CN101187630A - A method for monitoring drought in farmland - Google Patents

A method for monitoring drought in farmland Download PDF

Info

Publication number
CN101187630A
CN101187630A CN 200710178807 CN200710178807A CN101187630A CN 101187630 A CN101187630 A CN 101187630A CN 200710178807 CN200710178807 CN 200710178807 CN 200710178807 A CN200710178807 A CN 200710178807A CN 101187630 A CN101187630 A CN 101187630A
Authority
CN
China
Prior art keywords
index
vegetation
drought
albedo
nir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200710178807
Other languages
Chinese (zh)
Inventor
秦其明
阿布都瓦斯提-吾拉木
詹志明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN 200710178807 priority Critical patent/CN101187630A/en
Publication of CN101187630A publication Critical patent/CN101187630A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种农田干旱监测的方法。该农田干旱监测方法,是获取待监测地表上所设观测点的土壤或叶片含水量,将所述观测点的土壤或叶片含水量与表征农田旱情的相应指数建立函数关系式,将遥感数据带入所述函数关系式,得出待监测地表的土壤或植物叶片含水量;其中,所述表征地表旱情的相应指数按照如下方法确定:1)在植被覆盖度≤15%的农田地表,采用垂直干旱指数;2)在植被覆盖度>15%并且≤65%的农田地表,采用植被条件反照率干旱指数;3)在植被覆盖度>65%至100%的农田地表,采用下述三种指数中的至少一种:短波红外垂直失水指数、植被水分含量指数和植被水分亏缺指数。本发明的地表干旱监测方法适用于不同植被覆盖度的农田地表干旱监测。The invention discloses a method for monitoring farmland drought. The farmland drought monitoring method is to obtain the soil or leaf water content of the observation point on the surface to be monitored, establish a functional relationship between the soil or leaf water content of the observation point and the corresponding index representing the farmland drought, and bring the remote sensing data to Enter the functional relational expression to obtain the water content of soil or plant leaves on the surface to be monitored; wherein, the corresponding index representing the surface drought is determined according to the following method: 1) on the farmland surface with vegetation coverage≤15%, use vertical Drought index; 2) On the surface of the farmland with vegetation coverage > 15% and ≤ 65%, use the vegetation condition albedo drought index; 3) On the surface of the farmland with vegetation coverage > 65% to 100%, use the following three indexes At least one of: short-wave infrared vertical water loss index, vegetation water content index and vegetation water deficit index. The surface drought monitoring method of the invention is suitable for monitoring the surface drought of farmland with different vegetation coverage.

Description

一种农田干旱监测方法 A method for monitoring drought in farmland

技术领域technical field

本发明涉及一种农田干旱监测方法。The invention relates to a farmland drought monitoring method.

背景技术Background technique

干旱的发生过程是潜在的,不容易发现;农田干旱的发生特征是影响范围大,带来严重的灾难性后果和经济损失;干旱涉及的因素多,如气象参数、地表水分状况、人类社会经济活动和农业生产水平及生产结构等。遥感技术能够提供农田的多源多维多时相信息,为农田干旱监测开辟了新的途径。The occurrence process of drought is potential and not easy to discover; the occurrence of drought in farmland is characterized by a large area of influence, which brings serious catastrophic consequences and economic losses; drought involves many factors, such as meteorological parameters, surface water conditions, human socio-economic conditions, etc. Activities and levels of agricultural production and production structure, etc. Remote sensing technology can provide multi-source, multi-dimensional and multi-temporal information of farmland, which opens up a new way for farmland drought monitoring.

传统的农田干旱监测是用观测点上的数据来监测干旱的程度及范围,其中应用最多的是气象观测数据。由于干旱发生的周期性和区域性的特点,要实现大范围区域的干旱监测,遥感技术是可行的途径之一。卫星遥感干旱监测从20世纪70年代开始,针对气象干旱或农业干旱,利用可见光、近红外、红外、微波等多种波段,已经产生了众多的模型和方法,如NOAA干旱指数(the NOAA Drought Index,NDI,Strommen et al,1980),由Kogan(1995)提出的基于归一化植被指数(NDVI)的植被条件指数(Vegetation Condition Index,VCI)和基于地表温度的温度状态指数(Temperature Condition Index,TCI)等。这些方法中,尚未有适用于农田作物不同生长阶段的大面积农田干旱监测方法。The traditional farmland drought monitoring is to monitor the degree and scope of the drought with the data on the observation point, and the meteorological observation data is the most widely used. Due to the periodic and regional characteristics of drought, remote sensing technology is one of the feasible ways to realize drought monitoring in a large area. Since the 1970s, satellite remote sensing drought monitoring has produced many models and methods, such as the NOAA Drought Index (the NOAA Drought Index , NDI, Strommen et al, 1980), the vegetation condition index (Vegetation Condition Index, VCI) based on the normalized difference vegetation index (NDVI) and the temperature state index (Temperature Condition Index, TCI) etc. Among these methods, there is no large-scale farmland drought monitoring method suitable for different growth stages of farmland crops.

发明内容Contents of the invention

本发明的目的是提供一种利用遥感技术进行地表干旱监测的新方法。The purpose of the present invention is to provide a new method for surface drought monitoring using remote sensing technology.

本发明所提供的地表干旱监测的方法,是获取待监测地表上所设观测点的土壤或叶片含水量,将所述观测点的土壤或叶片含水量与表征地表旱情的相应指数建立函数关系式,将遥感数据带入所述函数关系式,得出待监测地表的土壤或植物叶片含水量;The method for surface drought monitoring provided by the present invention is to obtain the soil or leaf water content of the observation point on the surface to be monitored, and establish a functional relationship between the soil or leaf water content of the observation point and the corresponding index representing the surface drought , bringing the remote sensing data into the functional relationship to obtain the moisture content of the soil or plant leaves on the surface to be monitored;

其中,所述表征地表旱情的相应指数按照如下方法确定:Wherein, the corresponding index representing the surface drought situation is determined according to the following method:

1)在植被覆盖度≤15%的地表,采用垂直干旱指数;1) On the surface with vegetation coverage ≤ 15%, the vertical drought index is used;

所述垂直干旱指数按照下式(I)计算:The vertical drought index is calculated according to the following formula (I):

PDIPDI == 11 Mm 22 ++ 11 (( RR redred ++ MRMR nirnir )) -- -- -- (( II )) ,,

其中,PDI为垂直干旱指数,M为土壤线斜率,Rred为经过大气校正的红光波段反射率,Rnir为经过大气校正的近红外波段反射率;Among them, PDI is the vertical drought index, M is the slope of the soil line, R red is the reflectance of the red band after atmospheric correction, and R nir is the reflectance of the near-infrared band after atmospheric correction;

2)在植被覆盖度>15%并且≤65%的地表,采用植被条件反照率干旱指数;2) On the surface with vegetation coverage > 15% and ≤ 65%, the vegetation condition albedo drought index is used;

所述植被条件反照率干旱指数按照下式(II)计算:The vegetation condition albedo drought index is calculated according to the following formula (II):

VCADIVCADI == AA ii ,, NDVNDV II ii -- AA minmin ,, NDVINDVI ii AA maxmax ,, NDVINDVI ii -- AA minmin ,, NDVINDVI ii -- -- -- (( IIII )) ,,

其中,VCADI为植被条件反照率干旱指数, A max , NDV I i = a + bNDV I i , A min , NDV I i = a ′ + b ′ NDVI i ; Amin,NDVIi和Amax,NDVIi分别为待测区植被指数(NDVI)等于某特定值时的最小和最大反照率;a,b,a′,b′为待定系数,a和a′分别是Albedo-NDVI特征空间中干边和湿边的截距,b和b′分别是Albedo-NDVI特征空间中干边和湿边的斜率,通过待测区植被指数和反照率的散点图获得(见附图3),Ai,NDVIi为Albedo-NDVI特征空间中点(Ai,NDVIi)的反照率,NDVIi为Albedo-NDVI特征空间中D(Ai,NDVIi)的植被指数;Among them, VCADI is the vegetation condition albedo drought index, A max , NDV I i = a + bNDV I i , A min , NDV I i = a ′ + b ′ NDVI i ; A min, NDVIi and A max, NDVIi are the minimum and maximum albedo when the vegetation index (NDVI) of the area to be measured is equal to a certain value; a, b, a', b' are undetermined coefficients, a and a' are The intercept of the dry edge and the wet edge in the Albedo-NDVI feature space, b and b′ are the slopes of the dry edge and the wet edge in the Albedo-NDVI feature space, respectively, obtained from the scatter plot of the vegetation index and albedo of the area to be measured ( See accompanying drawing 3), A i, NDVIi is the albedo of the point (A i , NDVI i ) in the Albedo-NDVI feature space, and NDVI i is the vegetation index of D (A i , NDVI i ) in the Albedo-NDVI feature space;

3)在植被覆盖度>65%的农田,采用下述三种指数中的至少一种:短波红外垂直失水指数、植被水分含量指数和植被水分亏缺指数进行监测;3) In farmland with vegetation coverage > 65%, use at least one of the following three indexes: short-wave infrared vertical water loss index, vegetation water content index and vegetation water deficit index for monitoring;

所述短波红外垂直失水指数按照下式(III)计算:The short-wave infrared vertical dehydration index is calculated according to the following formula (III):

SPSISPSI == 11 Mm 22 ++ 11 (( RR SWIRSWIR ++ MRMR NIRNIR )) -- -- -- (( IIIIII )) ,,

其中,SPSI为短波红外垂直失水指数,RSWIR,RNIR分别为经过大气校正的短波红光(1550-1750nm)和近红外波段(780-900nm)反射率,M为NIR-SWIR基线斜率;Among them, SPSI is the short-wave infrared vertical water loss index, R SWIR and R NIR are the reflectance of short-wave red light (1550-1750nm) and near-infrared band (780-900nm) after atmospheric correction, respectively, and M is the NIR-SWIR baseline slope;

所述植被水分含量指数按照下式(IV)计算:Described vegetation moisture content index is calculated according to following formula (IV):

VWCIVWCI == (( Mm 11 -- Mm )) ×× (( NIRNIR GG -- Mm 22 ×× SWIRSWIR GG -- II 22 )) (( Mm 11 -- Mm 22 )) ×× (( NIRNIR GG -- Mm ×× SWIRSWIR GG )) -- (( Mm 11 -- Mm )) ×× II 22 ++ (( Mm 22 -- Mm )) ×× II 11 -- -- -- (( IVIV ))

其中,VWCI为植被水分含量指数,参考图4,M为NIR-SWIR空间中土壤基线斜率;M1、M2分别为AB和CD线的斜率,I1、I2分别为AB和CD线的截距,NIRG、SWIRG为待测位置对应的近红外和短波红外的反照率值;Among them, VWCI is the vegetation water content index, referring to Figure 4, M is the slope of the soil baseline in the NIR-SWIR space; M 1 and M 2 are the slopes of the AB and CD lines, and I 1 and I 2 are the slopes of the AB and CD lines, respectively. Intercept, NIR G and SWIR G are the albedo values of the near-infrared and short-wave infrared corresponding to the position to be measured;

所述植被水分亏缺指数按照下式(V)计算:Described vegetation water deficit index is calculated according to following formula (V):

VWSI=1-VWCI              (V)VWSI=1-VWCI (V)

其中,VWSI为植被水分亏缺指数;VWCI为植被水分含量指数,按照式(IV)计算。Among them, VWSI is the vegetation water deficit index; VWCI is the vegetation water content index, calculated according to formula (IV).

其中,植被覆盖度是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。Among them, vegetation coverage refers to the percentage of the vertical projected area of vegetation (including leaves, stems, and branches) on the ground to the total area of the statistical area.

