CN101188433A - 用于无线通信系统内调幅的方法和系统 - Google Patents

用于无线通信系统内调幅的方法和系统 Download PDF

Info

Publication number
CN101188433A
CN101188433A CNA2007101040256A CN200710104025A CN101188433A CN 101188433 A CN101188433 A CN 101188433A CN A2007101040256 A CNA2007101040256 A CN A2007101040256A CN 200710104025 A CN200710104025 A CN 200710104025A CN 101188433 A CN101188433 A CN 101188433A
Authority
CN
China
Prior art keywords
signal
bit
signal level
module
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101040256A
Other languages
English (en)
Other versions
CN101188433B (zh
Inventor
亨里克·詹森
阿莉雷扎·佐尔法格哈里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Broadcom Corp
Zyray Wireless Inc
Original Assignee
Zyray Wireless Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zyray Wireless Inc filed Critical Zyray Wireless Inc
Publication of CN101188433A publication Critical patent/CN101188433A/zh
Application granted granted Critical
Publication of CN101188433B publication Critical patent/CN101188433B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3002Conversion to or from differential modulation
    • H03M7/3004Digital delta-sigma modulation
    • H03M7/3006Compensating for, or preventing of, undesired influence of physical parameters
    • H03M7/3008Compensating for, or preventing of, undesired influence of physical parameters by averaging out the errors, e.g. using dither
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/361Modulation using a single or unspecified number of carriers, e.g. with separate stages of phase and amplitude modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0634Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
    • H03M1/0656Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal
    • H03M1/066Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal by continuously permuting the elements used, i.e. dynamic element matching
    • H03M1/0673Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal by continuously permuting the elements used, i.e. dynamic element matching using random selection of the elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/50Digital/analogue converters using delta-sigma modulation as an intermediate step
    • H03M3/502Details of the final digital/analogue conversion following the digital delta-sigma modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3002Conversion to or from differential modulation
    • H03M7/3004Digital delta-sigma modulation
    • H03M7/3015Structural details of digital delta-sigma modulators
    • H03M7/302Structural details of digital delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M7/3024Structural details of digital delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • H03M7/3026Structural details of digital delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a multiple bit one
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3002Conversion to or from differential modulation
    • H03M7/3004Digital delta-sigma modulation
    • H03M7/3015Structural details of digital delta-sigma modulators
    • H03M7/3031Structural details of digital delta-sigma modulators characterised by the order of the loop filter, e.g. having a first order loop filter in the feedforward path
    • H03M7/3042Structural details of digital delta-sigma modulators characterised by the order of the loop filter, e.g. having a first order loop filter in the feedforward path the modulator being of the error feedback type, i.e. having loop filter stages in the feedback path only

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本发明涉及一种用于功率放大器驱动器调幅的数模转换的方法和系统。所述系统包括的电路在单个集成电路器件内对基带信号内的多个样本中的每一个进行过采样。所述电路将所述过采样后的多个样本中的每一个减少多个比特,从而使因所述过采样而出现的量化噪声移位。基于该经过采样的信号,可生成后继信号。所述电路使用集成在所述单个集成电路器件内的滤波器电路对所述后继信号进行低通滤波,从而减弱移位到该过采样信号的高频范围内的量化噪声。

