氧化处理60分钟,并在处理过程中电解液应保持不断搅拌。(4) The voltage is 20V, the distance between the electrodes is 4cm, the temperature of the electrolytic cell is kept at room temperature, and the anodic oxidation treatment is performed for 60 minutes, and the electrolyte should be kept stirring continuously during the treatment.
(5)在空气气氛下进行热处理,升温速度为3℃/min,从室温升至450℃保温3小时,然后随炉冷至室温。(5) Carry out heat treatment in an air atmosphere with a heating rate of 3°C/min, from room temperature to 450°C for 3 hours, and then cool to room temperature with the furnace.
检测结果:二氧化钛纳米管规则地生长在纯钛表面上,制备的二氧化钛纳米管阵列定向规则排布,非晶态二氧化钛纳米管在垂直于基底方向产生管径大小一致,约为100nm,壁厚20~21nm,管长达800nm~1000nm。Test results: Titanium dioxide nanotubes are regularly grown on the surface of pure titanium, and the prepared titanium dioxide nanotube arrays are oriented and regularly arranged, and the amorphous titanium dioxide nanotubes are produced in the direction perpendicular to the substrate with a uniform diameter of about 100nm and a wall thickness of 20 ~21nm, tube length 800nm~1000nm.
实施例2:Example 2:
在直径为15mm,厚度为1.5mm的纯钛片上制备厚的二氧化钛纳米管阵列层。A thick titanium dioxide nanotube array layer was prepared on a pure titanium sheet with a diameter of 15 mm and a thickness of 1.5 mm.
(1)将直径为15mm的纯钛棒切割成1.5mm厚的薄片,依次用280#,600#,1000#的耐水碳化硅砂纸打磨,然后依次在丙酮,蒸馏水中超声清洗10min。(1) Cut a pure titanium rod with a diameter of 15mm into 1.5mm thick slices, polish it with 280#, 600#, 1000# water-resistant silicon carbide sandpaper in turn, and then ultrasonically clean it in acetone and distilled water for 10 minutes.
(2)在含6.0mol/L硝酸和3mol/L氢氟酸混合溶液中酸蚀至无气泡产生,然后用蒸馏水冲洗样品表面,再将刻蚀后样品快速吹干,在空气中放置至少1小时后进行(4)操作。(2) Etch in a mixed solution containing 6.0 mol/L nitric acid and 3 mol/L hydrofluoric acid until no bubbles are generated, then rinse the surface of the sample with distilled water, then quickly dry the sample after etching, and place it in the air for at least 1 Carry out (4) operation after hours.
(3)配制100mL混合电解液,包括浓度为1mol/L的磷酸二氢铵和0.3mol/L的氢氟酸。(3) Prepare 100 mL of mixed electrolyte solution, including ammonium dihydrogen phosphate with a concentration of 1 mol/L and hydrofluoric acid with a concentration of 0.3 mol/L.
(4)电压20V,电极间距为4cm,电解槽温度保持在室温,阳极氧化处理360分钟,并在处理过程中电解液应保持不断搅拌。(4) The voltage is 20V, the distance between the electrodes is 4cm, the temperature of the electrolytic cell is kept at room temperature, and the anodic oxidation treatment is performed for 360 minutes, and the electrolyte should be kept stirring continuously during the treatment.
(5)在空气气氛下进行热处理,升温速度为3℃/min,从室温升至450℃保温3小时,然后随炉冷至室温。(5) Carry out heat treatment in an air atmosphere with a heating rate of 3°C/min, from room temperature to 450°C for 3 hours, and then cool to room temperature with the furnace.
检测结果:二氧化钛纳米管规则地生长在纯钛表面上,管径大小一致,约为100nm,壁厚20~21nm,管长达1.7~1.9μm。Test results: Titanium dioxide nanotubes regularly grow on the surface of pure titanium, the tube diameter is about 100nm, the wall thickness is 20-21nm, and the tube length is 1.7-1.9μm.
实施例3:Example 3:
在直径为15mm,厚度为1.5mm的纯钛片上制备薄且小管径的二氧化钛纳米管阵列层。A thin and small-diameter titanium dioxide nanotube array layer was prepared on a pure titanium sheet with a diameter of 15 mm and a thickness of 1.5 mm.