上述方法中,所述1)中,在植被覆盖度≤15%的农田地表,采用垂直干旱指数PDI,其计算公式涉及的M值,为红光-近红外波段反射率二维空间内,表征土壤的各点构成的土壤线的斜率。所述2)中,在植被覆盖度>15%并且≤65%的农田地表,采用植被条件反照率干旱指数VCADI;其中,在Albedo-NDVI特征空间提取干边、湿边的斜率和截距(a,b,a′,b′),在此基础上计算VCADI。所述3)中,在植被覆盖度>65%至100%的农田地表,采用短波红外垂直失水指数或植被水分含量指数;其中各公式所涉及的参数都基于短波红外-近红外光谱特征空间。In the above-mentioned method, in the above-mentioned 1), on the farmland surface with vegetation coverage ≤ 15%, the vertical drought index PDI is used, and the M value involved in the calculation formula is the red-near-infrared band reflectance in the two-dimensional space, which is characterized by The slope of the soil line formed by the points of the soil. In the above 2), on the farmland surface with vegetation coverage > 15% and ≤ 65%, the vegetation condition albedo drought index VCADI is used; wherein, the slope and intercept of the dry edge and wet edge are extracted in the Albedo-NDVI feature space ( a, b, a', b'), and calculate VCADI on this basis. In the above 3), on the surface of the farmland where the vegetation coverage is >65% to 100%, the short-wave infrared vertical water loss index or the vegetation moisture content index is used; the parameters involved in each formula are based on the short-wave infrared-near infrared spectral feature space .

上述方法中,所述叶片含水量具体可为叶片等效水分含量,所述3)中的植被覆盖度大于65%,属于高植被覆盖度情况。In the above method, the water content of the leaves may specifically be the equivalent water content of the leaves, and the vegetation coverage in the above 3) is greater than 65%, which belongs to the case of high vegetation coverage.

上述方法中,所述Rred可为经过大气校正的630-690nm红光波段反射率,所述Rnir或者RNIR可为经过大气校正的780-900nm近红外波段反射率,所述RSWIR可为经过大气校正的1550-1750nm短波红光波段反射率,所述RNIR可为经过大气校正的780-900nm近红外波段反射率。In the above method, the R red can be atmospherically corrected 630-690nm red band reflectance, the R nir or R NIR can be atmospherically corrected 780-900nm near-infrared band reflectance, and the R SWIR can be The R NIR is atmospherically corrected 1550-1750nm shortwave red light band reflectance, and the R NIR may be atmospherically corrected 780-900nm near-infrared band reflectance.

本发明利用多源多维多时相遥感图像,从构建对农田水分敏感波段的反射光谱或表征农田干旱的生态物理参数组成的n维光谱特征空间入手,建立能够定量反映农田水分亏缺信息的遥感模型,抓住农田干旱关键的两个指标土壤水分和叶片(冠层)含水量,以光谱反射率或地表生态物理参数的多种组合形式,通过计算农田生态干旱指数在多维光谱特征空间中的距离,定量提取农田干旱动态信息,在此基础上对农田干旱进行监测与评估,并通过辐射传输模型和实地观测数据加以验证。根据地表植被覆盖的不同情况,选择表征农田旱情的相应指数。选择适当观测点获得土壤或叶片含水量,与表征农田旱情的相应指数建立函数关系,进而反演出整个监测区的土壤或作物叶片含水量。本发明所选择的表征农田旱情的相应指数如下:The present invention utilizes multi-source, multi-dimensional, multi-temporal remote sensing images, starts from the construction of reflectance spectra sensitive to farmland moisture bands or n-dimensional spectral feature space composed of ecological and physical parameters representing farmland drought, and establishes a remote sensing model that can quantitatively reflect farmland water deficit information Grasp the two key indicators of farmland drought, soil moisture and leaf (canopy) water content, in the form of various combinations of spectral reflectance or surface ecological physical parameters, by calculating the distance of the farmland ecological drought index in the multidimensional spectral feature space , quantitatively extract the dynamic information of farmland drought, on this basis, monitor and evaluate the farmland drought, and verify it through the radiative transfer model and field observation data. According to the different conditions of surface vegetation cover, select the corresponding index to represent the drought situation of farmland. Select the appropriate observation point to obtain the soil or leaf water content, and establish a functional relationship with the corresponding index that characterizes the farmland drought, and then invert the soil or crop leaf water content in the entire monitoring area. The corresponding index of the selected characterizing farmland drought situation of the present invention is as follows:

1)在农田无植被覆盖以及很低的植被覆盖(覆盖度≤15%)情况下,针对土壤水分指标的遥感监测,根据NIR和RED空间光谱特征构建垂直干旱指数(PDI),综合考虑了土壤水分含量、植被覆盖度、土壤有机质含量和不同土壤类型之间的差异,该模型简单实用,可操作性强。1) In the case of no vegetation coverage and very low vegetation coverage (coverage ≤ 15%), the vertical drought index (PDI) is constructed according to the spatial spectral characteristics of NIR and RED for the remote sensing monitoring of soil moisture indicators, taking into account the soil Moisture content, vegetation coverage, soil organic matter content and differences among different soil types, the model is simple, practical and highly operable.

2)在农田植被部分覆盖条件下,根据NDVI和albedo特征空间,提出了植被条件反照率干旱指数(VCADI)。反照率的引入得到地物在半球空间更丰富的反射信息,从可见光到红外整个太阳光范围的反射特征都能较好的得到反映,这样能够更精准的反演农田干旱信息。该模型进行干旱评估,易于操作,监测精度高。2) Under the condition of partial cover of farmland vegetation, according to NDVI and albedo feature space, the vegetation conditional albedo drought index (VCADI) is proposed. The introduction of albedo can obtain richer reflection information of ground objects in the hemispheric space, and the reflection characteristics of the entire sunlight range from visible light to infrared can be better reflected, which can more accurately retrieve farmland drought information. The model is easy to operate and has high monitoring accuracy for drought assessment.

3)在全植被覆盖的情况下,针对农田干旱监测的叶片含水量指标,提出了基于叶片等效水分含量(EWT)或叶片相对含水量(FMC)的三种用于干旱监测方法。本发明发现NIR-SWIR特征空间中干湿状况呈典型的梯形或三角形分布,利用叶片辐射传输模型PROSPECT、冠层辐射传输模型(Lillesaeter/SailH)和地表-大气辐射传输模型6S,提出了用于高植被覆盖冠层水分含量和水分亏缺监测模型-短波红外垂直失水指数(SPSI),适用于高覆盖度的植被水分含量指数(VWCI)和植被水分亏缺指数(VWSI)。该模型适用于高植被覆盖区的农田干旱监测参数反演与评估。3) In the case of full vegetation coverage, three drought monitoring methods based on leaf equivalent water content (EWT) or leaf relative water content (FMC) were proposed for the leaf water content index of drought monitoring in farmland. The present invention finds that the wet and dry conditions in the NIR-SWIR feature space are typical trapezoidal or triangular distributions, and utilizes the leaf radiation transfer model PROSPECT, the canopy radiation transfer model (Lillesaeter/SailH) and the surface-atmosphere radiation transfer model 6S to propose a method for High vegetation coverage canopy moisture content and water deficit monitoring model - short-wave infrared vertical water loss index (SPSI), suitable for high coverage vegetation water content index (VWCI) and vegetation water deficit index (VWSI). The model is suitable for inversion and evaluation of drought monitoring parameters in high vegetation coverage areas.

本发明利用遥感技术进行农田干旱动态监测,针对农田作物不同生长阶段,选用遥感不同波段建立干旱监测指数,结合地面观测点实测含水量数据,以获得监测区大面积干旱状况。经实际应用检验,该方法简便、高效、易于操作、结果准确,能广泛应用于我国北方和西北地区的农田干旱监测之中。本发明的地表干旱监测方法适用于不同植被覆盖度的农田地表干旱监测。The present invention utilizes remote sensing technology to monitor farmland drought dynamics, selects different wave bands of remote sensing to establish drought monitoring indices for different growth stages of farmland crops, and combines actual water content data measured at ground observation points to obtain large-area drought conditions in the monitoring area. The practical application test shows that the method is simple, efficient, easy to operate and accurate in results, and can be widely used in farmland drought monitoring in northern and northwestern my country. The surface drought monitoring method of the invention is suitable for monitoring the surface drought of farmland with different vegetation coverage.

附图说明Description of drawings

图1为红光-近红外光谱特征空间中干湿状况呈三角形分布Figure 1 shows the triangular distribution of dry and wet conditions in the red-near-infrared spectral feature space

图2为垂直干旱指数(PDI)示意图Figure 2 is a schematic diagram of the Vertical Drought Index (PDI)

图3为植被条件反照率干旱指数(VCADI)示意图Figure 3 is a schematic diagram of the Vegetation Conditional Albedo Drought Index (VCADI)

图4为短波红外垂直失水指数(SPSI)及植被水分含量指数(VWCI)示意图Figure 4 is a schematic diagram of short-wave infrared vertical water loss index (SPSI) and vegetation water content index (VWCI)

图5为垂直干旱指数与土壤水分的相关关系示意图Figure 5 is a schematic diagram of the relationship between vertical drought index and soil moisture

图6为植被条件反照率干旱指数与不同深度土壤水分的相关关系示意图Figure 6 is a schematic diagram of the relationship between the vegetation condition albedo drought index and soil moisture at different depths

图7为短波红外垂直失水指数(SPSI)估算EWTcanopy和实地观测数据的比较Figure 7 shows the comparison between the short-wave infrared vertical water loss index (SPSI) estimated EWT canopy and field observation data

图8为植被水分含量指数(VWCI)估算EWTcanopy和实地观测数据的比较Figure 8 shows the comparison between the vegetation water content index (VWCI) estimated EWT canopy and field observation data

图9为植被水分含量指数(VWCI)估算FMC和实地观测数据的比较Figure 9 shows the comparison between the vegetation water content index (VWCI) estimated FMC and field observation data

具体实施方式Detailed ways

实施例1、干旱监测模型的构建Embodiment 1, the construction of drought monitoring model

对于不同植被覆盖度,选择适当的遥感波段,通过计算得到适合表征该植被覆盖度下农田水分状况的指数。技术方案如下:For different vegetation coverage, select the appropriate remote sensing band, and calculate the index suitable for characterizing the moisture status of the farmland under the vegetation coverage. The technical solution is as follows:

1.对于地表无植被覆盖或者覆盖度低(植被覆盖度≤15%)的地表,利用遥感相关波段数据构建的NIR-Red光谱特征空间散点图呈典型的三角形分布(如图1),B-C为土壤基线,并由B至C土壤渐干,经过空间统计特征可以得到B-C为土壤基线的数学表达式:1. For the surface with no vegetation coverage or low coverage (vegetation coverage ≤ 15%), the NIR-Red spectral feature space scatter diagram constructed using remote sensing related band data presents a typical triangular distribution (as shown in Figure 1), B-C is the soil baseline, and the soil gradually dries from B to C, and the mathematical expression of B-C as the soil baseline can be obtained through the spatial statistical characteristics:

Rnir,s=MRred,s+I                 (1)R nir,s =MR red,s +I (1)

其中Rred,s,Rnir,s分别为经过大气校正的红光波段和近红外波段反射率,M为土壤线斜率、I代表土壤线在纵坐标上的截距。Among them, R red, s , R nir, s are the reflectance of red light band and near-infrared band after atmospheric correction, M is the slope of the soil line, and I is the intercept of the soil line on the ordinate.