Description

用于无线通信系统内调幅的方法和系统
技术领域
本发明涉及无线通信,更具体地说,涉及一种用于功放驱动器调幅的数模转换的方法和系统。
背景技术
移动通信改变了人们通信的方式,手机已经从奢侈品变成人们日常生活必不可少的一部分。手机的使用在今天已取决于社会环境,而不受位置和技术的限制。尽管语音连接已经实现了通信的基本需求,无线语音和数据连接不断渗透到日常生活的各个方面,使用无线和/或有线网络的各种综合的移动多媒体应用将是移动通信变革的下一步骤。
提供各种高速接入技术的第三代(3G)蜂窝网以及专门设计来使用这些技术的移动电话,能够满足支持TV和使用高级压缩标准的音频应用、高分辨率游戏应用、外设接口支持等的综合多媒体应用的要求。由于芯片设计者们利用压缩和较高的带宽来传输更多的信息,处理要求正逐渐增加。3G无线应用支持384Kbits到2Mbits的比特率,允许芯片设计者们给无线系统提供多媒体性能、较高的质量、减少的干扰和较宽的覆盖面积。
随着移动多媒体服务的不断普及和使用,诸如功耗、网络容量的性价比和服务质量(QoS)等因素对于蜂窝网运营商来说将变得比今天更为关键。这些因素将通过仔细的网络部署和运营、传输方法的改进以及接收技术的提高和芯片集成方案来实现。为此,运营商们需要有技术来允许他们增加用于移动多媒体应用支持的下行吞吐量,并进而为移动多媒体应用服务的用户提供更高的QoS性能和速度。当前,移动多媒体处理器尚不能完全将片上系统(SoC)集成用作今天手机的高级整体系统解决方案。例如,现有的移动处理器利用多个硬件加速器来实现各种多媒体应用,这明显的增加了功耗、实现复杂度、移动处理器尺寸和最终的终端大小。
某些移动通信技术例如全球移动通信系统(GSM)、通用分组无线业务(GPRS)、用于GSM演进的增强数据率(EDGE)使用极化调制。极化调制包括将信号从使用同相(I)和正交(Q)分量的形式转换成对应的使用幅度(ρ)和相位
Figure A20071010402500051
分量的形式。从I和Q信号形式转换到ρ和
Figure A20071010402500052
信号形式的过程中会引入量化噪音。结果,ρ和
Figure A20071010402500053
信号形式内的至少一部分成分会被过滤掉。
尽管现有的某些极化调制收发器设计包括有允许I和Q信号形式到ρ和
Figure A20071010402500054
信号形式的转换在单个集成电路器件或芯片中执行的电路,但是滤波电路的特性导致在设计中,该滤波电路位于一个单独的芯片内或作为离散器件形式的滤波器位于芯片外。
在通过与本发明的系统进行比较后,现有和传统的手段的其它局限和缺点是很明显的。
发明内容
本发明提出一种用于功率放大器驱动器调幅的数模转换的系统和/或方法,将在后续结合至少一幅附图给出详细的介绍,并在权利要求中给出完整的定义。
根据本发明一个方面,提出一种用于无线通信系统内调幅的方法,所述方法包括:
在单个集成电路器件内,对基带信号内的多个样本中的每一个进行过采样;
将所述过采样后的多个样本中的每一个减少多个比特,从而使因所述过采样而出现的量化噪声移位;
使用集成在所述单个集成电路器件内的滤波器电路对包含有所述被减少的多个比特的后继信号进行低通滤波。
优选地,所述基带信号内的多个样本中的每一个均包括M比特的二进制数据字,被转换成K个信号电平中的至少其一,其中K和M代表数量,且K的值小于2M
优选地,所述方法还包括:生成所述后继信号,其中所述后继信号包括所述K个信号电平中的当前一个信号电平,其后是零信号电平,再其后是所述K个信号电平中后继的一个信号电平。
优选地,所述方法还包括:将所述的K个信号电平中的至少其一均转换成对应的N比特二进制数据字,其中N代表数量。
优选地,所述N比特二进制数据字的最低值和最高值之一对应于所述K个信号电平中一个信号电平的最高值和最低值之一。
优选地,所述N比特二进制数据字的最低值和最高值之间的一个值对应于所述K个信号电平中最低电平和最高电平之间的一个信号电平。
优选地,所述方法还包括:基于所述N比特二进制数据以及根据伪随机比特序列生成的比特,生成交换控制比特。
优选地,所述交换控制比特经过了差分编码。
优选地,所述方法还包括:基于所述经过差分编码的交换控制比特内正比特的值,选择所述K个信号电平中的一个。
优选地,所述方法还包括:基于所述经过差分编码的交换控制比特内负比特的值,生成零信号电平。
优选地,所述方法还包括:生成所述后继信号,其中所述后继信号包括基于所述经过差分编码的交换控制比特内正比特的当前值选择的所述K个信号电平中的一个,其后是基于所述经过差分编码的交换控制比特内负比特的值生成的零信号电平,再其后是基于所述经过差分编码的交换控制比特内所述正比特的后继值选择的所述K个信号电平中的一个后继信号电平。
优选地,所述正比特的当前值是对应的所述正比特的后继值基于所述伪随机比特序列的二进制补码。
根据本发明的一个方面,还提出一种用于无线通信系统内调幅的系统,所述系统包括:
在单个集成电路器件内对基带信号内的多个样本中的每一个进行过采样的电路;
所述电路将所述过采样后的多个样本中的每一个减少多个比特,从而使因所述过采样而出现的量化噪声移位;
所述电路使用集成在所述单个集成电路器件内的滤波器电路对包含有所述被减少的多个比特的后继信号进行低通滤波。
优选地,所述基带信号内的多个样本中的每一个均包括M比特的二进制数据字,被转换成K个信号电平中的至少其一,其中K和M代表数量,且K的值小于2M
优选地,所述电路生成所述后继信号,其中所述后继信号包括所述K个信号电平中的当前一个信号电平,其后是零信号电平,再其后是所述K个信号电平中的一个后继信号电平。
优选地,所述电路将所述的K个信号电平中的至少其一均转换成对应的N比特二进制数据字,其中N代表数量。
优选地,所述N比特二进制数据字的最低值和最高值之一对应于所述K个信号电平中一个信号电平的最高值和最低值之一。
优选地,所述N比特二进制数据字的最低值和最高值之间的一个值对应于所述K个信号电平中最低电平和最高电平之间的一个信号电平。
优选地,所述电路基于所述N比特二进制数据以及根据伪随机比特序列生成的比特,生成交换控制比特。
优选地,所述交换控制比特经过了差分编码。
优选地,所述电路基于所述经过差分编码的交换控制比特内正比特的值,选择所述K个信号电平中的一个。
优选地,所述电路基于所述经过差分编码的交换控制比特内负比特的值,生成零信号电平。
优选地,所述电路生成所述后继信号,其中所述后继信号包括基于所述经过差分编码的交换控制比特内正比特的当前值选择的所述K个信号电平中的一个,其后是基于所述经过差分编码的交换控制比特内负比特的值生成的零信号电平,再其后是基于所述经过差分编码的交换控制比特内所述正比特的后继值选择的所述K个信号电平中的一个后继信号电平。
优选地,所述正比特的当前值是对应的所述正比特的后继值基于所述伪随机比特序列的二进制补码。
本发明的其他优点、目的和新颖性特征,及其详细的图解说明,将在接下来的描述和图示中得到更充分的阐释。
附图说明
图1A是依据本发明实施例的移动终端一个示例的框图;
图1B是结合本发明实施例使用的极化调制(polar modulation)发射器的一个示例的框图;
图2是依据本发明实施例用于功率放大器驱动器调幅中数模转换的系统的框图;
图3是依据本发明实施例用于δ-σ调制的系统的示例框图;
图4是依据本发明实施例用于高通型抖动信号生成(high pass shapeddither generation)的系统的示例框图;
图5是依据本发明实施例生成用于数模转换的控制信号的系统的示例框图;
图6是依据本发明实施例用于动态元素匹配的系统的示意图;
图7是依据本发明实施例用于伪随机比特序列生成的系统的示意图;
图8是依据本发明实施例用于数模转换的电路的示意图;
图9是依据本发明实施例用于功率放大器驱动器调幅中数模转换的方法的步骤流程图。
具体实施方式
本发明实施例涉及一种用于功率放大器驱动器调幅中数模转换的方法和系统。本发明的一个方面包括对极化振幅发射器内生成的信号进行振幅控制的电路。所述系统包括有在单个集成电路器件或芯片内将基带信号转换成过采样后继信号的电路。所述过采样使得所述后继信号由所述单个集成电路器件内的滤波器电路进行滤波。滤波后的后继信号可用于控制功率放大器。所述功率放大器可以接收已调相信号,并生成放大后信号。所述功率放大器可以基于滤波后的后继信号改变所述放大后信号的振幅。
图1A是依据本发明实施例的移动终端的示例框图。如图1A所示,移动终端120包括RF接收器123a、RF发射器123b、数字基带处理器129、处理器125和存储器127。接收天线121a通信连接至RF接收器123a。发射天线121b通信连接至RF发射器123b。