(1)(2)步骤同实施例2。(1) (2) steps are the same as in Example 2.
(3)配制100mL混合电解液,包括10mL质量分数30%的双氧水,浓度为1mol/L的磷酸二氢铵和0.3mol/L的氢氟酸。(3) Prepare 100 mL of mixed electrolyte solution, including 10 mL of 30% hydrogen peroxide, 1 mol/L ammonium dihydrogen phosphate and 0.3 mol/L hydrofluoric acid.
(4)电压20V,电极间距为4cm,电解槽温度保持在室温,阳极氧化处理60分钟,并在处理过程中电解液应保持不断搅拌。(4) The voltage is 20V, the distance between the electrodes is 4cm, the temperature of the electrolytic cell is kept at room temperature, and the anodic oxidation treatment is performed for 60 minutes, and the electrolyte should be kept stirring continuously during the treatment.
(5)在空气气氛下进行热处理,升温速度为3℃/min,从室温升至450℃保温3小时,然后随炉冷至室温。(5) Carry out heat treatment in an air atmosphere with a heating rate of 3°C/min, from room temperature to 450°C for 3 hours, and then cool to room temperature with the furnace.
检测结果:二氧化钛纳米管规则地生长在纯钛表面上,管径大小一致,约为80nm,管壁18~19nm,管长达0.7~0.8μm,表面比实施例1和2的要粗糙。Test results: Titanium dioxide nanotubes regularly grow on the surface of pure titanium, the tube diameter is about 80nm, the tube wall is 18-19nm, the tube length is 0.7-0.8μm, and the surface is rougher than that of Examples 1 and 2.
实施例4:Example 4:
在直径为15mm,厚度为1.5mm的纯钛片上制备厚且小管径的二氧化钛纳米管阵列层。A thick and small-diameter titanium dioxide nanotube array layer was prepared on a pure titanium sheet with a diameter of 15 mm and a thickness of 1.5 mm.
(1)(2)步骤同实施例2。(1) (2) steps are the same as in Example 2.
(3)配制100mL混合电解液,包括70mL无水乙醇,浓度为1mol/L的磷酸二氢铵和0.25mol/L的氢氟酸。(3) Prepare 100 mL of mixed electrolyte solution, including 70 mL of absolute ethanol, ammonium dihydrogen phosphate at a concentration of 1 mol/L and hydrofluoric acid at a concentration of 0.25 mol/L.
(4)电压20V,电极间距为4cm,电解槽温度保持在室温,阳极氧化处理360分钟,并在处理过程中电解液应保持不断搅拌。(4) The voltage is 20V, the distance between the electrodes is 4cm, the temperature of the electrolytic cell is kept at room temperature, and the anodic oxidation treatment is performed for 360 minutes, and the electrolyte should be kept stirring continuously during the treatment.
(5)在空气气氛下进行热处理,升温速度为3℃/min,从室温升至450℃保温3小时,然后随炉冷至室温。(5) Carry out heat treatment in an air atmosphere with a heating rate of 3°C/min, from room temperature to 450°C for 3 hours, and then cool to room temperature with the furnace.
检测结果:二氧化钛纳米管规则地生长在纯钛表面上,管径大小一致,约为80nm,管壁18~19nm,管长达1.8~1.9μm。Test results: Titanium dioxide nanotubes regularly grow on the surface of pure titanium, the tube diameter is about 80nm, the tube wall is 18-19nm, and the tube length is 1.8-1.9μm.
实施例5:Example 5:
在直径为10mm,厚度为1.5mm的纯钛片上制备薄的二氧化钛纳米管阵列层。A thin titanium dioxide nanotube array layer was prepared on a pure titanium sheet with a diameter of 10 mm and a thickness of 1.5 mm.
(1)(2)步骤同实施例1。(1) (2) steps are with embodiment 1.
(3)配制100mL混合电解液,包括浓度为1mol/L的磷酸二氢铵和0.25mol/L的氢氟酸。(3) Prepare 100 mL of mixed electrolyte solution, including ammonium dihydrogen phosphate with a concentration of 1 mol/L and hydrofluoric acid with a concentration of 0.25 mol/L.