在图1中,取得经过坐标原点垂直于土壤基线的垂线L(图2),即可得到方程(1)的法线方程(2)In Figure 1, the vertical line L (Figure 2) passing through the origin of the coordinates and perpendicular to the soil baseline can be obtained to obtain the normal equation (2) of equation (1)

RR nirnir == -- 11 Mm RR redred -- -- -- (( 22 ))

在NIR-Red特征空间上,从任何一个点E(Rred,Rnir)到直线L的距离可以说明地表的干旱情况,即离L线越远地表越干旱,反之亦然。对水体来说其干旱指数为最小,正好落在坐标原点,其余具有一定反射能力的任何物体越湿润越接近原点。一般来说,最接近L线的空间都是水体或较湿区域分布。远离L线的空间都是较干旱的区域。因此,可以用NIR-Red特征空间上的任意一点E(Rred,Rnir)到直线L的距离来描述干旱的状况,可以建立一个基于NIR-Red光谱空间特征的干旱监测模型,即垂直干旱指数(Perpendicular Drought Index,PDI)。In the NIR-Red feature space, the distance from any point E(R red , R nir ) to the straight line L can explain the aridity of the surface, that is, the farther away from the line L, the drier the surface is, and vice versa. For the water body, its aridity index is the smallest, which just falls on the origin of the coordinates, and any other object with a certain reflective ability gets closer to the origin as it gets wetter. Generally speaking, the space closest to the L line is distributed in water bodies or wet areas. Spaces away from the L line are drier areas. Therefore, the distance from any point E(R red , R nir ) on the NIR-Red feature space to the straight line L can be used to describe the drought situation, and a drought monitoring model based on the NIR-Red spectral space characteristics can be established, that is, the vertical drought Index (Perpendicular Drought Index, PDI).

PDIPDI == 11 Mm 22 ++ 11 (( RR redred ++ MRMR nirnir )) -- -- -- (( 33 ))

其中,M为土壤线斜率,通过选取落在土壤线附近的点进行线性回归得到。Rred为经过大气校正的红光波段(630-690nm)反射率,Rnir为经过大气校正的近红外波段(775-900nm)反射率,为相应红光、近红外波段经辐射定标得到。Among them, M is the slope of the soil line, which is obtained by selecting points that fall near the soil line and performing linear regression. R red is the reflectance of the red light band (630-690nm) after atmospheric correction, and R nir is the reflectance of the near-infrared band (775-900nm) after atmospheric correction, obtained by radiation calibration for the corresponding red light and near-infrared bands.

2.对于中等地表植被覆盖度(植被覆盖度大于15%至小于等于65%)的农田地表,需要考虑植被覆盖的影响。反照率(Albedo)--归一化植被指数(NDVI)的散点图中也有“干边”和“湿边”之分,“干边”是高反照率部分,“湿边”是低反照率部分。同样,由ABC可以反映地表覆盖的特征。若不考虑其它参数的影响,由于植被改变地表的粗糙度,在干旱、半干旱地区,随着植被的增加地表反照率下降,土壤水分的增加也引起反照率的下降,土壤水分和植被长势正相关,而植被、土壤水分和反照率之间存在负相关。2. For the farmland surface with medium surface vegetation coverage (vegetation coverage greater than 15% to less than or equal to 65%), the impact of vegetation coverage needs to be considered. Albedo (Albedo)--Normalized Difference Vegetation Index (NDVI) scatter diagram also has "dry edge" and "wet edge", "dry edge" is the high albedo part, "wet edge" is the low albedo rate part. Similarly, the characteristics of land cover can be reflected by ABC. If the influence of other parameters is not considered, since the vegetation changes the roughness of the surface, in arid and semi-arid areas, the surface albedo decreases with the increase of vegetation, and the increase of soil moisture also causes the albedo to decrease. Soil moisture and vegetation growth are positive. correlation, while there is a negative correlation between vegetation, soil moisture and albedo.

如图3所示,令albedo=Ai,在Albedo-NDVI特征空间中存在某点D(Ai,NDVIi),利用经过该点的直线上最大和最小反照率之差可以反映该点的干旱程度,该指数即为植被条件反照率干旱指数(Vegetation Condition Albedo Drought Index,VCADI)。As shown in Figure 3, let albedo=A i , there is a point D(A i , NDVI i ) in the Albedo-NDVI feature space, and the difference between the maximum and minimum albedo on the straight line passing through this point can reflect the point’s The degree of drought, the index is the vegetation condition albedo drought index (Vegetation Condition Albedo Drought Index, VCADI).

VCADIVCADI == AA ii ,, NDVNDV II ii -- AA minmin ,, NDVINDVI ii AA maxmax ,, NDVINDVI ii -- AA minmin ,, NDVINDVI ii -- -- -- (( 44 ))

其中, A max , NDV I i = a + bNDV I i , A min , NDV I i = a ′ + b ′ NDVI i . Amin,NDVIi和Amax,NDVIi分别为研究区NDVI等于某特定值时的最小和最大反照率。a,b,a′,b′为待定系数,a和a′分别是Albedo-NDVI特征空间中干边和湿边的截距,b和b′分别是Albedo-NDVI特征空间中干边和湿边的斜率,可通过研究区域的NDVI和反照率的散点图,选择AC、BC线附近的点,进行线性回归获得相应的值。Ai,NDVIi为某点D(Ai,NDVIi)的反照率,NDVIi为Albedo-NDVI特征空间中某点D的植被指数。in, A max , NDV I i = a + bNDV I i , A min , NDV I i = a ′ + b ′ NDVI i . A min, NDVIi and A max, NDVIi are the minimum and maximum albedo when NDVI is equal to a certain value in the study area, respectively. a, b, a', b' are undetermined coefficients, a and a' are the intercepts of dry and wet edges in the Albedo-NDVI feature space, respectively, b and b' are the dry and wet edges in the Albedo-NDVI feature space The slope of the edge can be obtained through the scatter diagram of NDVI and albedo in the study area, and the points near the AC and BC lines can be selected to obtain the corresponding value by linear regression. A i, NDVIi is the albedo of a certain point D(A i , NDVI i ), and NDVI i is the vegetation index of a certain point D in the Albedo-NDVI feature space.

3.对于植被覆盖度高(植被覆盖度大于65%至100%覆盖)的地表,在近红外(NIR)一短波红外(SWIR)的光谱特征空间散点图上(图4),经过空间统计分析可以得到NIR-SWIR基线BC,数学表达式:3. For the surface with high vegetation coverage (vegetation coverage is greater than 65% to 100% coverage), on the spectral feature space scatter diagram (Fig. 4) of near infrared (NIR)-short wave infrared (SWIR), after spatial statistics Analysis can get NIR-SWIR baseline BC, mathematical expression:

RNIR=MRSWIR+I                  (5)R NIR = MR SWIR + I (5)

其中RSWIR,RNIR分别为经过大气校正的短波红光和近红外波段反射率,M为NIR-SWIR基线斜率、I代表NIR-SWIR基线在纵坐标上的截距。Among them, R SWIR and R NIR are the atmospherically corrected short-wave red light and near-infrared band reflectance, M is the slope of the NIR-SWIR baseline, and I represents the intercept of the NIR-SWIR baseline on the ordinate.

取得经过坐标原点垂直于土壤基线的垂线L(图4),即可得到方程(5)的法线方程(6)Obtain the vertical line L (Fig. 4) that passes through the origin of the coordinates and is perpendicular to the soil baseline, then the normal equation (6) of equation (5) can be obtained

RR NIRNIR == -- 11 Mm RR SWIRSWIR -- -- -- (( 66 ))

在NIR-SWIR特征空间上,从任何一个点G(RSWIR,RNIR)到直线L的距离可以说明地表的干旱情况,一般来说,最接近L线的空间都是水体或较湿区域分布。远离L线的空间都是较干旱的区域。对水体来说其干旱指数为最小,正好落在坐标原点,其余具有一定反射能力的任何物体越湿润越接近原点。因此,可以用NIR-SWIR特征空间上的任意一点G(RSWIR,RNIR)到直线L的距离来描述干旱的状况,建立一个基于NIR-SWIR光谱空间特征的干旱监测模型,该模型为短波红外垂直失水指数(Shortwave Infrared Perpendicular Water Stress Index,SPSI)。In the NIR-SWIR feature space, the distance from any point G(R SWIR , R NIR ) to the straight line L can describe the drought situation on the surface. Generally speaking, the space closest to the L line is distributed in water bodies or wet areas . Spaces away from the L line are drier areas. For the water body, its aridity index is the smallest, which just falls on the origin of the coordinates, and any other object with a certain reflective ability gets closer to the origin as it gets wetter. Therefore, the distance from any point G(R SWIR , R NIR ) on the NIR-SWIR feature space to the straight line L can be used to describe the drought situation, and a drought monitoring model based on the NIR-SWIR spectral space characteristics can be established. Infrared Vertical Water Loss Index (Shortwave Infrared Perpendicular Water Stress Index, SPSI).

SPSISPSI == 11 Mm 22 ++ 11 (( RR SWIRSWIR ++ MRMR NIRNIR )) -- -- -- (( 77 ))

所述SPSI为短波红外垂直失水指数,RSWIR,RNIR分别为经过大气校正的短波红光和近红外波段反射率,M为NIR-SWIR基线斜率,可通过线性回归得到。The SPSI is the short-wave infrared vertical water loss index, R SWIR , R NIR are the atmospherically corrected short-wave red light and near-infrared band reflectance respectively, and M is the NIR-SWIR baseline slope, which can be obtained by linear regression.

如上所述,远离NIR-SWIR基线的方向和平行于NIR-SWIR基线的方向共同决定植被水分含量。E、G、F点植被覆盖状况相同,但其植被水分含量却大不一样,冠层植被水分沿着向量,逐渐减少,向量越长表示植被水分越少,

Figure S2007101788074D00074
向量越短,说明冠层植被水分含量越高,因此,
Figure S2007101788074D00075
可以代表像元在平行于NIR-SWIR基线方向的水分状况。
Figure S2007101788074D00076
向量的长度表明像元远离NIR-SWIR基线的距离,即像元远离NIR-SWIR基线的距离越大,
Figure S2007101788074D00077
向量越短,像元植被覆盖越好,反之亦然。
Figure S2007101788074D00078
Figure S2007101788074D00079
向量的比值不仅能反映植被水分含量,还能减少大气作用和植被冠层对红光的散射效应。把
Figure S2007101788074D000710
Figure S2007101788074D000711
Figure S2007101788074D000712
Figure S2007101788074D000713
的比值分别命名为植被水分含量指数(Vegetation Water Content Index,VWCI)和植被水分亏缺指数(Vegetation WaterStress Index,VWSI)。As mentioned above, the direction away from the NIR-SWIR baseline and the direction parallel to the NIR-SWIR baseline jointly determine the vegetation moisture content. The vegetation coverage conditions of E, G, and F points are the same, but their vegetation moisture content is quite different. vector, gradually decreasing, The longer the vector, the less vegetation moisture,
Figure S2007101788074D00074
The shorter the vector, the higher the water content of the canopy vegetation, therefore,
Figure S2007101788074D00075
It can represent the moisture status of the pixel in the direction parallel to the NIR-SWIR baseline.
Figure S2007101788074D00076
The length of the vector indicates the distance of the pixel away from the NIR-SWIR baseline, that is, the greater the distance of the pixel away from the NIR-SWIR baseline,
Figure S2007101788074D00077
The shorter the vector, the better the vegetation coverage of the cell, and vice versa.
Figure S2007101788074D00078
and
Figure S2007101788074D00079
The ratio of vectors can not only reflect the moisture content of vegetation, but also reduce the scattering effect of atmospheric action and vegetation canopy on red light. Bundle
Figure S2007101788074D000710
and
Figure S2007101788074D000711
Figure S2007101788074D000712
and
Figure S2007101788074D000713
The ratios of these values are named Vegetation Water Content Index (VWCI) and Vegetation Water Stress Index (VWSI) respectively.