RF接收器123a包括有合适的逻辑、电路和/或代码,用于处理接收到的RF信号。RF接收器123a可接收多个频带内的RF信号。RF接收器123a可接收蜂窝频带例如GSM、GPRS和/或EDGE内的信号。RF接收器123a所支持的每个频带具有对应的前端电路,用以处理低通放大和降频变换操作。
RF接收器123a可对接收的RF信号进行降频变换,转换成包括同相(I)分量和正交(Q)分量的基带频率信号。某些情况中,RF接收器123a可对基带信号分量进行模数转换,然后再传送给数字基带处理器129。
数字基带处理器129包括有合适的逻辑、电路和/或代码,用于处理和/或应付基带频率信号。也就是说,数字基带处理器129可处理从RF接收器123a接收的信号,和/或将发送给RF发射器123b的信号。数字基带处理器129还可基于从处理后的信号中获得的信息,提供控制和/或反馈信息给RF接收器123a和RF发射器123b。数字基带处理器129可将从处理后的信号中获得的信息和/或数据传送给处理器125和/或存储器127。此外,数字基带处理器129还可从处理器125和/或存储器127接收信息,并对这些信息进行处理然后发送给RF发射器123b。
RF发射器123b包括有合适的逻辑、电路和/或代码,用于处理RF信号以通过无线媒介发送。RF发射器123b可在多个频带内发射RF信号。此外,RF发射器123b可在蜂窝频带内在发送信号。RF发射器123b所支持的每个频带具有对应的前端电路,用以进行放大和/或升频变换操作。
RF发射器123b可将包含有I/Q分量的基带频率信号升频变换为RF信号。某些情况下,RF发射器123b可在进行升频变换之前,先对来自数字基带处理器129的基带信号分量进行数模转换。
处理器125包括有合适的逻辑、电路和/或代码,用于移动终端120的控制和/或数据处理操作。处理器125可用于控制RF接收器123a、RF发射器123b、数字基带处理器129和/或存储器127中至少一部分。在这点上,处理器125生成至少一个信号以用于移动终端120内的控制操作。处理器125还可执行移动终端120可能用到的应用程序。
存储器127包括有合适的逻辑、电路和/或代码,用于存储移动终端120使用的数据和/或其它信息。例如,存储器127可用于存储数字基带处理器129和/或处理器125生成的处理后的数据。存储器127可以用于存储信息,例如配置信息,用于控制移动终端120内至少一个模块的操作。
图1B是结合本发明实施例使用的极化调制发射器的示例框图。如图1B所示有数字基带处理器132、基准频率模块134、功率放大器152、带通滤波器138、发射天线121b、锁相环(PLL)156、前置放大器144和直角到极坐标转换模块158。如图1B所示,极化调制发射器可以是移动终端例如图1A中移动终端120的一部分。
基准频率模块134包括有合适的逻辑、电路和/或代码,用于生成本地振荡(LO)和/或载波频率信号。基准频率模块134可包括晶振,用于生成本地振荡信号。
数字基带处理器132包括有合适的逻辑、电路和/或代码,用于处理和/或应付基带频率信号。该数字基带处理器可以生成包含有同相(I)分量和正交(Q)分量的数字基带信号。该数字基带信号可包括多个样本,每个样本包括多个比特,例如12比特。数字基带信号内的样本可以一定采样率获得,例如13MHz。数字基带信号内的每个样本可表示多个信号电平,例如212或4096个信号电平。
带通滤波器138包括有合适的逻辑、电路和/或代码,用于处理输入信号,减弱低于较低频率fLOW以及高于较高频率fHIGH的电磁频率范围内的输入信号的振幅,生成输出信号。大于或等于fLOW且小于或等于fHIGH的频率范围为通频带。
前置放大器144包括有合适的逻辑、电路和/或代码,用于生成输出信号,与对应的输入信号相关联的信号电平相比较,该输出信号的信号电平进行了固定大小或大小可变的降低。
功率放大器152包括有合适的逻辑、电路和/或代码,用于基于输入信号生成输出信号,具有足够的电功率,使得当该输出信号应用于电力负载时,其振幅能够得到维持。功率放大器152的特点在于输入信号的振幅改变与输出信号的振幅改变成比例的线性操作。功率放大器152的增益可基于接收到的增益控制信号发生变化。
直角到极坐标转换模块158包括有合适的逻辑、电路和/或代码,用于生成对应于接收到的输入信号的幅度和相位分量。直角到极坐标转换模块158接收包含I和Q分量的数字基带信号,并生成该数字基带信号的包含有幅度分量(ρ)和相位分量
Figure A20071010402500111
的形式,其中的幅度分量代表经调幅的信号分量,相位分量代表经调相的信号分量。
在本发明的各个实施例中,结合直角到极坐标转换模块158使用的电路可生成表示该数字基带信号的过采样形式的数字后继信号,同时生成ρ分量。过采样导致数字基带信号内的一个样本对应于该数字后继信号内的多个样本。用于该数字后继信号的采样率可以大于该数字基带信号的对应采样率。例如,用于一个数字基带信号的采样率为13MHz,那么用于数字后继信号的采样率为400MHz。数字基带信号内的每个样本均可表示多个信号电平,例如212个信号电平,该每个样本被转换成数字后继信号内的样本,其包括约2比特,表示较少的信号电平,例如3个信号电平。示例的3个信号电平包括电平0、电平1、电平2。该信号电平对应于模拟信号内的电压电平。因此,数字后继信号内的每个样本可由数量比包含在数字基带信号样本内的比特数量少的多个比特来表示。例如,大约2比特便可表示该后继信号内的每个样本。每个样本内比特数量的减少,可实现在单个集成电路器件内进行数模转换,例如,可以每秒4×108个样本的速率处理每个样本的大约2比特。
从包括12比特样本的数字基带信号到包含有基于该12比特样本选择的3个信号电平中一个信号电平的值的模拟后继信号的转换,会引入量化噪声。本发明的各个实施例中包括有电路,以将量化噪声偏置到模拟后继信号内的高频成分的方式调制该数字后继信号。在数模转换过程中,例如,包含多个2比特数字样本的数字后继信号被转换成包含有3个信号电平中对应的一个信号电平的模拟信号,该模拟信号可经过低通滤波以减少引入的量化噪声。
数字基带信号的过采样可实现低通滤波器的执行,该低通滤波器的特点在于相对较高的截止频率fHIGH,例如1MHz。该相对较高的截止频率可实现将低通滤波器电路集成在单个集成电路器件内。在某些现有的功率放大器驱动器电路内,低通滤波器电路需要大电容值元件,使得该低通滤波器需要在单独的集成电路内实现,或以离散器件的形式在该集成电路外部实现。
分数N合成器156包括有合适的逻辑、电路和/或代码,可使用调相信号成分来生成合成的RF信号。分数N合成器156可基于输入的IF信号生成该合成的RF信号。分数N合成器156基于输入IF信号的对应改变,获得该合成的RF信号的信号电平和/或频率的改变。分数N合成器156可执行校准和预失真过程以均衡整个频率范围内的改变,如对分数N合成器142的描述一样。
工作时,数字基带处理器132提供包含I和Q信号分量的基带信号。I和Q分量可传送给直角到极坐标转换模块158,由其生成对应于接收到的I和Q信号分量的幅度(ρ)和相位
Figure A20071010402500121
信号分量。该相位分量可传送给PLL 156。PLL 156使用该相位分量,以及来自基准频率模块134的LO信号和/或载波频率信号,生成RF合成信号。该RF合成信号的频率与从接收自基准频率模块134的输入信号得到的载波频率有关。
前置放大器144可以改变RF合成信号的振幅。修改振幅后的RF合成信号包括输出RF合成信号。功率放大器152改变该输出RF合成信号的振幅。功率放大器152可基于从直角到极坐标转换模块158接收到的幅度分量信号对该输出RF合成信号的振幅进行修改。输出的RF合成信号包括分布在一个频率范围内的多个信号成分。带通滤波器138可通过降低频率不在带通滤波器138的通频带内的信号成分的信号电平,来对放大后的输出RF合成信号进行频带限制。发射天线121b可通过无线媒介发射该经过频带限制的信号。
图2是依据本发明实施例用于功率放大器驱动器调幅的数模转换的系统的示例框图。如图2所示为单个集成电路器件200。该集成电路器件200包括伪随机比特序列生成器202、δ-σ调制量化器204、二进制编码器206、动态元素匹配模块208和数模转换器(DAC)模块210。
伪随机比特序列生成器202包括有合适的逻辑、电路和/或代码,用于生成多个比特。所述多个比特的二进制值作为一组,可以代表伪随机序列。该伪随机序列可基于种子值(seed value)来生成。