(4)电压20V,电极间距为4cm,电解槽温度保持在室温,阳极氧化处理60分钟,并在处理过程中电解液应保持不断搅拌。(4) The voltage is 20V, the distance between the electrodes is 4cm, the temperature of the electrolytic cell is kept at room temperature, and the anodic oxidation treatment is performed for 60 minutes, and the electrolyte should be kept stirring continuously during the treatment.
(5)在空气气氛下进行热处理,升温速度为3℃/min,从室温升至450℃保温3小时,然后随炉冷至室温。(5) Carry out heat treatment in an air atmosphere with a heating rate of 3°C/min, from room temperature to 450°C for 3 hours, and then cool to room temperature with the furnace.
检测结果:二氧化钛纳米管规则地生长在纯钛表面上,管径大小一致,约为100nm,管长达0.8~1.0μm。Test results: Titanium dioxide nanotubes regularly grow on the surface of pure titanium, the tube diameter is about 100nm, and the tube length is 0.8-1.0μm.
实施例6:Embodiment 6:
在直径为10mm,厚度为1.5mm的纯钛片上制备厚的二氧化钛纳米管阵列层。A thick titanium dioxide nanotube array layer was prepared on a pure titanium sheet with a diameter of 10 mm and a thickness of 1.5 mm.
(1)(2)步骤同实施例2。(1) (2) steps are the same as in Example 2.
(3)配制100mL混合电解液,包括浓度为1mol/L的磷酸二氢铵和0.2mol/L的氢氟酸。(3) Prepare 100 mL of mixed electrolyte solution, including ammonium dihydrogen phosphate with a concentration of 1 mol/L and hydrofluoric acid with a concentration of 0.2 mol/L.
(4)电压20V,电极间距为4cm,电解槽温度保持在室温,阳极氧化处理360分钟,并在处理过程中电解液应保持不断搅拌。(4) The voltage is 20V, the distance between the electrodes is 4cm, the temperature of the electrolytic cell is kept at room temperature, and the anodic oxidation treatment is performed for 360 minutes, and the electrolyte should be kept stirring continuously during the treatment.
(5)在空气气氛下进行热处理,升温速度为3℃/min,从室温升至450℃保温3小时,然后随炉冷至室温。(5) Carry out heat treatment in an air atmosphere with a heating rate of 3°C/min, from room temperature to 450°C for 3 hours, and then cool to room temperature with the furnace.
检测结果:二氧化钛纳米管规则地生长在纯钛表面上,管径大小一致,约为100nm,管长达1.8~2.0μm。Test results: Titanium dioxide nanotubes regularly grow on the surface of pure titanium, the tube diameter is about 100nm, and the tube length is 1.8-2.0μm.
实施例7:Embodiment 7:
在直径为15mm,厚度为1.5mm的钛合金片(Ti6Al4V)上制备薄的二氧化钛纳米管阵列层。A thin titanium dioxide nanotube array layer was prepared on a titanium alloy sheet (Ti6Al4V) with a diameter of 15 mm and a thickness of 1.5 mm.
(1)(2)步骤同实施例2,钛合金棒代替纯钛棒。(1) (2) The steps are the same as those in Example 2, with titanium alloy rods replacing pure titanium rods.
(3)配制100mL混合电解液,包括浓度为1mol/L的磷酸二氢铵和0.35mol/L的氢氟酸。(3) Prepare 100 mL of mixed electrolyte solution, including ammonium dihydrogen phosphate with a concentration of 1 mol/L and hydrofluoric acid with a concentration of 0.35 mol/L.
(4)电压20V,电极间距为4cm,电解槽温度保持在室温,阳极氧化处理120分钟,并在处理过程中电解液应保持不断搅拌。(4) The voltage is 20V, the distance between the electrodes is 4cm, the temperature of the electrolytic cell is kept at room temperature, and the anodic oxidation treatment is performed for 120 minutes, and the electrolyte should be kept stirring continuously during the treatment.
(5)在空气气氛下进行热处理,升温速度为3℃/min,从室温升至450℃保温3小时,然后随炉冷至室温。(5) Carry out heat treatment in an air atmosphere with a heating rate of 3°C/min, from room temperature to 450°C for 3 hours, and then cool to room temperature with the furnace.