VWSIVWSI == EGEG →&Right Arrow; EFEF →&Right Arrow; ,, VWCIVWCI == GFGF →&Right Arrow; EFEF →&Right Arrow; == 11 -- EGEG →&Right Arrow; EFEF →&Right Arrow; -- -- -- (( 88 ))

设定AB和CD线的斜率和截距为M1、M2、I1、I2,它们线性方程分别为NIR=M1×SWIR+I1,NIR=M2×SWIR+I2,输入点G(SWIRG,NIRG)是已知的,且EF和BC平行,则EF线的方程可以写成Set the slope and intercept of lines AB and CD as M 1 , M 2 , I 1 , I 2 , and their linear equations are respectively NIR=M 1 ×SWIR+I 1 , NIR=M 2 ×SWIR+I 2 , input Point G(SWIR G , NIR G ) is known, and EF and BC are parallel, then the equation of EF line can be written as

NIR=M×(SWIR-SWIRG)+NIRG NIR=M×(SWIR-SWIR G )+NIR G

通过解方程组可以得到E(SWIRE,NIRE)点的坐标:The coordinates of point E(SWIR E , NIR E ) can be obtained by solving the equation system:

SWIRSWIR EE. == NIRNIR GG -- Mm ×× SWIRSWIR GG -- II 11 Mm 11 -- Mm ,, NIRNIR EE. == Mm 11 ×× (( NIRNIR GG -- Mm ×× SWIRSWIR GG )) -- Mm ×× II 11 Mm 11 -- Mm

通过解方程组可以得到F(SWIRF,NIRF)点的坐标:The coordinates of the point F(SWIR F , NIR F ) can be obtained by solving the equations:

SWIRSWIR Ff == NIRNIR GG -- Mm ×× SWIRSWIR GG -- II 22 Mm 22 -- Mm ,, NIRNIR Ff == Mm 22 ×× (( NIRNIR GG -- Mm ×× SWIRSWIR GG )) -- Mm ×× II 22 Mm 22 -- Mm

最后可以得到E(SWIRE,NIRE)、G(SWIRG,NIRG)、F(SWIRF,NIRF)之间的距离,VWCI的通用表达式。Finally, the distance between E(SWIR E , NIR E ), G(SWIR G , NIR G ), F(SWIR F , NIR F ), the general expression of VWCI can be obtained.

VWCIVWCI == (( Mm 11 -- Mm )) ×× (( NIRNIR GG -- Mm 22 ×× SWIRSWIR GG -- II 22 )) (( Mm 11 -- Mm 22 )) ×× (( NIRNIR GG -- Mm ×× SWIRSWIR GG )) -- (( Mm 11 -- Mm )) ×× II 22 ++ (( Mm 22 -- Mm )) ×× II 11 -- -- -- (( 99 ))

其中,VWCI为植被水分含量指数,参考附图4,M为NIR-SWIR空间中土壤基线斜率;M1、M2分别为AB和CD线的斜率,I1、I2分别为AB和CD线的截距,NIRG、SWIRG分别为待测位置对应的近红外和短波红外的反照率值;Among them, VWCI is the vegetation water content index, referring to Figure 4, M is the slope of the soil baseline in the NIR-SWIR space; M 1 and M 2 are the slopes of the AB and CD lines, respectively, and I 1 and I 2 are the AB and CD lines, respectively The intercept of , NIR G , SWIR G are the albedo values of the near-infrared and short-wave infrared corresponding to the position to be measured, respectively;

VWCI和VWSI可以同时反演植被水分含量和水分胁迫。VWCI and VWSI can simultaneously retrieve vegetation water content and water stress.

4.根据监测区植被覆盖状况,从上述三类指数中选择一种进行计算。同时在监测区的观测站点进行实际土壤含水量的测量(对于高植被覆盖度,要测量实际叶片含水量)。将实测数据与对应地点的监测指数值进行线性回归,建立指数与含水量之间的函数关系,从而得到整个监测区的土壤含水量(或叶片含水量)分布情况。结合具体指标划定干旱等级。4. According to the vegetation coverage of the monitoring area, choose one of the above three types of indexes for calculation. At the same time, the actual soil water content is measured at the observation station in the monitoring area (for high vegetation coverage, the actual leaf water content should be measured). Linear regression is performed between the measured data and the monitoring index value of the corresponding location, and the functional relationship between the index and water content is established, so as to obtain the distribution of soil water content (or leaf water content) in the entire monitoring area. Combining specific indicators to delineate the drought level.

实施例2、利用实施例1的干旱监测模型来监测农田干旱Embodiment 2, utilize the drought monitoring model of embodiment 1 to monitor farmland drought

1.将土壤类型较单一的地区作为一个监测区。1. Take the area with a single soil type as a monitoring area.

2.在监测区内选若干点测量土壤含水量、田间持水量以及凋萎系数。可认为土壤类型单一地区的田间持水量和凋萎系数一致,因此可将各测点的这两项测值取平均,得到整个监测区的田间持水量和凋萎系数。2. Select several points in the monitoring area to measure soil water content, field water capacity and wilting coefficient. It can be considered that the field water capacity and wilting coefficient in a single soil type area are consistent, so the two measured values at each measuring point can be averaged to obtain the field water capacity and wilting coefficient of the entire monitoring area.

3.根据监测区的植被覆盖情况,选择合适波段进行干旱监测指数的计算:3. According to the vegetation coverage of the monitoring area, select the appropriate band to calculate the drought monitoring index:

使用红光和近红外波段,进行PDI计算。Perform PDI calculations using red and near-infrared bands.

使用反照率和归一化植被指数数据,进行VCADI的计算。Using albedo and normalized difference vegetation index data, the calculation of VCADI is carried out.

使用近红外和短波红外波段,进行SPSI、VCWI、VCSI计算。Use NIR and SWIR bands for SPSI, VCWI, VCSI calculations.

4.将测点位置的土壤含水量(或叶片)与干旱监测指数进行相关分析,得到监测区内土壤(或叶片)含水量和监测指数之间的数值关系(一般是线性关系)。4. Carry out correlation analysis between the soil water content (or leaf) at the measuring point and the drought monitoring index, and obtain the numerical relationship (generally linear relationship) between the soil (or leaf) water content and the monitoring index in the monitoring area.

5.由4得到的结果,获得整个监测区内的土壤(或叶片)含水量情况。5. From the result obtained in 4, the soil (or leaf) moisture content in the entire monitoring area is obtained.

6.根据土壤含水量进行干旱情况评估:6. Drought assessment based on soil moisture content:

土壤含水量>田间持水量的75%  湿润;Soil moisture content > 75% of field water holding capacity Moist;

土壤含水量在田间持水量的75%-45%之间  正常水分条件;The soil moisture content is between 75% and 45% of the field water capacity under normal moisture conditions;

土壤含水量小于田间持水量的45%,大于调萎系数轻微干旱;Soil water content is less than 45% of the field water holding capacity, greater than the wilting coefficient of slight drought;

土壤含水量小于调萎系数  严重干旱。Soil water content is less than wilting adjustment coefficient Severe drought.

应用示范区为宁夏回族自治区与北京顺义遥感实验场。The application demonstration areas are Ningxia Hui Autonomous Region and Beijing Shunyi Remote Sensing Experimental Field.

宁夏回族自治区位于祖国大陆的西北腹地,居黄河中游上段,在104°10′E-107°30′E、35°25′N-39°25′N之间,国土面积5.18万km2,与甘肃、内蒙古、陕西等省(区)毗邻。该地区干旱对农业生产限制大,几乎每年发生大旱。野外观测数据来自该区25个标准气象观测站和生态监测站。所有数据都是按国家气象局1993年编定的“农业气象观测规范”测定的,主要包括:Ningxia Hui Autonomous Region is located in the hinterland of the northwest of the motherland, in the upper middle reaches of the Yellow River, between 104°10′E-107°30′E and 35°25′N-39°25′N, with a land area of 51,800 km 2 . Gansu, Inner Mongolia, Shaanxi and other provinces (regions) are adjacent. Drought in this area severely restricts agricultural production, and severe drought occurs almost every year. Field observation data come from 25 standard meteorological observation stations and ecological monitoring stations in the area. All the data are determined according to the "Agricultural Meteorological Observation Specifications" compiled by the National Meteorological Administration in 1993, mainly including:

1)农田水分参数1) Farmland moisture parameters

1990-2005年每月8日、18日和28日的表层0-20cm不同深度的土壤水分;同时期的地下水位;土壤生理参数包括凋萎系数和田间持水量。The soil moisture at different depths of 0-20cm in the surface layer on the 8th, 18th and 28th of each month from 1990 to 2005; the groundwater level in the same period; soil physiological parameters including wilting coefficient and field water capacity.

2)作物特征参数,包括小麦不同物候期需水量、气温需求量、对土壤水分要求;2) Crop characteristic parameters, including water demand, air temperature demand, and soil moisture requirements of wheat in different phenological stages;

3)同步遥感数据MODIS。3) Synchronize remote sensing data MODIS.

北京顺义试验场位于E 116°26’-117°E,N 40°-40°21’之间。顺义试验场从2001年3月底到6月中,进行了星-机-地遥感综合同步试验,以北京顺义为机载数据获取试验场和重点地面试验场,获取了机载多角度多光谱数据和高光谱数据。观测的内容包括冬小麦生长期间的多角度、多时相、多平台、多波段、多尺度的卫星遥感图像和航空遥感图像,各种气象数据和大气参数,冬小麦生长期间各种生化、理化参数,生物量及各种结构参数,光谱数据和农田小气候参数等。本次应用中所使用的顺义试验场数据包括土壤水分、反照率、小麦叶片含水量和叶绿素含量、叶面积指数、地表温度、植被冠层温度、近地表气温等数据。所有数据都是按国家气象局1993年编定的“农业气象观测规范”测定的。Beijing Shunyi Test Site is located between E 116°26’-117°E and N 40°-40°21’. From the end of March to mid-June 2001, the Shunyi test site conducted a comprehensive synchronous test of satellite-machine-ground remote sensing. Taking Shunyi, Beijing as the airborne data acquisition test site and key ground test site, the airborne multi-angle and multi-spectral data were obtained. and hyperspectral data. The observed content includes multi-angle, multi-temporal, multi-platform, multi-band, multi-scale satellite remote sensing images and aerial remote sensing images during the growth of winter wheat, various meteorological data and atmospheric parameters, various biochemical and physical and chemical parameters during the growth of winter wheat, biological Quantities and various structural parameters, spectral data and farmland microclimate parameters, etc. The data of the Shunyi test site used in this application include soil moisture, albedo, water content and chlorophyll content of wheat leaves, leaf area index, surface temperature, vegetation canopy temperature, near-surface air temperature and other data. All the data are determined according to the "Agricultural Meteorological Observation Specifications" compiled by the National Meteorological Administration in 1993.

1.利用PDI进行旱情监测:1. Using PDI for drought monitoring:

本验证使用宁夏自治区MODIS遥感数据和相应的土壤水分数据。This verification uses MODIS remote sensing data and corresponding soil moisture data in Ningxia Autonomous Region.

干旱监测的关键在于干旱信息的获取和定量化,干旱类型划分与分等等级和找到验证干旱指数的综合指标。各种作物的生长都有一定的适宜土壤湿度范围,当土壤含水量低于作物的适宜土壤含水量的下限(一般而言,作物适宜的土壤湿度下限均在田间持水量的20%左右,上限为田间持水量)时,作物吸收不到足够的水分去补偿蒸腾的支出,就发生干旱。然而,作物吸收率和土壤田间持水量、作物凋萎系数和土壤有效水分含量等有密切的关系。在农田干旱状况的遥感监测中,土壤水分与农田水分平衡相结合的综合性干旱指数能够较全面地反映地表的干旱状况。由此,验证时采用综合性干旱指标K(如下式),用以验证PDI。The key to drought monitoring lies in the acquisition and quantification of drought information, the classification and grading of drought types, and the finding of comprehensive indicators for verifying drought indices. The growth of various crops has a certain range of suitable soil moisture. When the soil moisture content is lower than the lower limit of the suitable soil moisture content of the crop (generally speaking, the lower limit of the suitable soil moisture content of the crop is about 20% of the field water holding capacity, and the upper limit When the crop does not absorb enough water to compensate for the expenditure of transpiration, drought occurs. However, crop absorption rate is closely related to soil field water capacity, crop wilting coefficient and soil effective moisture content. In the remote sensing monitoring of farmland drought conditions, the comprehensive drought index combined with soil moisture and farmland water balance can reflect the surface drought conditions more comprehensively. Therefore, the comprehensive drought index K (the following formula) is used to verify the PDI.