δ-σ调制量化器204包括有合适的逻辑、电路和/或代码,用于生成K电平输出信号,其中K表示一个数字。本发明一个实施例中,K=3。δ-σ调制量化器204基于包含有多个样本的数字基带信号并基于伪随机比特序列,生成该K电平输出信号。数字基带信号内的每个样本包括有M比特。一个示例数字基带信号中,M=12。数字基带信号内的样本可以通过例如13MHz的采样率获得。K电平输出信号内的每个样本包括多个电平,例如3个电平。示例的3个电平包括电平0、电平1和电平2。该3个电平可通过对应的多个比特来表示,例如1.5比特,或大约2比特。K电平输出信号内的样本可以例如400MHz的采样率获得。
δ-σ调制量化器204可基于数字基带信号的当前样本的值和K电平输出信号的当前样本得到的值,计算差值。计算得到的差值可加入基于数字基带信号的后继样本的一个值中,并加入基于伪随机比特序列的一个抖动值中。
δ-σ调制量化器204可基于多个计算得到的差值生成K电平输出信号。示例的K电平输出信号可包括当前样本,其值为基于当前差值从K个电平中选择的一个,跟着是值为电平0的后继样本,再跟着是一个后继样本,其值为从K个电平中基于后继的差值选择出的一个。本发明的各个实施例中,该K电平输出信号可以基于归零量化操作来生成。
在从数字基带信号的M比特样本转换到K电平输出信号中的对应电平的过程中,会引入量化噪声。δ-σ调制量化器204可基于伪随机比特序列生成高通形抖动信号,该信号包括多个抖动值。在加法函数中加入高通形抖动信号时,会使出现在K电平输出信号内的量化噪声与输入信号极度不相关,从而非常符合加性白噪声源。δ-σ调制量化器204可使量化噪声主要发生在输出信号相关频谱的高频端。量化噪声到频谱高频端的移位可以实现使用低通滤波器对该量化噪声的滤波。本发明各个实施例中,低通滤波器电路和δ-σ调制量化器204可集成在单个集成电路器件内。
二进制编码器206包括有合适的逻辑、电路和/或代码,可基于K电平输入信号的各个样本到对应N比特二进制样本的转换,生成数字后继信号,其中N表示数量。每个二进制样本可表示为包括{比特N,比特N-1,…,比特1}的二进制数组(binary tuple)。N的值满足2N≥K。本发明一个实施例中,M=3,N=2,信号电平和比特值之间的对应关系为:电平0对应于比特数组{0,0},电平1对应于比特数组{1,0},电平2对应于比特数组{1,1}。
动态元素匹配模块208包括有合适的逻辑、电路和/或代码,通过基于伪随机比特序列转换所接收的包含N比特二进制样本的数字信号内的比特值,生成交换控制比特。动态元素匹配模块208可基于每个N比特二进制样本生成L交换控制比特。本发明一个实施例中,L=2,N=2。动态元素匹配模块208可接收收到的数字信号(包括比特数组{1,0})内的样本,并基于伪随机比特序列内的当前值,生成表示为比特数组{1,0}的交换控制比特。动态元素匹配模块208可接收收到的数字信号(包括比特数组{1,0})内的样本,并基于伪随机比特序列内的后继值,生成表示为比特数组{0,1}的交换控制比特。
DAC模块210包括有合适的逻辑、电路和/或代码,基于接收的数字信号生成模拟输出信号。该数字信号包括多个N比特二进制样本。DAC模块210可将该二进制样本转换成K个信号电平中对应的一个信号电平,以用于生成模拟输出信号。本发明一个实施例中,K=3,N=2,其中比特值和信号电平之间的对应关系为:比特数组{0,0}对应于电平0,比特数组{0,1}和{1,0}对应于电平1,比特数组{1,1}对应于电平2。
本发明各个实施例中,模拟输出信号内的信号电平可对应于激发晶体管(activating transistor)电路生成的电压电平。所述晶体管电路的至少一部分可基于当前N比特二进制样本那的各个比特值被激活和/或无效。被激活的晶体管电路可通过输出电阻和电容电路产生电流。模拟输出信号内的信号电平取决于该输出电阻和电容电路相关的电压电平。
晶体管的性能可依据集成电路制造过程中出现的加工偏差而变化。这种现象可称为失配。因此,通过芯片内一个晶体管的电流可不同于通过该芯片内另一个名义上相同的晶体管的电流。结果,对应于模拟输出信号内信号电平的电压电平可因DAC电路内哪个晶体管被激活和/或被无效而不同。这一变化便称为失配噪声,其可基于芯片内晶体管的失配而引入模拟输出信号中。
本发明的各个实施例中,模拟输出信号内失配噪声的电平可通过动态元素匹配方法来衰减。在动态元素匹配方法中,对应于模拟输出信号内信号电平的电压电平可通过在生成该信号电平时激活或无效晶体管来生成。本发明一个实施例中,在给定时间点,信号电平1可基于接收到的比特数组{0,1}生成。该比特数组可导致第一晶体管被激活,第二晶体管被无效。然后可为对应信号电平1的输出信号生成对应的电压电平。随后的一个时间点,可基于接收到的比特数组{1,0}生成信号电平1。这一后继比特数组导致第一晶体管被无效,第二晶体管被激活。在该随后时间点,可为对应该信号电平1的输出信号生成对应的后继电压电平。检测跨越多个二进制样本的一个时间段可知,动态元素匹配方法与某些现有的数模转换电路设计相比较,能够减少频带内失配噪声。
工作中,伪随机比特序列生成器202生成伪随机序列。该伪随机序列由δ-σ调制量化器204和动态元素匹配模块208所使用。δ-σ调制量化器204接收数字基带信号并生成K电平输出信号。二进制编码器206将该K电平输出信号转换成包含N比特二进制样本的数字后继信号。一个N比特数组的值对应于输出信号的K个电平中的一个。
动态元素匹配模块208从二进制编码器206接收该数字后继信号,通过基于接收到的伪随机序列修改该数字后继信号内的比特来生成交换控制比特。被修改的比特包括该数字后继信号内接收到的对应比特的二进制补码。当N比特样本包含的数据字的值大于N比特数据字的最低值且小于最高值时,动态元素匹配模块208修改接收到的数字后继信号内的比特。例如,本发明一个实施例中,N=2,最低值等于0,对应于比特数组{0,0},而最高值等于3,对应于比特数组{1,1}。当N比特数据字等于1,即对应于比特数组{0,1},或2,即对应于比特数组{1,0}时,动态元素匹配模块208修改接收到的数字后继信号内的比特。基于伪随机比特序列,动态元素匹配模块208可修改比特数组{0,1}以生成比特数组{1,0},反之亦然。
DAC模块210从动态元素匹配模块208接收交换控制比特。DAC模块210可使用该交换控制比特来对该交换控制比特所表示的信号电平执行数模转换。DAC模块210可使用交换控制比特激活和/或无效晶体管电路,从而产生对应的电压电平。电压电平可用于生成模拟输出信号。来自DAC模块的模拟输出信号可用于生成幅度分量,如图1B中直角到极坐标转换模块158所述。
图3是依据本发明实施例用于δ-σ调制的系统的示意图。图3所示的δ-σ调制系统的功能与图2中δ-σ调制量化器204实质上相同。如图3所示为抖动模块(dithering block)302、二进制生成模块304、补码二进制生成模块306、复用器308、加法模块310、延时模块312、差值模块314和归零量化器316。
抖动模块302包括有合适的逻辑、电路和/或代码,用于从伪随机比特序列中生成抖动选择比特。该抖动选择比特可用于生成高通型抖动信号。
二进制生成模块304包括有合适的逻辑、电路和/或代码,用于基于种子值生成比特。一个实施例中使用的种子值为2-4
补码二进制生成模块306包括有合适的逻辑、电路和/或代码,用于基于种子值生成比特,该比特为例如2的补码,或1的补码。本发明一个实施例中所使用的种子值为一2-4
复用器308包括有合适的逻辑、电路和/或代码,可基于多个输入信号生成至少一个输出信号。基于包含一个或多个比特的选择器输入,可选择输入信号进行输出。本发明一个实施例中,复用器308包括1比特的选择输入、两个输入信号和一个输出信号。两个输入信号中的一个与二进制值0相关联,另一个与二进制值1相关联。当所述选择输入端接收到输入为二进制值0时,选择与二进制值0相关联的输入信号作为输出。当选择输入端接收到的输入为二进制值1时,选择与二进制值1相关联的输入信号作为输出。复用器308的输出信号包括高通型抖动信号。
加法模块310包括有合适的逻辑、电路和/或代码,用于生成相加的和值。该和值可基于接收到的数字基带信号、高通型抖动信号和差信号进行计算。
延时模块312包括有合适的逻辑、电路和/或代码,实现基于输入信号生成输出信号,其中当前时间点的输出信号值对应于前一时间点的输入信号值。差值模块314包括有合适的逻辑、电路和/或代码,可基于当前和值以及输出信号的当前样本的值生成差值。归零量化器316包括有合适的逻辑、电路和/或代码,基于计算出的和值生成K电平输出信号。