检测结果:二氧化钛纳米管规则地生长在纯钛表面上,管径大小一致,约为100nm,管长达700nm~800nm。Test results: Titanium dioxide nanotubes regularly grow on the surface of pure titanium, the tube diameter is about 100nm, and the tube length is 700nm-800nm.
实施例8:Embodiment 8:
在直径为15mm,厚度为1.5mm的钛合金片上制备厚的二氧化钛纳米管阵列层。A thick titanium dioxide nanotube array layer was prepared on a titanium alloy sheet with a diameter of 15 mm and a thickness of 1.5 mm.
(1)(2)步骤同实施例7。(1) (2) steps are the same as in Example 7.
(3)配制100mL混合电解液,包括浓度为1mol/L的磷酸二氢铵和0.3mol/L的氢氟酸。(3) Prepare 100 mL of mixed electrolyte solution, including ammonium dihydrogen phosphate with a concentration of 1 mol/L and hydrofluoric acid with a concentration of 0.3 mol/L.
(4)电压20V,电极间距为4cm,电解槽温度保持在室温,阳极氧化处理720分钟,并在处理过程中电解液应保持不断搅拌。(4) The voltage is 20V, the distance between the electrodes is 4cm, the temperature of the electrolytic cell is kept at room temperature, and the anodic oxidation treatment is performed for 720 minutes, and the electrolyte should be kept stirring continuously during the treatment.
(5)在空气气氛下进行热处理,升温速度为3℃/min,从室温升至450℃保温3小时,然后随炉冷至室温。(5) Carry out heat treatment in an air atmosphere with a heating rate of 3°C/min, from room temperature to 450°C for 3 hours, and then cool to room temperature with the furnace.
检测结果:二氧化钛纳米管规则地生长在纯钛表面上,管径大小一致,约为100nm,管长达1.9~2.0μm。Test results: Titanium dioxide nanotubes regularly grow on the surface of pure titanium, the tube diameter is about 100nm, and the tube length is 1.9-2.0μm.
实施例9:Embodiment 9:
在直径为8mm,厚度为1.5mm的钛合金片上制备薄的二氧化钛纳米管阵列层。A thin titanium dioxide nanotube array layer was prepared on a titanium alloy sheet with a diameter of 8 mm and a thickness of 1.5 mm.
(1)(2)步骤同实施例7。(1) (2) steps are the same as in Example 7.
(3)配制100mL混合电解液,包括浓度为3mol/L的磷酸二氢铵和0.2mol/L的氢氟酸。(3) Prepare 100 mL of mixed electrolyte solution, including ammonium dihydrogen phosphate with a concentration of 3 mol/L and hydrofluoric acid with a concentration of 0.2 mol/L.
(4)电压20V,电极间距为4cm,电解槽温度保持在室温,阳极氧化处理60分钟,并在处理过程中电解液应保持不断搅拌。(4) The voltage is 20V, the distance between the electrodes is 4cm, the temperature of the electrolytic cell is kept at room temperature, and the anodic oxidation treatment is performed for 60 minutes, and the electrolyte should be kept stirring continuously during the treatment.
(5)在空气气氛下进行热处理,升温速度为3℃/min,从室温升至450℃保温3小时,然后随炉冷至室温。(5) Carry out heat treatment in an air atmosphere with a heating rate of 3°C/min, from room temperature to 450°C for 3 hours, and then cool to room temperature with the furnace.
检测结果:二氧化钛纳米管规则地生长在纯钛表面上,管径大小一致,约为90~100nm,管长达0.9~1.1μm。Test results: Titanium dioxide nanotubes regularly grow on the surface of pure titanium, the diameter of which is about 90-100nm, and the tube length is 0.9-1.1μm.