KK == 11 -- WW -- WW pp WW hh -- WW pp -- -- -- (( 1010 ))

式中,K为干旱指标;W为土壤含水量(%);Wh是土壤所能保持水分的上限,即田间持水量(%);Wp为土壤凋萎系数(%)。由此可见,K的变化能真实地反映土壤水分对作物需水的满足程度,反映干旱状况。作物可以得到充分的水分供应,无干旱发生,这时K=0;当W=Wp时,完全失去了土壤有效水分,作物因得不到水分供应而死亡,这时K=1。In the formula, K is the drought index; W is the soil water content (%); W h is the upper limit of the soil can hold water, that is, the field water capacity (%); W p is the soil wilting coefficient (%). It can be seen that the change of K can truly reflect the satisfaction degree of soil moisture to crop water demand, and reflect the drought condition. Crops can get sufficient water supply and no drought occurs, then K=0; when W=W p , soil available water is completely lost, and crops die due to lack of water supply, then K=1.

通过干旱指数和MODIS遥感影象云检测结果图叠加分析,发现待比较的实地观测数据组对应的MODIS遥感影象各时相数据中,有部分被云覆盖的像元,处理时先向云覆盖像元四边寻找无云覆盖像元,周围四个像元的平均值来替代云覆盖像元干旱指数值,若在其周围像元都被云覆盖,则剔除该像元。Through the overlay analysis of the drought index and the cloud detection results of MODIS remote sensing images, it was found that in the MODIS remote sensing image data of each time phase corresponding to the field observation data set to be compared, some pixels covered by clouds were first processed. Find the cloud-free pixel around the pixel, and replace the drought index value of the cloud-covered pixel with the average value of the four surrounding pixels. If the surrounding pixels are all covered by clouds, the pixel is eliminated.

以104°10′E-107°30′E、35°25′N-39°25′N之间的宁夏政区范围作为监测区,该监测区2005年3月26日的植被覆盖度小于<15%。用2005年3月26日的MODIS宁夏范围数据,计算了监测区的PDI,并和宁夏22个气象和生态观测站点0-20cm平均土壤含水量进行比较。其中的土壤含水量采用的是3月28日实地观测数据。Taking the Ningxia political area between 104°10′E-107°30′E and 35°25′N-39°25′N as the monitoring area, the vegetation coverage of this monitoring area on March 26, 2005 was less than < 15%. Using the MODIS Ningxia range data on March 26, 2005, the PDI of the monitoring area was calculated and compared with the 0-20cm average soil moisture content of 22 meteorological and ecological observation stations in Ningxia. The soil moisture content used is the field observation data on March 28.

将该监测区分为22个观测点,采用CNC-503DR型智能中子水分仪测定每个样点表层0-20cm土壤平均含水量(W0-20)。The monitoring area was divided into 22 observation points, and the average soil moisture content (W 0-20 ) of the surface layer 0-20cm of each sample point was measured by CNC-503DR intelligent neutron moisture meter.

分别计算该22个观测点的PDI。Calculate the PDI of the 22 observation points respectively.

垂直干旱指数(Perpendicular Drought Index,PDI)。Vertical Drought Index (Perpendicular Drought Index, PDI).

PDIPDI == 11 Mm 22 ++ 11 (( RR redred ++ MRMR nirnir )) -- -- -- (( 33 ))

其中,M为土壤线斜率,Rred为经过大气校正的红光波段(630-690nm)反射率,Rnir为经过大气校正的近红外波段(775-900nm)反射率。Among them, M is the slope of the soil line, R red is the reflectance of the red band (630-690nm) after atmospheric correction, and R nir is the reflectance of the near-infrared band (775-900nm) after atmospheric correction.

表1.2005年3月28日宁夏各观测点的土壤水分含量及垂直干旱指数PDITable 1. Soil moisture content and vertical drought index PDI at each observation point in Ningxia on March 28, 2005

经度longitude 纬度latitude PDIPDI  0-20cm土壤含水量(%)0-20cm soil water content (%) RedRed NirNir 银川Yinchuan 106°18′106°18′     38°25′38°25′ 0.2671110.267111     24.524.5     0.1690.169     0.2070.207 青铜峡Qingtong Gorge 105°54′105°54′     38°01′38°01′ 0.3131070.313107     33     0.20.2     0.2410.241 大武口Dawukou 106°24′106°24′     39°02′39°02′ 0.2175880.217588     25.425.4     0.1430.143     0.1640.164 固原Guyuan 106°16′106°16′     36°00′36°00′ 0.3021250.302125     13.813.8     0.1890.189     0.2360.236 106°18′106°18′     35°58′35°58′ 0.2581940.258194     1616     0.1750.175     0.190.19 惠农Huinong 106°46′106°46′     39°13′39°13′ 0.2131550.213155     23.823.8     0.1420.142     0.1590.159 海原Kaihara 105°39′105°39′     36°34′36°34′ 0.2664560.266456     8.78.7     0.1680.168     0.2070.207 105°32′105°32′     36°42′36°42′ 0.2995050.299505     5.25.2     0.1850.185     0.360.36 西吉Sigi 105°43′105°43′     35°58′35°58′ 0.2898830.289883     16.416.4     0.1830.183     0.2250.225 泾源Jingyuan 106°19′106°19′     35°30′35°30′ 0.2261530.226153     19.219.2     0.1330.133     0.1840.184 106°21′106°21′     35°30′35°30′ 0.2309390.230939     15.715.7     0.1380.138     0.1860.186 隆德Lund 106°07′106°07′     35°37′35°37′ 0.2510910.251091     22.922.9     0.1480.148     0.2040.204 陶乐Tao Le 106°42′106°42′     38°48′38°48′ 0.2586470.258647     27.927.9     0.1630.163     0.2010.201 平罗Pin Luo 106°34′106°34′     38°54′38°54′ 0.2128020.212802     23.723.7     0.1380.138     0.1620.162 吴忠Wu Zhong 106°08′106°08′     37°47′37°47′ 0.2904370.290437     44     0.1850.185     0.2240.224 兴仁Xingren 105°15′105°15′     36°56′36°56′ 0.3431330.343133     5.45.4     0.2170.217     0.2660.266 永宁Yongning 106°15′106°15′     38°15′38°15′ 0.2707890.270789     24.124.1     0.170.17     0.2110.211 中宁Zhongning 105°39′105°39′     37°26′37°26′ 0.2270090.227009     21 twenty one     0.1470.147     0.1730.173 盐池salt pond 107°23′107°23′     37°48′37°48′ 0.3116470.311647     4.64.6     0.1920.192     0.2460.246 灵武Lingwu 106°29′106°29′     38°05′38°05′ 0.3089760.308976     2.62.6     0.1960.196     0.2390.239 中卫central defender 105°13′105°13′     37°20′37°20′ 0.2650460.265046     28.428.4     0.1670.167     0.2060.206 同心concentric 105°54′105°54′     36°58′36°58′ 0.3339140.333914     6.76.7     0.2110.211     0.2590.259

根据监测区22个观测点的PDI和监测区22个观测点W0-20用数据处理软件Excell建立函数关系,函数关系式如下:W0-20=-0.0033PDI+0.3215,R2=0.5596(图5)。According to the PDI of 22 observation points in the monitoring area and the W 0-20 of the 22 observation points in the monitoring area, the functional relationship is established with the data processing software Excell, and the functional relationship is as follows: W 0-20 =-0.0033PDI+0.3215, R 2 =0.5596( Figure 5).

垂直干旱指数和土壤墒情数据(W0-20)呈现高相关性,这可能和植被长势情况有关。3月28日植被指数(NDVI)的最大值为0.34,作物刚开始起身,植被覆盖低,植被对地表反射率的干扰小,反射光谱主要是由土壤理化性质决定的。Vertical drought index and soil moisture data (W 0-20 ) showed a high correlation, which may be related to vegetation growth. The maximum value of the vegetation index (NDVI) was 0.34 on March 28. The crops had just started to rise, the vegetation coverage was low, and the vegetation had little interference with the surface reflectance. The reflectance spectrum was mainly determined by the physical and chemical properties of the soil.

2.利用反照率干旱指数VCADI进行旱情监测:2. Use the albedo drought index VCADI for drought monitoring:

以北京顺义试验场(范围同上)作为监测区,该监测区监测时的植被覆盖度大于15%小于65%。Taking the Beijing Shunyi Test Site (the scope as above) as the monitoring area, the vegetation coverage in this monitoring area is greater than 15% and less than 65%.

将该监测区分为24个观测点,采用CNC-503DR型智能中子水分仪测定每个样点表层5cm,10cm,20cm,0-20cm土壤含水量。表2中的数据是24个观测点2001年4月17日的表层5cm,10cm,20cm,0-20cm平均土壤含水量(W5,W10,W20,W0-20),以及土壤田间持水量wh、土壤凋萎系数wpThe monitoring area is divided into 24 observation points, and the CNC-503DR intelligent neutron moisture meter is used to measure the soil moisture content of 5cm, 10cm, 20cm, and 0-20cm in the surface layer of each sample point. The data in table 2 is the surface layer 5cm, 10cm, 20cm, 0-20cm average soil water content (W 5 , W 10 , W 20 , W 0-20 ) of 24 observation points on April 17, 2001, and soil field Water holding capacity w h , soil wilting coefficient w p .

表2.2001年4月17日北京各观测点的土壤水分含量Table 2. Soil moisture content at each observation point in Beijing on April 17, 2001

观测点编号Observation point number  经度Longitude 纬度latitude W5(%)W 5 (%) W10(%)W 10 (%) W20(%)W 20 (%) W0-20(%)W 0-20 (%) Wh(%)W h (%) Wp(%)W p (%)     2525  116°34′33.4″116°34′33.4″ 40°11′41.2″40°11′41.2″ 6.5106.510  12.69912.699  17.06717.067  12.0917812.09178  22.522.5  10.410.4     2626  116°34′34.3″116°34′34.3″ 40°11′43.6″40°11′43.6″ 3.4063.406  10.20010.200  16.67816.678  10.0948610.09486  22.522.5  10.410.4     2727  116°34′34.0″116°34′34.0″ 40°11′46.0″40°11′46.0″ 4.9824.982  13.29813.298  21.92721.927  13.4023313.40233  22.522.5  10.410.4     2828  116°34′33.7″116°34′33.7″ 40°11′48.5″40°11′48.5″ 7.4457.445  15.55415.554  22.68122.681  15.2264715.22647  22.522.5  10.410.4     2929  116°34′37.2″116°34′37.2″ 40°11′49.0″40°11′49.0″ 4.9094.909  13.57813.578  22.17722.177  13.5547213.55472  22.522.5  10.410.4     3030  116°34′37.5″116°34′37.5″ 40°11′46.6″40°11′46.6″ 9.8819.881  16.83916.839  22.50722.507  16.4091916.40919  22.522.5  10.410.4     3131  116°34′37.9″116°34′37.9″ 40°11′44.1″40°11′44.1″ 4.8424.842  10.99210.992  16.34316.343  10.7257110.72571  22.522.5  10.410.4     3232  116°34′38.1″116°34′38.1″ 40°11′41.8″40°11′41.8″ 6.0456.045  12.28312.283  17.24917.249  11.8589111.85891  22.522.5  10.410.4     3333  116°34′42.4″116°34′42.4″ 40°11′41.6″40°11′41.6″ 6.8906.890  11.57011.570  16.21116.211  11.5571311.55713  22.522.5  10.410.4     3434  116°34′42.1″116°34′42.1″ 40°11′44.0″40°11′44.0″ 3.5793.579  8.0618.061  13.66513.665  8.4349488.434948  22.522.5  10.410.4     3535  116°34′41.8″116°34′41.8″ 40°11′46.5″40°11′46.5″ 7.3087.308  12.78612.786  20.92020.920  13.671213.6712  22.522.5  10.410.4     3636  116°34′41.6″116°34′41.6″ 40°11′49.0″40°11′49.0″ 8.5208.520  14.29214.292  20.99020.990  14.6006314.60063  22.522.5  10.410.4     4646  116°34′24.8″116°34′24.8″ 40°11′34.1″40°11′34.1″ 4.4114.411  10.30910.309  16.41016.410  10.3766410.37664  22.122.1  1010     4747  116°34′25.2″116°34′25.2″ 40°11′30.1″40°11′30.1″ 7.6247.624  14.02614.026  17.08217.082  12.9106812.91068  22.122.1  1010     4848  116°34′31.1″116°34′31.1″ 40°11′30.4″40°11′30.4″ 6.8286.828  13.52213.522  17.08317.083  12.477712.4777  22.122.1  1010     4949  116°34′30.8″116°34′30.8″ 40°11′34.4″40°11′34.4″ 6.3806.380  13.25613.256  17.00517.005  12.2133712.21337  22.122.1  1010     5252  116°34′34.4″116°34′34.4″ 40°11′34.7″40°11′34.7″ 6.2286.228  11.83411.834  16.42916.429  11.4970411.49704  22.122.1  1010     5353  116°34′34.8″116°34′34.8″ 40°11′30.6″40°11′30.6″ 8.1148.114  14.14614.146  17.09417.094  13.1181413.11814  22.122.1  1010     5454  116°34′31.7″116°34′31.7″ 40°11′53.6″40°11′53.6″ 16.27416.274  22.07922.079  24.44024.440  20.93120.931  22.722.7  10.410.4     5555  116°34′31.2″116°34′31.2″ 40°11′56.9″40°11′56.9″ 13.59913.599  20.02420.024  23.54223.542  19.0547919.05479  22.722.7  10.410.4     5858  116°34′37.1″116°34′37.1″ 40°11′57.6″40°11′57.6″ 5.2785.278  12.65012.650  20.09720.097  12.6754112.67541  22.722.7  10.410.4     5959  116°34′37.5″116°34′37.5″ 40°11′54.6″40°11′54.6″ 3.9743.974  11.42911.429  19.49219.492  11.631511.6315  22.722.7  10.410.4     6060  116°34′42.8″116°34′42.8″ 40°11′54.6″40°11′54.6″ 13.10113.101  19.94919.949  23.17323.173  18.7410718.74107  22.722.7  10.410.4     6161  116°34′42.4″116°34′42.4″ 40°11′58.0″40°11′58.0″ 17.92617.926  22.19522.195  23.77723.777  21.299421.2994  22.722.7  10.410.4