工作中,抖动模块302从伪随机比特序列接收比特。该伪随机比特序列可用于生成抖动选择比特。输出的抖动选择比特可用作复用器308的输入。基于当前抖动选择比特的值,复用器308可选择来自二进制生成模块304或补码二进制生成模块306的输入。基于该选择,复用器308生成高通型抖动信号。
加法模块310基于数字基带信号的当前样本、高通型抖动信号的当前值、接收自延时模块312的延时差值,相加生成当前的和值。差值模块314基于当前的和值以及来自归零量化器316生成的输出信号的当前样本值,计算出当前的差值。归零量化器316基于当前的和值生成输出信号内当前样本的值。
图4是依据本发明实施例用于生成高通型抖动信号的系统的示意图。如图4所示的高通型抖动信号系统可生成抖动选择比特,其被用于生成高通型抖动信号,如前对δ-σ调制量化器204(图2)和抖动模块302(图3)的描述所述。如图4所示有逻辑“非”模块402、多个逻辑“与”模块404和406、多个JK触发器(JK flip flop)模块408和414以及多个逻辑“或”模块410和412。
逻辑“非”模块402包括有合适的逻辑、电路和/或代码,用于生成包含有二进制值的输出信号,该二进制值为输入信号内对应二进制值的二进制补码。
逻辑“与”模块404包括有合适的逻辑、电路和/或代码,基于多个输入信号中每个输入信号的当前二进制值的逻辑“与”生成二进制输出值。本发明一个实施例中,逻辑“与”模块404包括2个输入和1个输出。逻辑“与”模块406与逻辑“与”模块404基本相同。
JK触发器模块408包括有合适的逻辑、电路和/或代码,基于二进制J输入信号和二进制K输入信号生成补码二进制输出Q和~Q。逻辑“高”J输入信号的当前二进制值可使得Q输出信号的对应二进制值被设置为逻辑“高”二进制值。~Q输出的对应二进制值可被设置为逻辑“低”二进制值。逻辑“高”K输入信号的当前二进制值可使得Q输出的对应二进制值被设置为逻辑“低”二进制值。~Q输出的对应二进制值被设置为逻辑“高”二进制值。JK触发器414与JK触发器408基本相同。
逻辑“或”模块410包括有合适的逻辑、电路和/或代码,基于多个输入信号中每个输入信号的当前二进制值的逻辑“或”,生成二进制输出值。一个实施例中,逻辑“或”模块410包括2个输入和1个输出。逻辑“或”模块412与逻辑“或”模块410基本相同。
工作中,逻辑“非”模块402接收来自伪随机序列的比特,生成输出序列,该输出序列中包含的比特是伪随机序列中对应比特的二进制补码。逻辑“与”模块404接收来自伪随机序列的比特以及来自JK触发器414的Q输出的比特。逻辑“与”模块406接收来自逻辑“非”模块402的比特以及来自JK触发器414的~Q输出的比特。逻辑“与”模块404的输出端连接至JK触发器408的J输入端。逻辑“与”模块406的输出端连接至JK触发器408的K输入端。JK触发器408的Q输出端连接至逻辑“或”模块410的一个输入端。逻辑“或”模块410还接收来自伪随机序列的比特。逻辑“或”模块412还接收来自逻辑“非”模块402的比特。逻辑“或”模块410的输出端连接至JK触发器414的J输入端。逻辑“或”模块412的输出端连接至JK触发器414的K输入端。JK触发器414的Q输出可包括生成的抖动选择比特。
图5是依据本发明实施例生成用于数模转换的控制信号的系统的示意图。图5中的用于生成数模转换中的控制信号的系统与图2中的动态元素匹配模块208实质上相同。如图5所示有逻辑“异或”(XOR)模块502、动态元素匹配逻辑模块504、多个逻辑“与非”模块506、508、510、512和514、多个延时模块516和518。多个延时模块516和518与图3中的延时模块312基本相同。
动态元素匹配逻辑模块504包括有合适的逻辑、电路和/或代码,用于生成交换控制比特。该交换控制比特包括来自动态元素匹配逻辑模块504的补码二进制输出Q和~Q。~Q输出的当前二进制值是相对于Q输出的当前二进制值的补码。补码二进制输出Q和~Q可基于对应的二进制E输入和二进制R输入生成。
逻辑“异或”模块502包括有合适的逻辑、电路和/或代码,基于多个输入信号中每个输入信号的当前二进制值的逻辑“异或”,生成二进制输出值。一个实施例中,逻辑“异或”模块502包括2个输入和1个输出。
逻辑“与非”模块506包括有合适的逻辑、电路和/或代码,基于多个输入信号中每个输入信号的当前二进制值的逻辑“与非”(NAND),生成二进制输出值。一个实施例中,逻辑“与非”模块506包括2个输入和1个输出。逻辑“与非”模块508、510、512、154与逻辑“与非”模块506实质上相同。
工作中,逻辑“异或”模块502接收来自信号Bit2_In和Bit1_In的输入。该输入信号对应于从二进制编码器206(图2)接收到的数字信号的样本,其中每个样本可表示为一个比特数组{比特2,比特1}。Bit2_In的比特值对应于该数组内的比特2,而Bit1_In的比特值对应于该数组内的比特1。逻辑“异或”模块502的输出端连接至动态元素匹配逻辑模块504的输入端。动态元素匹配逻辑模块504还接收来自伪随机比特序列的输入。逻辑“与非”模块506接收来自信号Bit2_In和Bit1_In的输入。逻辑“与非”模块508从逻辑“异或”模块502的输出端以及动态元素匹配逻辑模块504的O输出端接收输入。逻辑“与非”模块510从逻辑“异或”模块502的输出端以及动态元素匹配逻辑模块504的~O输出端接收输入。逻辑“与非”模块512从逻辑“与非”模块506的输出端以及逻辑“与非”模块508的输出端接收输入。逻辑“与非”模块514从逻辑“与非”模块506的输出端以及逻辑“与非”模块510的输出端接收输入。延时模块516基于逻辑“与非”门512的输出的延时版本生成交换控制比特数组中的比特2。延时模块518基于逻辑“与非”门514的输出的延时版本生成交换控制比特数组中的比特1。
图6是依据本发明实施例用于动态元素匹配的系统的示意图。图6所示的系统实质上便是图2中的动态元素匹配模块208,图6中示出了图5中动态元素匹配逻辑模块504的相关电路的具体示意图。如图6所示有逻辑“非”模块602、多个逻辑“与”模块604、606、614和616、多个JK触发器模块608和618、多个逻辑“或”模块610和612。逻辑“非”模块602实质上与图4的逻辑“非”模块402相同。逻辑“或”模块610、612实质上与逻辑“或”模块410相同。逻辑“与”模块604、606、614、616实质上与逻辑“与”模块404相同。本发明一个实施例中,逻辑“与”模块604、606每个均包括有3个输入和1个输出。JK触发器模块608和618实质上与JK触发器408相同。
工作中,逻辑“非”模块602接收来自伪随机序列的比特,并生成输出序列,该输出序列包含的比特是该伪随机比特序列中对应比特的二进制补码。逻辑“与”模块604接收来自伪随机序列的比特以及来自JK触发器618的Q输出端的比特,并接收基于来自二进制编码器206(图2)的比特数组{比特2,比特1}的逻辑“异或”生成的输入。逻辑“与”模块606接收来自逻辑“非”模块602的比特以及来自JK触发器618的~Q输出的比特,并接收基于来自二进制编码器206的比特数组{比特2,比特1}内比特的逻辑“异或”生成的输入。
逻辑“与”模块604的输出端连接至JK触发器608的J输入端。逻辑“与”模块606的输出端连接至JK触发器608的K输入。JK触发器608的Q输出端连接至逻辑“或”模块612的输入端。JK触发器608的~Q输出端连接至逻辑“或”模块610的输入端。逻辑“或”模块610还接收来自伪随机序列的比特。逻辑“或”模块612还接收来自逻辑“非”模块602的比特。逻辑“或”模块610的输出端连接至逻辑“与”模块614的输入端。逻辑“与”模块614和逻辑“与”模块616每个均接收基于来自二进制编码器206的比特数组{比特2,比特1}内的比特的逻辑“异或”生成的输入。
逻辑“与”模块614的输出端连接至JK触发器618的J输入端。逻辑“与”模块616的输出端连接至JK触发器618的K输入端。JK触发器618的Q输出端对应于动态元素匹配逻辑模块504的O输出端。JK触发器618的~Q输出端对应于动态元素匹配逻辑模块504的~O输出端。
图7是依据本发明实施例用于伪随机比特序列生成的系统的示意图。图7所示的伪随机比特序列生成系统实质上与图2中的伪随机比特序列生成器202相同。如图7所示有逻辑“异或”模块702、多个延时模块704、706、708、710、712、714、716、718、720、722、724、726、720、730、732、734、736、738、740、742、744、746、748、750、752、754、756、758、760、762和764。逻辑“异或”模块702实质上与图5中的逻辑“异或”模块502相同。多个延时模块704、706、……、764每个均与图3中的延时模块312实质上相同。