本发明方法制备得到的二氧化钛纳米管阵列形貌规整,定向规则排布,非晶态二氧化钛纳米管在垂直于基底方向产生管径大小一致,具有纳米二氧化钛的特殊物理化学性能,可以应用于催化化学、生物医学材料、光学材料及日常工业等领域。The titanium dioxide nanotube array prepared by the method of the present invention has regular appearance and regular arrangement, and the amorphous titanium dioxide nanotubes have uniform diameters in the direction perpendicular to the substrate, and have special physical and chemical properties of nano titanium dioxide, which can be applied to catalytic chemistry , biomedical materials, optical materials and daily industry and other fields.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006100223861A CN101191248B (en) | 2006-12-01 | 2006-12-01 | Method for preparing titanium dioxide nano tube array on titanium-substrate material surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006100223861A CN101191248B (en) | 2006-12-01 | 2006-12-01 | Method for preparing titanium dioxide nano tube array on titanium-substrate material surface |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101191248A CN101191248A (en) | 2008-06-04 |
CN101191248B true CN101191248B (en) | 2011-08-10 |
Family
ID=39486446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006100223861A Expired - Fee Related CN101191248B (en) | 2006-12-01 | 2006-12-01 | Method for preparing titanium dioxide nano tube array on titanium-substrate material surface |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101191248B (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101404216B (en) * | 2008-11-10 | 2012-08-22 | 重庆大学 | Titanium dioxide compound film optoelectronic pole and its production method |
CN101545129B (en) * | 2009-04-02 | 2010-08-11 | 桂林工学院 | A process for synthesizing crystalline titanic oxide nano-tubes |
CN101625930B (en) * | 2009-06-19 | 2012-04-11 | 东南大学 | Ordered nano-tube array structure electrode material, preparation method and stored energy application |
MY157270A (en) * | 2010-08-25 | 2016-05-31 | Univ Sains Malaysia | An apparatus and method for rapid rate of titanium dioxide (tio2) nanotubes arrays formation |
CN101928975A (en) * | 2010-09-01 | 2010-12-29 | 西安交通大学 | A method for rapidly preparing titanium oxide nanotube single-tube powder |
CN102277608A (en) * | 2011-07-12 | 2011-12-14 | 大连理工大学 | Process for preparing titanium dioxide nano-tube powder |
KR102055772B1 (en) * | 2011-12-05 | 2019-12-13 | 나노 프리시전 메디컬, 인코포레이티드 | Device having titania nanotube membrane for drug delivery |
CN102442632B (en) * | 2011-12-09 | 2014-10-01 | 中山大学 | Anticoagulant composite biomaterial with micro-nano multi-scale pattern structure and preparation method thereof |
CN102534630B (en) * | 2012-02-08 | 2014-01-01 | 武汉科技大学 | A kind of porous titanium nitride nanotube array film and its preparation method |
CN102810462A (en) * | 2012-06-18 | 2012-12-05 | 西南交通大学 | A kind of preparation method of semiconductor rectifier device with large breakdown voltage |
CN103520776B (en) * | 2012-07-05 | 2015-04-22 | 北京纳通科技集团有限公司 | Medical titanium substrate material and manufacturing method thereof |
CN103614761A (en) * | 2013-12-02 | 2014-03-05 | 天津大学 | Method for preparing highly-ordered titanium dioxide nanotube and application in dye-sensitized solar cell |
WO2015112811A1 (en) | 2014-01-23 | 2015-07-30 | Nano Precision Medical, Inc. | Implant device for drug delivery |
CN105013459B (en) * | 2015-06-29 | 2017-04-05 | 合肥工业大学 | A highly preferentially oriented anatase-type TiO2 nanotube array film and its preparation method |
CN105463364B (en) * | 2015-12-04 | 2018-01-19 | 中山大学 | Super hydrophilic anatase tio2 array of the > orientations of < 001 and preparation method and application |
CN108166044A (en) * | 2018-03-05 | 2018-06-15 | 吉林大学 | A kind of method of the regulation and control medical TC4 titanium alloy surfaces tube diameters of 3D printing |
CN110000991A (en) * | 2019-03-15 | 2019-07-12 | 南京大学 | The metal and its processing method and metal-resin composite and preparation method thereof of surface treatment |
CN113456896B (en) * | 2021-05-20 | 2022-11-11 | 宁波市医疗中心李惠利医院 | Selenium-doped titanium dioxide nanotube array orthopedic anti-tumor implant |