反照率干旱指数按照下式(II)计算:The albedo drought index is calculated according to the following formula (II):

VCADIVCADI == AA ii ,, NDVINDVI ii -- AA minmin ,, NDVINDVI ii AA maxmax ,, NDVINDVI ii -- AA minmin ,, NDVNDV II ii -- -- -- (( IIII )) ,,

其中,VCADI为反照率干旱指数, A max , NDVI i = a + bNDV I i , A min , NDVI i = a &prime; + b &prime; NDVI i ; Amin,NDVIi和Amax,NDVIi分别为待测区植被指数等于某特定值时的最小和最大反照率;a,b,a′,b′为待定系数,通过待测区植被指数和反照率的散点图(见附图3)获得,a和a′分别是Albedo-NDVI特征空间中干边和湿边的截距,b和b′分别是Albedo-NDVI特征空间中干边和湿边的斜率;Ai,NDVIi,为Albedo-NDVI特征空间中点(Ai,NDVIi)的反照率;NDVIi为Albedo-NDVI特征空间中D(Ai,NDVIi)的植被指数;Among them, VCADI is the albedo drought index, A max , NDVI i = a + bNDV I i , A min , NDVI i = a &prime; + b &prime; NDVI i ; A min, NDVIi and A max, NDVIi are the minimum and maximum albedo when the vegetation index of the area to be measured is equal to a certain value; The scatter diagram (see attached drawing 3) is obtained, a and a' are the intercepts of the dry edge and the wet edge in the Albedo-NDVI feature space respectively, b and b' are the dry edge and the wet edge in the Albedo-NDVI feature space The slope of ; A i , NDVIi , is the albedo of the point (A i , NDVI i ) in the Albedo-NDVI feature space; NDVI i is the vegetation index of D(A i , NDVI i ) in the Albedo-NDVI feature space;

用北京顺义研究区2001年4月17日ETM+遥感数据构造的albedo-NDVI特征空间,在提取干边和湿边的基础上,通过统计分析进一步确定VCADI的有关参数。利用近红外反照率和相对应的NDVI数据来计算VCADI。Using the albedo-NDVI feature space constructed from the ETM+ remote sensing data of Beijing Shunyi research area on April 17, 2001, on the basis of extracting dry and wet edges, the relevant parameters of VCADI are further determined through statistical analysis. VCADI was calculated using near-infrared albedo and corresponding NDVI data.

根据监测区24个观测点的VCADI和监测区24个观测点W5,W10,W20,W0-20用数据处理软件Excel建立函数关系,其中,用近红外波段(0.7-4.0μm)反照率计算的VCADI和土壤含水量的函数关系如下:According to the VCADI of 24 observation points in the monitoring area and the 24 observation points W 5 , W 10 , W 20 , W 0-20 in the monitoring area, use the data processing software Excel to establish the functional relationship, among which, use the near-infrared band (0.7-4.0μm) The functional relationship between VCADI calculated by albedo and soil water content is as follows:

VCADI和W5的函数关系式为W5=-9.3465Ln(VCADI)+1.4711,R2=0.8057;The functional relationship between VCADI and W 5 is W 5 =-9.3465Ln(VCADI)+1.4711, R 2 =0.8057;

VCADI和W10的函数关系式为W10=-22.019*VCADI+26.032,R2=0.7962;The functional relationship between VCADI and W 10 is W 10 =-22.019*VCADI+26.032, R 2 =0.7962;

VCADI和W20的函数关系式为W20=-16.968*VCADI+28.556,R2=0.6585;The functional relationship between VCADI and W 20 is W 20 =-16.968*VCADI+28.556, R 2 =0.6585;

VCADI和W0-20的函数关系式为W0-20=-20.578*VCADI+24.873,R2=0.8363。The functional relationship between VCADI and W 0-20 is W 0-20 =-20.578*VCADI+24.873, R 2 =0.8363.

结果表明,由近红外反照率计算的VCADI和土壤水分呈现出较好的负相关性,尤其和0-20cm平均土壤水分和表层10cm土壤水分的关系为最好,存在线性关系(图6),和0-20cm平均土壤水分(W0-20)相关系数的平方分别为R2=0.84,0.83。图6为利用近红外波段(0.7-4.0μm)反照率计算的VCADI和土壤含水量的曲线图,VCADI和W5的对数曲线关系为最好,而和其它深度土壤水分的线性关系为最好。图6中,W5,W10,W20,W0-20分别表示5cm,10cm,20cm,0-20cm平均土壤水分,R2为相关系数的平方。The results showed that the VCADI calculated from the near-infrared albedo showed a good negative correlation with soil moisture, especially the relationship between the 0-20cm average soil moisture and the surface 10cm soil moisture was the best, and there was a linear relationship (Figure 6). The squares of the correlation coefficients with the 0-20cm average soil moisture (W 0-20 ) are R 2 =0.84, 0.83, respectively. Figure 6 is a graph of VCADI and soil water content calculated using the albedo in the near-infrared band (0.7-4.0 μm ). good. In Figure 6, W 5 , W 10 , W 20 , and W 0-20 represent the average soil moisture in 5cm, 10cm, 20cm, and 0-20cm, respectively, and R2 is the square of the correlation coefficient.

3.利用SPSI和VWCI(VWSI)进行旱情监测:3. Using SPSI and VWCI (VWSI) for drought monitoring:

以北京顺义试验场(范围同上)作为监测区,该监测区2001年5月19日的植被覆盖度大于65%。Taking Beijing Shunyi Test Site (the scope as above) as the monitoring area, the vegetation coverage in this monitoring area on May 19, 2001 was greater than 65%.

为了验证SPSI和VWCI,用北京顺义试验区2001年5月19日的TM/ETM+图像,由SPSI和VWCI计算得到的叶片等效水分含量(EWT)和叶片相对含水量(FMC)与卫星同步的野外观测数据进行比较。In order to verify SPSI and VWCI, using the TM/ETM+ image of Beijing Shunyi test area on May 19, 2001, the leaf equivalent water content (EWT) and leaf relative water content (FMC) calculated by SPSI and VWCI were synchronized with satellite compared with field observation data.

单位面积上(像元尺度)的叶片含水量和叶面积指数有关,随着叶面积指数的增加,单位面积EWT将增高。像元反映的是像元尺度的平均水分含量,因此,实地观测的EWT乘以叶面积指数后(如EWTcanopy=LAI×EWTleaf),可以和遥感数据得到的植被水分含量比较。FMC为取样面积的平均值,可以把观测点数据直接和遥感像元尺度的FMC值比较。The leaf water content per unit area (pixel scale) is related to the leaf area index. With the increase of the leaf area index, the EWT per unit area will increase. The pixel reflects the average moisture content at the pixel scale. Therefore, after multiplying the EWT observed in the field by the leaf area index (such as EWT canopy = LAI × EWT leaf ), it can be compared with the vegetation moisture content obtained from remote sensing data. FMC is the average value of the sampling area, and the observation point data can be directly compared with the FMC value of the remote sensing pixel scale.

2001年5月19日的监测区分为13个观测点,各点的经度纬度、LAI、通过计算得到的VWCI、SPSI及其EWTcanopy的具体取值如下表3:The monitoring area on May 19, 2001 was divided into 13 observation points. The specific values of longitude, latitude, LAI, calculated VWCI, SPSI and EWT canopy of each point are shown in Table 3:

表3.2001年5月19日北京各观测点的植被水分状况参数值Table 3. Parameter values of vegetation moisture status at various observation points in Beijing on May 19, 2001

 取样编号sampling number 经度longitude 纬度latitude VWCIVWCI  SPSISPSI  LAILAI  EWTcanopy EWT canopy FWCFWC  NW1-1NW1-1  40°11′42.1″40°11′42.1″ 116°34′01.1″116°34′01.1″ 0.8626980.862698  0.4739550.473955  1.6071.607  242.1298242.1298  372.32372.32  NW1-2NW1-2  40°11′42.6″40°11′42.6″ 116°34′04.6″116°34′04.6″ 0.9284630.928463  0.4650370.465037  2.4832.483  250.3996250.3996  249.52249.52  NW2-1NW2-1  40°11′42.1″40°11′42.1″ 116°34′16.2″116°34′16.2″ 0.8050810.805081  0.4825570.482557  1.4871.487  187.6734187.6734  311.62311.62  NW2-2NW2-2  40°11′47.7″40°11′47.7″ 116°34′19.1″116°34′19.1″ 0.707190.70719  0.5273880.527388  1.4891.489  173.2655173.2655  287.33287.33  NW3-1NW3-1  40°11′34.1″40°11′34.1″ 116°34′24.8″116°34′24.8″ 0.8353010.835301  0.4859520.485952  1.8621.862  153.6023153.6023  203.70203.70  NW3-2NW3-2  40°11′34.4″40°11′34.4″ 116°34′30.8″116°34′30.8″ 0.7044060.704406  0.4794790.479479  1.3571.357  124.1287124.1287  225.81225.81  NW3-3NW3-3  40°11′34.7″40°11′34.7″ 116°34′34.4″116°34′34.4″ 0.9150490.915049  0.4673240.467324  2.2032.203  212.0869212.0869  238.05238.05  NW4-26NW4-26  40°11′43.6″40°11′43.6″ 116°34′34.3″116°34′34.3″ 0.8597840.859784  0.4677990.467799  1.7801.780  186.3046186.3046  258.42258.42  NW4-31NW4-31  40°11′44.1″40°11′44.1″ 116°34′37.9″116°34′37.9″ 0.8702860.870286  0.4556440.455644  2.0202.020  191.3939191.3939  233.67233.67  NW4-34NW4-34  40°11′44.0″40°11′44.0″ 116°34′42.1″116°34′42.1″ 0.9070150.907015  0.4616420.461642  2.0672.067  239.0386239.0386  284.94284.94  NW5-55NW5-55  40°11′56.9″40°11′56.9″ 116°34′31.2″116°34′31.2″ 0.6456970.645697  0.5002370.500237  0.7350.735  72.3671672.36716  243.53243.53  NW5-58NW5-58  40°11′57.6″40°11′57.6″ 116°34′37.1″116°34′37.1″ 0.755680.75568  0.4585630.458563  1.3211.321  135.1022135.1022  251.92251.92  NW5-61NW5-61  40°11′58.0″40°11′58.0″ 116°34′42.4″116°34′42.4″ 0.991570.99157  0.4613250.461325  2.6242.624  330.1371330.1371  310.83310.83

短波红外垂直失水指数按照下式(III)计算:The short-wave infrared vertical water loss index is calculated according to the following formula (III):

SPSISPSI == 11 Mm 22 ++ 11 (( RR SWIRSWIR ++ MRMR NIRNIR )) -- -- -- (( IIIIII )) ,,

其中,SPSI为短波红外垂直失水指数;RNIR为经过大气校正的780-900nm近红外波段反射率,所述RSWIR为经过大气校正的1550-1750nm短波红外波段反射率;M为NIR-SWIR基线斜率。Among them, SPSI is the vertical short-wave infrared dehydration index; R NIR is the reflectivity of the 780-900nm near-infrared band after atmospheric correction, and the R SWIR is the reflectance of the short-wave infrared band of 1550-1750nm after atmospheric correction; M is NIR-SWIR Baseline slope.