操作开始时,每个延时模块704、706、……、764包括有对应的初始比特值。这多个延时模块中,对应的多个初始比特值共同代表种子值。逻辑“异或”模块702从延时模块708的输出端接收一个输入,并从延时模块764的输出端接收一个输入。逻辑“异或”模块702的输出端连接至延时模块704的输入端。延时模块704的输出端连接至延伸模块706的输入端。依此类推,延时模块702、704、……、764中,每个延时模块的输出端连接至下一延时模块的输入端。最后,延时模块764的输出端便对应于伪随机比特序列生成器202的输出端。
图8是依据本发明实施例用于数模转换的电路的示意图。如图8所示的用于数模转换的系统实质上与图2中的DAC模块相同。如图8所示有多个电阻802和804、多个电容806和808、多个晶体管810、812、814和816、多个电流源818和820。晶体管810、812、814和816可使用多种技术,例如各种金属氧化硅(MOS)技术如互补MOS(CMOS)、n沟道MOS(NMOS)、p沟道MOS(PMOS)或结型场效应晶体管(JFET)或双极性技术。
电阻802和804以及电容806和806组成低通滤波器电路,集成在单个集成电路器件内。该低通滤波器电路可用于对DAC模块210生成的模拟信号进行滤波。经过滤波后的模拟信号,即在图8中标识为Out的信号点测得的信号,对应于来自DAC模块210的输出。经滤波后的模拟信号包括从直角到极坐标转换模块158输出的幅度分量。该幅度分量可用于控制功率放大器152的增益。低通滤波器的截至频率fHIGH可基于电容806和808的电容值以及电阻802和804的电阻值确定得到。
输入11p和11n对应于差分编码的信号,该信号与DAC模块210的Bit1_In输入相对应。输入11p表示对应于Bit1_In输入的差分编码信号内的正比特。输入11n表示对应于Bit1_In输入的差分编码信号内的负比特。输入12p和12n对应于与DAC模块210内的Bit2_In输入相对应的差分编码值。输入12p表示对应于Bit2_In输入的差分编码信号内的正比特。输入12n表示对应于Bit2_In输入的差分编码信号内的负比特。DAC模块210的Bit1_In输入对应于动态元素匹配模块208的Bit2_Out输出。
Bit2_In输入对应于动态元素匹配模块208生成的比特数组{比特2,比特1}内的比特2。Bit1_In输入对应于该比特数组内的比特1。正比特12p对应于等于逻辑“高”值的比特2。当比特2等于二进制“高”值时,正比特12p即为“高”信号电平。负比特12n对应于等于逻辑“低”值的比特2。当比特2等于逻辑“低”值时,负比特12n即为“高”信号电平。正比特11p对应于等于逻辑“高”值的比特1。当比特1等于二进制“高”值时,正比特11p即为“高”信号电平。负比特11n对应于等于逻辑“低”值的比特1。当比特1等于逻辑“低”值时,负比特11n即为“高”信号电平。
基于输入11n的信号电平,晶体管810进入活性导通状态。在该活性导通状态,晶体管810可在电压源Vdd和地Gnd之间通过电流源818实现导电通路。当输入11n激活晶体管810进入有效导通状态时,输入11p的信号电平可使得晶体812进入无效的非导通状态。在该非导通状态,晶体管812使电压源和地之间通过电流源818的导电通路断开。
同样地,基于输入12n的信号电平,晶体管816进入活性导通状态。在该活性导通状态,晶体管816可在电压源Vdd和地Gnd之间通过电流源820实现导电通路。当输入12n激活晶体管816进入有效导通状态时,输入12p的信号电平可使得晶体814进入无效的非导通状态。在该非导通状态,晶体管814使电压源和地之间通过电流源820的导电通路断开。
当输入11n和12n使对应的晶体管810和816进入活性导通状态时,通过电阻802和804的电流约等于0。在本发明一个实施例中,在信号点Out测得的对应电压将对应于信号电平0。当输入11p和12p使得对应的晶体管812和814进入活性的导通状态时,与晶体管812和814处于无效的非导通状态相比,流经电路802和814的电流被增大。在信号点Out测得的对应电压将对应于信号电平2。滤波器电路可根据截至频率fHIGH限制在信号点Out测得的电压电平的变化率。
当输入11p使得晶体管812进入活性导通状态,同时输入12p使得晶体管814进入无效的非导通状态,则在信号点Out测得的对应电压将对应于信号电平1。这一电压可表示为{0,1}电压电平。当输入12p使得晶体管814进入活性导通状态,同时输入11p使得晶体管812进入无效的非导通状态,则在信号点Out测得的对应电压将对应于信号电平1。这一电压可表示为{1,0}电压电平。{0,1}电压电平并不等于{1,0}电压电平,其压差包括有失配噪声。
图9是依据本发明实施例用于功率放大器驱动器调幅的数模转换的方法的步骤流程图。如图9所示,在步骤902,通过伪随机比特序列生成器202生成伪随机比特序列。在步骤904,δ-σ调制量化器204接收数字基带信号。在步骤906,δ-σ调制量化器204对接收到的数字基带信号进行过采样,生成输出信号。在步骤908,δ-σ调制量化器204将从数字基带信号中获得的样本转换成信号电平。在步骤910,二进制编码器206将该信号电平转换成二进制形式。在步骤912,动态元素匹配模块208基于该信号电平生成交换控制比特。在步骤914,DAC210基于交换控制比特生成模拟信号。
本发明用于功率放大器驱动器调幅的数模转换的系统包括有直角到极坐标转换模块158,实现在单个集成电路器件200内对数字基带信号内多个样本中每个样本的过采样。δ-σ调制量化器204减少每个过采样后的样本中的比特,从而使因过采样出现的量化噪声移位。基于该过采样,可生成后继信号。数模转换器(DAC)210使该后继信号通过单个集成电路器件200内的滤波器电路进行低通滤波。数字基带信号内多个样本中每一个均包括M比特的二进制数据字,其被转换成K个信号电平中的至少一个,其中K和M均表示数量,K的值可小于2M
DAC 210可实现后继信号的生成,该后继信号包括K个信号电平中的当前一个信号电平,跟着是零信号电平,再跟着是K个信号电平中的后继信号电平。二进制编码器206将K个信号电平中每一个转换成对应的N比特二进制字,其中N表示数量。该N比特二进制数据字的最低值或最高值对应于K个信号电平中一个信号电平的最高值或最低值。N比特二进制数据字的大于最低值且小于最高值的值对应于K个信号电平中大于最低电平且小于最高电平的一个电平。动态元素匹配模块208基于N比特二进制数据字以及根据伪随机比特序列生成的比特,生成交换控制比特。该交换控制比特可经过差分编码。
DAC 210可基于差分编码交换控制比特内的正比特选择K个信号电平中的一个。DAC 210可基于差分编码交换控制比特内负比特的值生成零信号电平。DAC 210可生成后继信号,该后继信号包括基于正比特的当前值选择的K个信号电平中的一个信号电平,跟着是基于负比特的值生成的零信号电平,再跟着是基于正比特的后继值选择的K个信号电平中的后继信号电平。正比特的当前值是基于伪随机比特序列得到的正比特的对应后继值的二进制补码。
因此,本发明可以通过硬件、软件,或者软、硬件结合来实现。本发明可以在至少一个计算机系统中以集中方式实现,或者由分布在几个互连的计算机系统中的不同部分以分散方式实现。任何可以实现所述方法的计算机系统或其它设备都是可适用的。常用软硬件的结合可以是安装有计算机程序的通用计算机系统,通过安装和执行所述程序控制计算机系统,使其按所述方法运行。在计算机系统中,利用处理器和存储单元来实现所述方法。
本发明还可以通过计算机程序产品进行实施,所述程序包含能够实现本发明方法的全部特征,当其安装到计算机系统中时,通过运行,可以实现本发明的方法。本文件中的计算机程序所指的是:可以采用任何程序语言、代码或符号编写的一组指令的任何表达式,该指令组使系统具有信息处理能力,以直接实现特定功能,或在进行下述一个或两个步骤之后实现特定功能:a)转换成其它语言、编码或符号;b)以不同的格式再现。
本发明是通过几个具体实施例进行说明的,本领域技术人员应当明白,在不脱离本发明范围的情况下,还可以对本发明进行各种变换及等同替代。另外,针对特定情形或具体情况,可以对本发明做各种修改,而不脱离本发明的范围。因此,本发明不局限于所公开的具体实施例,而应当包括落入本发明权利要求范围内的全部实施方式。