CN116354391A (en) * | 2022-06-24 | 2023-06-30 | 京泰环保科技有限公司 | Material containing nano titanium dioxide and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1598075A (en) * | 2004-07-29 | 2005-03-23 | 大连理工大学 | Titanium dioxide nano tube electrode and its preparation process and application |
EP1726567A1 (en) * | 2004-03-19 | 2006-11-29 | Nippon Oil Corporation | Nanotube-shaped titania and method for producing same |
-
2006
- 2006-12-01 CN CN2006100223861A patent/CN101191248B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1726567A1 (en) * | 2004-03-19 | 2006-11-29 | Nippon Oil Corporation | Nanotube-shaped titania and method for producing same |
CN1598075A (en) * | 2004-07-29 | 2005-03-23 | 大连理工大学 | Titanium dioxide nano tube electrode and its preparation process and application |
Non-Patent Citations (2)
Title |
---|
Andrei Ghicov,Hiroaki Tsuchiya,JanM.Macak,PatrikSchmuki.Titanium oxide nanotubes prepared inphosphateelectrolytes.ElectrochemistryCommunications 7(2005).2005,第505页右栏倒数第3行至第506页左栏第3行,图1-3以及结论部分,尤其参见图1-2及其相应描述. |
Andrei Ghicov,Hiroaki Tsuchiya,JanM.Macak,PatrikSchmuki.Titanium oxide nanotubes prepared inphosphateelectrolytes.ElectrochemistryCommunications 7(2005).2005,第505页右栏倒数第3行至第506页左栏第3行,图1-3以及结论部分,尤其参见图1-2及其相应描述. * |
Also Published As
Publication number | Publication date |
---|---|
CN101191248A (en) | 2008-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101191248B (en) | Method for preparing titanium dioxide nano tube array on titanium-substrate material surface | |
CN101649483B (en) | Preparation method of titanium dioxide nanorod array film | |
CN102534630B (en) | A kind of porous titanium nitride nanotube array film and its preparation method | |
CN101187043A (en) | Preparation method of ultralong titania nanotube arrays with photocatalytic properties | |
Wan et al. | Self-organized highly ordered TiO2 nanotubes in organic aqueous system | |
CN101768771B (en) | Cylindrical and barrel-shaped titanium dioxide nanotube arrays and preparation method and application thereof | |
CN102220616A (en) | Method for preparing titanium dioxide nanotube array | |
CN102864481B (en) | Titanium dioxide photo-catalyzed film and preparation method thereof | |
CN101775586A (en) | Preparation method of electrochemical oriented growth of polyporous Al2O3 film on non-aluminum base | |
CN103991904B (en) | Magn é li phase oxidation titanium nano-wire array and preparation method thereof | |
CN101845661B (en) | Monocrystalline silicon piece with super-hydrophobic nano silicon line array on surface and preparation method thereof | |
CN101969109A (en) | Preparation process of dendritic titanium dioxide nanotube array electrode | |
CN102674706B (en) | Method for preparing titanium dioxide nano multi-level structure thin film on conductive glass | |
CN103526157A (en) | Preparation method of composite structure material based on silicon-based porous silicon/tungsten oxide nanowires | |
CN103225104A (en) | Single crystal anatase titanium dioxide nano-tube array and preparation method thereof | |
CN107268061A (en) | A kind of additive Mn film of Nano tube array of titanium dioxide and gas sensor with and preparation method thereof | |
CN102534742A (en) | Titanium dioxide nano thin film composite material and constant-current preparation method thereof | |
CN102277607B (en) | Method for preparing through hole anode alumina film with controllable aperture and thickness | |
CN101244462A (en) | Method for producing hierarchically sized micro/nanostructured layers on pure titanium surfaces | |
CN101481135A (en) | Preparation of tin oxide nano tube | |
CN102980915A (en) | Preparation method of palladium-doped TiO2 nanotube array Schottky junction hydrogen sensor | |
CN105347345A (en) | Silicon micro-nano structure preparing method | |
CN102021630B (en) | Coaxial heterogeneous ceric dioxide nanotube-titanium dioxide nanotube array thin film | |
CN100378254C (en) | Preparation method of thickness-controllable, free-standing ultra-thin porous alumina template | |
KR20100032841A (en) | Manufacturing method of nanotube-shaped tio2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110810 Termination date: 20131201 |