植被水分含量指数按照下式(IV)计算:The vegetation moisture content index is calculated according to the following formula (IV):

VWCIVWCI == (( Mm 11 -- Mm )) &times;&times; (( NIRNIR GG -- Mm 22 &times;&times; SWIRSWIR GG -- II 22 )) (( Mm 11 -- Mm 22 )) &times;&times; (( NIRNIR GG -- Mm &times;&times; SWIRSWIR GG )) -- (( Mm 11 -- Mm )) &times;&times; II 22 ++ (( Mm 22 -- Mm )) &times;&times; II 11 -- -- -- (( IVIV ))

其中,VWCI为植被水分含量指数;M为NIR-SWIR空间中土壤基线斜率;如图4,M1、M2分别为AB和CD线的斜率,I1、I2分别为AB和CD线的截距;NIRG、SWIRG为待测位置对应的近红外和短波红外的反照率值。Among them, VWCI is the vegetation water content index; M is the slope of soil baseline in NIR-SWIR space; as shown in Figure 4, M 1 and M 2 are the slopes of AB and CD lines, and I 1 and I 2 are the slopes of AB and CD lines, respectively. Intercept; NIR G and SWIR G are the albedo values of the near-infrared and short-wave infrared corresponding to the position to be measured.

根据监测区各个观测点的SPSI、VWCI和监测区各个观测点的EWTcanopy和FMC用数据处理软件Excell建立函数关系,其中According to the SPSI and VWCI of each observation point in the monitoring area and the EWT canopy and FMC of each observation point in the monitoring area, the functional relationship is established with the data processing software Excell, where

SPSI和EWTcanopy的函数关系如下:The functional relationship between SPSI and EWT canopy is as follows:

SPSI=1.0986*EWTcanopy+16.213,R2=0.6864;SPSI = 1.0986*EWT canopy + 16.213, R2 = 0.6864;

VWCI和EWTcanopy的函数关系如下:The functional relationship between VWCI and EWT canopy is as follows:

VWCI=0.9871*EWTcanopy+9.1872,R2=0.7365;VWCI=0.9871*EWT canopy +9.1872, R2 =0.7365;

VWCI和FMC的函数关系如下:The functional relationship between VWCI and FMC is as follows:

VWCI=0.7525*FMC+64.449,R2=0.7053;VWCI=0.7525*FMC+64.449, R2 =0.7053;

利用R2和平均平方根误差(RMSE),对遥感观测数据进行了精度分析。结果表明,模型估计值和实地观测数据具有较高的相关性(见图7、8、9)。Using R 2 and root mean square error (RMSE), the precision analysis of remote sensing observation data was carried out. The results show that there is a high correlation between model estimates and field observation data (see Figures 7, 8, and 9).

通过分析可见,VWCI(VWSI)、SPSI对植被水分监测有效,VWCI(VWSI)监测精度比SPSI高。It can be seen from the analysis that VWCI (VWSI) and SPSI are effective in monitoring vegetation moisture, and the monitoring accuracy of VWCI (VWSI) is higher than that of SPSI.

Claims (6)

1. the method for a face of land draught monitor, be soil or the leaf water content that obtains set observation station on the face of land to be monitored, the soil of described observation station or the corresponding index of leaf water content and sign face of land damage caused by a drought are set up functional relation, bring remotely-sensed data into described functional relation, draw the soil or the plant leaf blade water cut on the face of land to be monitored;
Wherein, the corresponding index of described sign face of land damage caused by a drought is determined as follows:
1) on the face of land, farmland of vegetation coverage≤15%, adopts vertical drought index;
Described vertical drought index calculates according to following formula (I):
PDI = 1 M 2 + 1 ( R red + MR nir ) - - - ( I ) ,
Wherein, PDI is vertical drought index, and M is the soil line slope, R RedBe the red spectral band reflectivity through atmospheric correction, R NirBe near-infrared band reflectivity through atmospheric correction;
2) vegetation coverage>15% and≤65% the face of land, farmland, adopt vegetation condition albedo drought index;
Described vegetation condition albedo drought index calculates according to following formula (II):
VCADI = A i , NDV I i - A min , NDVI i A max , NDVI i - A min , NDVI i - - - ( II ) ,
Wherein, VCADI is a vegetation condition albedo drought index, A max , NDV I i = a + bNDV I i , A min , NDV I i = a &prime; + b &prime; NDVI i ; A Min, NDVIiAnd A Max, NDVIiBe respectively minimum and the maximum albedo of district to be measured vegetation index when equaling certain particular value; A, b, a ', b ' is a undetermined coefficient, and a and a ' are respectively the intercepts of doing limit and wet limit in the Albedo-NDVI feature space, and b and b ' are respectively the slopes of doing limit and wet limit in the Albedo-NDVI feature space, scatter diagram by district to be measured vegetation index and albedo obtains A I, NDVIiBe Albedo-NDVI feature space mid point (A i, NDVI i) albedo, NDVL is D (A in the Albedo-NDVI feature space i, NDVI i) vegetation index;
3), adopt at least a in following three kinds of indexes: the vertical dehydration index of short-wave infrared, vegetation moisture exponential sum vegetation water deficit index on the face of land, farmland of vegetation coverage>65% to 100%;
The vertical dehydration index of described short-wave infrared calculates according to following formula (III):
SPSI = 1 M 2 + 1 ( R SWIR + MR NIR ) - - - ( III ) ,
Wherein, SPS worker is the vertical dehydration index of short-wave infrared, R SWIR, R NIRBe respectively short-wave infrared and near-infrared band reflectivity through atmospheric correction, M is a soil baseline slope in the empty palace gate of NIR-SWIR;
Described vegetation moisture index calculates according to formula (IV):
VWCI = ( M 1 - M ) &times; ( NIR G - M 2 &times; SWIR G - I 2 ) ( M 1 - M 2 ) &times; ( NIR G - M &times; SWIR G ) - ( M 1 - M ) &times; I 2 + ( M 2 - M ) &times; I 1 - - - ( IV )
Wherein, VWCI is a vegetation moisture index; M is a soil baseline slope in the NIR-SWIR space; As Fig. 4, M 1, M 2Be respectively the slope of AB and CD line, I 1, I 2Be respectively the intercept of AB and CD line; NIR G, SWIR GAlbedo value for the near infrared and the short-wave infrared of position to be measured correspondence;
Described vegetation water deficit index calculates according to following formula (V):
VWSI=1-VWCI (V)
Wherein, VWSI is a vegetation water deficit index; VWCI is a vegetation moisture index, calculates according to formula (IV).
2. method according to claim 1, it is characterized in that: described 1), the face of land, farmland at vegetation coverage≤15%, adopt vertical arid indices P DI, the M value that its computing formula relates to, in ruddiness-near-infrared band reflectivity two-dimensional space, the slope of the soil line that the each point of sign soil constitutes.
3. method according to claim 1 is characterized in that: described 2), vegetation coverage>15% and≤65% the face of land, farmland, adopt vegetation condition albedo drought index VCADI; Wherein, extract slope and the intercept of doing limit, wet limit, calculate VCADI on this basis at the Albedo-NDVI feature space.
4. method according to claim 1 is characterized in that: described 3), on the farmland face of land of vegetation coverage>65% to 100%, adopt vertical dehydration index of short-wave infrared or vegetation moisture index; Wherein the related parameter of each formula is all based on short-wave infrared-near infrared spectrum feature space.
5. method according to claim 1 is characterized in that: described R RedBe the 630-690nm red spectral band reflectivity through atmospheric correction, described R NirBe the 780-900nm near-infrared band reflectivity through atmospheric correction, described R SWIRBe 1550-1750nm short-wave infrared wave band reflectivity through atmospheric correction.
6. according to arbitrary described method in the claim 1 to 5, it is characterized in that: the described face of land is the face of land, farmland.
CN 200710178807 2007-12-05 2007-12-05 A method for monitoring drought in farmland Pending CN101187630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710178807 CN101187630A (en) 2007-12-05 2007-12-05 A method for monitoring drought in farmland

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710178807 CN101187630A (en) 2007-12-05 2007-12-05 A method for monitoring drought in farmland

Publications (1)

Publication Number Publication Date
CN101187630A true CN101187630A (en) 2008-05-28

Family

ID=39480112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710178807 Pending CN101187630A (en) 2007-12-05 2007-12-05 A method for monitoring drought in farmland

Country Status (1)

Country Link
CN (1) CN101187630A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109471A (en) * 2010-11-30 2011-06-29 浙江大学 Method for quantitatively evaluating crop canopy coverage and soil non-point source pollutant output intensity relationship
CN102176002A (en) * 2010-12-30 2011-09-07 中国科学院地理科学与资源研究所 Surface water heat flux remote sensing inversion-based drought monitoring method and system
CN102252973A (en) * 2011-03-10 2011-11-23 王桥 Method for performing remote-sensing monitoring on soil moisture content
CN101477036B (en) * 2009-01-13 2012-06-06 中国科学院遥感应用研究所 Inland water chlorophyll a concentration remote-sensing monitoring method based on segmenting cooperation model
CN102507504A (en) * 2011-10-25 2012-06-20 南京林业大学 Hyperspectral monitoring method for pine wilt disease of masson pines
CN102621163A (en) * 2011-01-26 2012-08-01 中国科学院电子学研究所 Radar remote sensing method for detecting distribution of water content in soil in depth direction
CN103424405A (en) * 2013-08-27 2013-12-04 华南农业大学 Drought monitoring method based on HJ-1A/1B CCD data
CN103440420A (en) * 2013-08-30 2013-12-11 民政部国家减灾中心 Agricultural drought disaster-inducing factor risk assessment method
CN103472037A (en) * 2013-09-10 2013-12-25 淮南矿业(集团)有限责任公司 Method and device for monitoring water environment in sunk ponding region
CN105023072A (en) * 2015-08-19 2015-11-04 苏州奥诺遥感科技有限公司 Multi-drought index fusion method based on structure inference
CN105447494A (en) * 2015-12-01 2016-03-30 二十一世纪空间技术应用股份有限公司 Vegetable field monitoring method based on multi-source multi-temporal remote sensing image data
CN107036968A (en) * 2016-12-27 2017-08-11 西安科技大学 A kind of soil moisture method of real-time
CN107991243A (en) * 2016-10-27 2018-05-04 核工业北京地质研究院 A kind of high altitude localities Clean water withdraw method based on Airborne Hyperspectral remotely-sensed data
CN108548793A (en) * 2018-03-26 2018-09-18 山东省农业可持续发展研究所 A kind of wheat canopy water content inversion method of comprehensive Nir-Red-Swir spectral signatures
CN108710989A (en) * 2018-04-19 2018-10-26 西安理工大学 A kind of synthesis drought index based on joint distribution function
CN108717044A (en) * 2018-05-24 2018-10-30 青海师范大学 A kind of Surfaces soil water content satellite remote sensing evaluation method that removal vegetative coverage influences
CN108876172A (en) * 2018-06-28 2018-11-23 武汉大学 A kind of surface soil moisture content assessment method based on modified MODIS Water-supplying for vegetation
CN109253976A (en) * 2018-10-22 2019-01-22 北京麦飞科技有限公司 EO-1 hyperion real-time radiation calibrating method based on light sensation module
CN109596811A (en) * 2018-12-26 2019-04-09 武汉大学 A kind of agricultural arid monitoring method based on Different Soil Water Deficits
CN109596577A (en) * 2018-11-12 2019-04-09 河南农业大学 The monitoring method that the construction method and wide angle of wheat powdery mildew state of illness monitoring model adapt to
CN109858186A (en) * 2019-03-11 2019-06-07 武汉大学 The agricultural drought appraisal procedure of optical joint and thermal data
CN109934109A (en) * 2019-01-31 2019-06-25 黄河水利委员会黄河水利科学研究院 A remote sensing-based method for extracting forest and grass vegetation information in soil and water loss areas of the Loess Plateau
CN110243409A (en) * 2019-06-18 2019-09-17 中国农业科学院农业资源与农业区划研究所 An ecological drought monitoring and forecasting system and method based on surface water and heat process
CN110321784A (en) * 2019-05-08 2019-10-11 中国科学院地理科学与资源研究所 Method, apparatus, electronic equipment and the computer media of soil moisture estimation
CN110795895A (en) * 2020-01-06 2020-02-14 南京邮电大学 A method for predicting soil moisture using surface reflection signal and random forest regression algorithm
CN111289441A (en) * 2020-02-21 2020-06-16 中国农业大学 Multispectral field crop water content determination method, system and equipment
CN112540992A (en) * 2020-12-16 2021-03-23 辛集市气象局 Summer corn water shortage index data comprehensive display system
CN113887780A (en) * 2021-08-26 2022-01-04 国家卫星气象中心(国家空间天气监测预警中心) A method, device and equipment for estimating surface temperature of satellite remote sensing
CN115641502A (en) * 2022-09-20 2023-01-24 中国水利水电科学研究院 Winter wheat drought unmanned aerial vehicle rapid monitoring and distinguishing method based on leaf area index