Claims (10)

1.一种用于无线通信系统内调幅的方法,其特征在于,所述方法包括:
在单个集成电路器件内,对基带信号内的多个样本中的每一个进行过采样;
将所述过采样后的多个样本中的每一个减少多个比特,从而使因所述过采样而出现的量化噪声移位;
使用集成在所述单个集成电路器件内的滤波器电路对包含有所述被减少的多个比特的后继信号进行低通滤波。
2.根据权利要求1所述的方法,其特征在于,所述基带信号内的多个样本中的每一个均包括M比特的二进制数据字,被转换成K个信号电平中的至少其一,其中K和M代表数量,且K的值小于2M
3.根据权利要求2所述的方法,其特征在于,所述方法还包括:生成所述后继信号,其中所述后继信号包括所述K个信号电平中的当前一个信号电平,其后是零信号电平,再其后是所述K个信号电平中后继的一个信号电平。
4.根据权利要求3所述的方法,其特征在于,所述方法还包括:将所述的K个信号电平中的至少其一均转换成对应的N比特二进制数据字,其中N代表数量。
5.根据权利要求4所述的方法,其特征在于,所述N比特二进制数据字的最低值和最高值之一对应于所述K个信号电平中一个信号电平的最高值和最低值之一。
6.根据权利要求4所述的方法,其特征在于,所述N比特二进制数据字的最低值和最高值之间的一个值对应于所述K个信号电平中最低电平和最高电平之间的一个信号电平。
7.一种用于无线通信系统内调幅的系统,其特征在于,所述系统包括:
在单个集成电路器件内对基带信号内的多个样本中的每一个进行过采样的电路;
所述电路将所述过采样后的多个样本中的每一个减少多个比特,从而使因所述过采样而出现的量化噪声移位;
所述电路使用集成在所述单个集成电路器件内的滤波器电路对包含有所述被减少的多个比特的后继信号进行低通滤波。
8.根据权利要求7所述的系统,其特征在于,所述基带信号内的多个样本中的每一个均包括M比特的二进制数据字,被转换成K个信号电平中的至少其一,其中K和M代表数量,且K的值小于2M
9.根据权利要求8所述的系统,其特征在于,所述电路生成所述后继信号,其中所述后继信号包括所述K个信号电平中的当前一个信号电平,其后是零信号电平,再其后是所述K个信号电平中的一个后继信号电平。
10.根据权利要求9所述的系统,其特征在于,所述电路将所述的K个信号电平中的至少其一均转换成对应的N比特二进制数据字,其中N代表数量。
CN2007101040256A 2006-05-18 2007-05-16 用于无线通信系统内调幅的方法和系统 Expired - Fee Related CN101188433B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/436,348 US7362251B2 (en) 2006-05-18 2006-05-18 Method and system for digital to analog conversion for power amplifier driver amplitude modulation
US11/436,348 2006-05-18

Publications (2)

Publication Number Publication Date
CN101188433A true CN101188433A (zh) 2008-05-28
CN101188433B CN101188433B (zh) 2011-04-13

Family

ID=38442182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101040256A Expired - Fee Related CN101188433B (zh) 2006-05-18 2007-05-16 用于无线通信系统内调幅的方法和系统

Country Status (5)

Country Link
US (2) US7362251B2 (zh)
EP (1) EP1858216B1 (zh)
CN (1) CN101188433B (zh)
DE (1) DE602007007842D1 (zh)
TW (1) TWI353758B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103281086A (zh) * 2013-05-30 2013-09-04 京信通信系统(广州)有限公司 一种tdma射频信号采样量化方法及系统

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7362251B2 (en) * 2006-05-18 2008-04-22 Broadcom Corporation Method and system for digital to analog conversion for power amplifier driver amplitude modulation
US7720160B1 (en) * 2006-12-14 2010-05-18 Maxim Integrated Products, Inc. Phase noise shaping using sigma delta modulation in a timing recovery unit
US8294516B2 (en) * 2007-06-15 2012-10-23 Broadcom Corporation Power amplifier pre-distortion
US8194808B2 (en) 2007-06-15 2012-06-05 Broadcom Corporation Carrier selection for multiple antennas
US8212541B2 (en) 2008-05-08 2012-07-03 Massachusetts Institute Of Technology Power converter with capacitive energy transfer and fast dynamic response
DE102008044744B4 (de) * 2008-08-28 2015-05-21 Intel Mobile Communications GmbH Verfahren und Vorrichtung zum Rauschformen eines Übertragungssignals
WO2010056646A1 (en) * 2008-11-11 2010-05-20 Massachusetts Institute Of Technology An asymmetric multilevel outphasing architecture for rf amplifiers
US10389235B2 (en) 2011-05-05 2019-08-20 Psemi Corporation Power converter
EP4318909A3 (en) 2011-05-05 2024-03-06 PSEMI Corporation Dc-dc converter with modular stages
US10680515B2 (en) 2011-05-05 2020-06-09 Psemi Corporation Power converters with modular stages
US9882471B2 (en) 2011-05-05 2018-01-30 Peregrine Semiconductor Corporation DC-DC converter with modular stages
US8824978B2 (en) 2012-10-30 2014-09-02 Eta Devices, Inc. RF amplifier architecture and related techniques
US9166536B2 (en) 2012-10-30 2015-10-20 Eta Devices, Inc. Transmitter architecture and related methods
US8829993B2 (en) 2012-10-30 2014-09-09 Eta Devices, Inc. Linearization circuits and methods for multilevel power amplifier systems
US9537456B2 (en) 2012-10-30 2017-01-03 Eta Devices, Inc. Asymmetric multilevel backoff amplifier with radio-frequency splitter
US8779958B1 (en) * 2013-01-22 2014-07-15 Analog Devices Technology Continuous time input stage
US8619445B1 (en) 2013-03-15 2013-12-31 Arctic Sand Technologies, Inc. Protection of switched capacitor power converter
WO2014168911A1 (en) 2013-04-09 2014-10-16 Massachusetts Institute Of Technology Power conservation with high power factor
WO2015069516A1 (en) 2013-10-29 2015-05-14 Massachusetts Institute Of Technology Switched-capacitor split drive transformer power conversion circuit
US9537686B2 (en) * 2014-04-03 2017-01-03 Redline Communications Inc. Systems and methods for increasing the effectiveness of digital pre-distortion in electronic communications
US10075064B2 (en) 2014-07-03 2018-09-11 Massachusetts Institute Of Technology High-frequency, high density power factor correction conversion for universal input grid interface
US9768731B2 (en) 2014-07-23 2017-09-19 Eta Devices, Inc. Linearity and noise improvement for multilevel power amplifier systems using multi-pulse drain transitions
US9979421B2 (en) 2015-03-02 2018-05-22 Eta Devices, Inc. Digital pre-distortion (DPD) training and calibration system and related techniques
WO2018129695A1 (en) * 2017-01-12 2018-07-19 Qualcomm Incorporated Puncturing and repetition for data encoding
US10270510B1 (en) 2018-03-19 2019-04-23 Mitsubishi Electric Research Laboratories, Inc. Digital beamforming transmitter array system with hardware sharing and reduction
WO2020105040A1 (en) * 2018-11-19 2020-05-28 Satixfy Uk Limited Techniques for reducing quantization errors in electronically steerable antenna
IL267004B1 (en) * 2019-05-30 2024-04-01 Satixfy Uk Ltd Techniques for reducing quantization errors in an electronically tunable antenna

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118652B2 (ja) * 1990-10-12 1995-12-18 ヤマハ株式会社 Da変換装置
GB9103777D0 (en) * 1991-02-22 1991-04-10 B & W Loudspeakers Analogue and digital convertors
CA2129418A1 (en) 1993-10-04 1995-04-05 Mahendra Patel Data-driven autorating for use in data communications
EP1235403B1 (en) 2001-02-22 2012-12-05 Panasonic Corporation Combined frequency and amplitude modulation
US6563448B1 (en) * 2002-04-29 2003-05-13 Texas Instruments Incorporated Flexible sample rate converter for multimedia digital-to-analog conversion in a wireless telephone
US7283075B2 (en) * 2004-08-12 2007-10-16 Silicon Laboratories, Inc. Delta-sigma modulator with selectable noise transfer function
US7787563B2 (en) * 2004-12-08 2010-08-31 Texas Instruments Incorporated Transmitter for wireless applications incorporation spectral emission shaping sigma delta modulator
US20070018718A1 (en) * 2005-06-20 2007-01-25 National Sun Yat-Sen University Microwave transmitter and the method for increasing envelope bandwidth
US7362251B2 (en) * 2006-05-18 2008-04-22 Broadcom Corporation Method and system for digital to analog conversion for power amplifier driver amplitude modulation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103281086A (zh) * 2013-05-30 2013-09-04 京信通信系统(广州)有限公司 一种tdma射频信号采样量化方法及系统
CN103281086B (zh) * 2013-05-30 2016-08-24 京信通信系统(广州)有限公司 一种tdma射频信号采样量化方法及系统

Also Published As

Publication number Publication date
CN101188433B (zh) 2011-04-13
US7362251B2 (en) 2008-04-22
EP1858216A1 (en) 2007-11-21
TW200816737A (en) 2008-04-01
TWI353758B (en) 2011-12-01
EP1858216B1 (en) 2010-07-21
US20080175333A1 (en) 2008-07-24
US7548180B2 (en) 2009-06-16
DE602007007842D1 (de) 2010-09-02
US20070268168A1 (en) 2007-11-22

Similar Documents

Publication Publication Date Title
CN101188433B (zh) 用于无线通信系统内调幅的方法和系统
CN100364239C (zh) 传输电路装置及无线通信装置
US9760338B2 (en) Direct digital synthesis of signals using maximum likelihood bit-stream encoding
CN101388878B (zh) 不具有模拟滤波器的极化调制器及其实现装置和实现方法
US9088319B2 (en) RF transmitter architecture, integrated circuit device, wireless communication unit and method therefor
US8823459B2 (en) Variable frequency circuit controller
US7148825B2 (en) Data interface including gray coding
US20060128347A1 (en) Radio integrated circuit with integrated power amplifier
EP2515444B1 (en) RF transmitter and method therefor
US7587000B2 (en) Radio receiver utilizing a single analog to digital converter
JP2008509575A (ja) ディジタル帯域通過シグマ・デルタ変調器を含む全ディジタル送信機
CN102752246B (zh) 射频发射器、集成电路设备、无线通信单元及方法
US7755524B2 (en) Method for performing a digital to analog conversion of a digital signal, and corresponding electronic device
US6903619B2 (en) Electromagnetic wave transmitter systems, methods and articles of manufacture
CN104054312B (zh) 基于多相调制生成输出信号的发射机前端装置
JPWO2012153567A1 (ja) デジタル変調器
US7345612B2 (en) Digital-to-radio frequency conversion device, chip set, transmitter, user terminal and data processing method
CN103346810B (zh) 全数字直接上变频电路
US8766838B2 (en) Method and apparatus for performing modulation of a radio frequency signal
Zimmermann et al. System architecture of an RF-DAC based multistandard transmitter
CN110212925A (zh) 一种无线通信全数字射频发射装置
CN114128138A (zh) 一种信号处理方法及装置
Cordeiro et al. FPGA-based all-digital transmitters
Yin et al. Jitter enhanced full digital RF transmitter and PWM RFPA for 5G broadband communications
CN115176426A (zh) 一种射频电路、信号反馈电路和通信系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110413

Termination date: 20170516