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101477036B (en) * 2009-01-13 2012-06-06 中国科学院遥感应用研究所 Inland water chlorophyll a concentration remote-sensing monitoring method based on segmenting cooperation model
CN102109471A (en) * 2010-11-30 2011-06-29 浙江大学 Method for quantitatively evaluating crop canopy coverage and soil non-point source pollutant output intensity relationship
CN102176002A (en) * 2010-12-30 2011-09-07 中国科学院地理科学与资源研究所 Surface water heat flux remote sensing inversion-based drought monitoring method and system
CN102621163A (en) * 2011-01-26 2012-08-01 中国科学院电子学研究所 Radar remote sensing method for detecting distribution of water content in soil in depth direction
CN102621163B (en) * 2011-01-26 2014-03-12 中国科学院电子学研究所 Radar remote sensing method for detecting distribution of water content in soil in depth direction
CN102252973B (en) * 2011-03-10 2013-08-14 王桥 Method for performing remote-sensing monitoring on soil moisture content
CN102252973A (en) * 2011-03-10 2011-11-23 王桥 Method for performing remote-sensing monitoring on soil moisture content
CN102507504B (en) * 2011-10-25 2013-09-18 南京林业大学 Hyperspectral monitoring method for pine wilt disease of masson pines
CN102507504A (en) * 2011-10-25 2012-06-20 南京林业大学 Hyperspectral monitoring method for pine wilt disease of masson pines
CN103424405A (en) * 2013-08-27 2013-12-04 华南农业大学 Drought monitoring method based on HJ-1A/1B CCD data
CN103424405B (en) * 2013-08-27 2015-04-29 华南农业大学 Drought monitoring method based on HJ-1A/1B CCD data
CN103440420A (en) * 2013-08-30 2013-12-11 民政部国家减灾中心 Agricultural drought disaster-inducing factor risk assessment method
CN103472037B (en) * 2013-09-10 2015-12-09 淮南矿业(集团)有限责任公司 The monitoring water environment method of depression pools zone and device
CN103472037A (en) * 2013-09-10 2013-12-25 淮南矿业(集团)有限责任公司 Method and device for monitoring water environment in sunk ponding region
CN105023072B (en) * 2015-08-19 2019-01-18 嘉兴市南湖区翊轩塑料五金厂(普通合伙) A kind of more drought index fusion methods based on structure inferring
CN105023072A (en) * 2015-08-19 2015-11-04 苏州奥诺遥感科技有限公司 Multi-drought index fusion method based on structure inference
CN105447494B (en) * 2015-12-01 2019-07-09 二十一世纪空间技术应用股份有限公司 Field of vegetables monitoring method based on multi-source multi-temporal remote sensing image data
CN105447494A (en) * 2015-12-01 2016-03-30 二十一世纪空间技术应用股份有限公司 Vegetable field monitoring method based on multi-source multi-temporal remote sensing image data
CN107991243A (en) * 2016-10-27 2018-05-04 核工业北京地质研究院 A kind of high altitude localities Clean water withdraw method based on Airborne Hyperspectral remotely-sensed data
CN107991243B (en) * 2016-10-27 2020-06-19 核工业北京地质研究院 High-altitude area water body extraction method based on aviation hyperspectral remote sensing data
CN107036968A (en) * 2016-12-27 2017-08-11 西安科技大学 A kind of soil moisture method of real-time
CN107036968B (en) * 2016-12-27 2019-09-27 西安科技大学 A method for real-time monitoring of soil moisture
CN108548793A (en) * 2018-03-26 2018-09-18 山东省农业可持续发展研究所 A kind of wheat canopy water content inversion method of comprehensive Nir-Red-Swir spectral signatures
CN108548793B (en) * 2018-03-26 2020-07-07 山东省农业可持续发展研究所 Wheat canopy water content inversion method integrating Nir-Red-Swir spectral characteristics
CN108710989A (en) * 2018-04-19 2018-10-26 西安理工大学 A kind of synthesis drought index based on joint distribution function
CN108717044A (en) * 2018-05-24 2018-10-30 青海师范大学 A kind of Surfaces soil water content satellite remote sensing evaluation method that removal vegetative coverage influences
CN108876172A (en) * 2018-06-28 2018-11-23 武汉大学 A kind of surface soil moisture content assessment method based on modified MODIS Water-supplying for vegetation
CN109253976A (en) * 2018-10-22 2019-01-22 北京麦飞科技有限公司 EO-1 hyperion real-time radiation calibrating method based on light sensation module
CN109596577A (en) * 2018-11-12 2019-04-09 河南农业大学 The monitoring method that the construction method and wide angle of wheat powdery mildew state of illness monitoring model adapt to
CN109596811A (en) * 2018-12-26 2019-04-09 武汉大学 A kind of agricultural arid monitoring method based on Different Soil Water Deficits
CN109934109A (en) * 2019-01-31 2019-06-25 黄河水利委员会黄河水利科学研究院 A remote sensing-based method for extracting forest and grass vegetation information in soil and water loss areas of the Loess Plateau
CN109934109B (en) * 2019-01-31 2022-03-04 黄河水利委员会黄河水利科学研究院 Remote sensing-based method for extracting forest and grass vegetation information in loess plateau water and soil loss area
CN109858186A (en) * 2019-03-11 2019-06-07 武汉大学 The agricultural drought appraisal procedure of optical joint and thermal data
CN109858186B (en) * 2019-03-11 2022-06-03 武汉大学 Farmland drought assessment method combining optical and thermal data
CN110321784A (en) * 2019-05-08 2019-10-11 中国科学院地理科学与资源研究所 Method, apparatus, electronic equipment and the computer media of soil moisture estimation
CN110321784B (en) * 2019-05-08 2021-05-11 中国科学院地理科学与资源研究所 Method, apparatus, electronic device and computer medium for soil moisture estimation
CN110243409A (en) * 2019-06-18 2019-09-17 中国农业科学院农业资源与农业区划研究所 An ecological drought monitoring and forecasting system and method based on surface water and heat process
CN110795895A (en) * 2020-01-06 2020-02-14 南京邮电大学 A method for predicting soil moisture using surface reflection signal and random forest regression algorithm
CN111289441A (en) * 2020-02-21 2020-06-16 中国农业大学 Multispectral field crop water content determination method, system and equipment
CN112540992A (en) * 2020-12-16 2021-03-23 辛集市气象局 Summer corn water shortage index data comprehensive display system
CN112540992B (en) * 2020-12-16 2024-05-24 辛集市气象局 Summer corn water deficit index data comprehensive display system
CN113887780A (en) * 2021-08-26 2022-01-04 国家卫星气象中心(国家空间天气监测预警中心) A method, device and equipment for estimating surface temperature of satellite remote sensing
CN113887780B (en) * 2021-08-26 2023-11-24 国家卫星气象中心(国家空间天气监测预警中心) Satellite remote sensing earth surface temperature estimation method, device and equipment
CN115641502A (en) * 2022-09-20 2023-01-24 中国水利水电科学研究院 Winter wheat drought unmanned aerial vehicle rapid monitoring and distinguishing method based on leaf area index
CN115641502B (en) * 2022-09-20 2023-05-12 中国水利水电科学研究院 Drought UAV Rapid Monitoring and Discrimination Method for Winter Wheat Based on Leaf Area Index

Similar Documents

Publication Publication Date Title
CN101187630A (en) A method for monitoring drought in farmland
Dong et al. Assessment of red-edge vegetation indices for crop leaf area index estimation
Cheng et al. Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning
CN110472184B (en) A rice identification method in cloudy, rainy and foggy areas based on Landsat remote sensing data
Zhou et al. The use of combined soil moisture data to characterize agricultural drought conditions and the relationship among different drought types in China
Ghulam et al. Modified perpendicular drought index (MPDI): a real-time drought monitoring method
Elnmer et al. Mapping daily and seasonally evapotranspiration using remote sensing techniques over the Nile delta
Hamzeh et al. Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices
Ren et al. Estimation of green aboveground biomass of desert steppe in Inner Mongolia based on red-edge reflectance curve area method
Mao et al. Spatiotemporal dynamics of grassland aboveground net primary productivity and its association with climatic pattern and changes in Northern China
Cheng et al. Using multimodal remote sensing data to estimate regional-scale soil moisture content: A case study of Beijing, China
CN103994976A (en) MODIS data-based agricultural drought remote sensing monitoring method
CN101908196B (en) Method for estimating vegetation coverage based on vegetation-soil moisture response relation
Lenters et al. Seasonal energy and water balance of a Phragmites australis-dominated wetland in the Republican River basin of south-central Nebraska (USA)
CN103424405B (en) Drought monitoring method based on HJ-1A/1B CCD data
CN104881727A (en) Crop disaster situation loss assessment method based on remote-sensing sampling
CN113887024B (en) Surface soil moisture inversion method based on normalized temperature construction and drought index
Chai et al. Estimating corn canopy water content from normalized difference water index (NDWI): An optimized NDWI-Based scheme and its feasibility for retrieving corn VWC
Gao et al. The responses of vegetation water content (EWT) and assessment of drought monitoring along a coastal region using remote sensing
CN108548793B (en) Wheat canopy water content inversion method integrating Nir-Red-Swir spectral characteristics
Shamloo et al. Evapotranspiration estimation using SEBAL algorithm integrated with remote sensing and experimental methods
Yu et al. Hyperspectral database prediction of ecological characteristics for grass species of alpine grasslands
Elsayed et al. Remote sensing-based techniques for water management in small-scale farms in arid climate
Cao et al. Multiscale remote-sensing retrieval in the evapotranspiration of Haloxylon ammodendron in the Gurbantunggut desert, China
Elnmer et al. Using remote sensing techniques for estimating water stress index for central of Nile delta

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20080528